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Bayesian Analysis of Multinomial Countsfrom Small Areas and Sub-areas

BalgobinNandran Lu Cherd Binod Manandhdr

Abstract

A standard problem in official statistics is to predict the finite population proportion of a small area when
individual-level data are available from a survey and more extensive data (covariates but not responses) are
available from a census. We can match the geographical location between sample and census but households
are not matched and and the covariates in the sample and the census are different. The 2003-2004 Nepal
Living Standards Survey, the second of its kind, and the 2001 census provide an example in which a PPS
sample of the wards/sub-wards (PSUs) is selected and a systematic sample of the households within the
wards is selected. In the largest stratum less than one percent of the wards and 12 households within the
sampled wards are selected. We are interested in the health portion of the survey in which each individual in
a household is categorized into one of four health status. Using a two-stage procedure, we study the counts
in the households within the wards and a projection method to infer about the nonsampled households and
wards. This is accommodated by a four-stage hierarchical Bayesian model for multinomial counts as it is
necessary to accommodate heterogeneity (ie., differences in wards and households). To fit the model, we
compare two computational methods, an approximate method and an exact method, that are used to obtain
the distributions of the proportions in each health status, and then we use this distribution to do projective
inference for the finite population proportions. In addition, we compare the heterogeneous model, with
household effects, and a homogeneous model, without household effects, and two projection procedures
(nonparametric and parametric).

Key Words: Approximation, Bayesian predictive inference, Dirichlet distribution, Hierarchical Bayesian
model, Metropolis sampler, Numerical integration, Parallel computation

1. Introduction

One can observe counts in several areas. For example, in a study of health one might need to
know how many people are in good heath, average health or poor health in different households
within different counties in a state. The second Nepal Living Standards Survey has sparse counts of
household members within wards for four health status groups. We want to predict the finite pop-
ulation proportion of people in each category in each ward based on a sample from the households
within wards. Undoubtedly there is heterogeneity within wards, the small areas, and not taking
this into consideration when inference is made about the finite population proportions within each
ward, could lead to biased estimates and to incorrect variability (see Rao and Molina 2015).

Let the cell counts for thé contingency tables af cells benjjc,k=1,...,c,j=1,....m,i =
1,...,¢. Thatis, there aré one-way contingency tables each withindividuals partitioned into
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c cells. There ard; sub-areas (households)thin theit" area (ward) in the population amg of
these sub-areas are sampled. Therdaas in the population afcbf them are sampled. Here,
we takeni’j = (nijk,k=1,...,c), wherec is the number of health status. We use the dot notation
(e.9..nij. = Y_q Nijk)-

We first consider a homogeneous area (ward) level model and we will write down the model
for the sample (the model is assumed to hold for the whole population). We assume

nij | pi nd Multinomial(njj., pi),j =1,...,m.

Herep;. are sufficient statistics and under this assumption, the hierarchical Bayesian model is

0 | pi ind Multinomial(ni..,pi),

pily,t g Dirichlet(ut),i=1,...,7,

(c=1)
pP(Y,T)= m,r >0,
where, without any prior information, we have takerandt to be independent. This model was
originally used for cluster sampling generalizing the earlier work of Nandram and Sedransk (1993)
for binomial data. Nowadays, we use this model as an area model in small area estimation with
various applications. Nandram (1998) showed how to fit the area level model using a Metropolis-
Hastings sampler, which is now considered a much too complicated algorithm for this problem.
The conditional posterior density @f | u, T, 0. ind Dirichlet(n. + ut),i=1,...,4 Thus, one

can obtain Rao-Blackwellized density estimatorspphaving obtained a sample ¢ft, 7) from
their joint posterior density. It is easy to show that

V4 c nik—1
Mkt Msto {ps+(1—p)Hk}
) ~ D n.—

C
}>O<P<170<Hk<1aZHk:la
k=1

where we have transformedto p = 1/(1+ 1), and any of the arguments must be set to unity if
ni.x =0 orn;.. =0, a very likely scenario for some cells. So that this posterior density is well defined
forall p, 0< p < 1. Itis easy to use the Gibbs sampler, not the Metropolis-Hastings sampler, to
draw samples fronm(y, T | n). We will call this model the homogeneous model or the area-level
model. This model incorporates only the multinomial counts in#tlaeeas, and it does not take
account of sub-areas, hence the name homogeneous or area-level model. When inference about
the sub-area is of interest, one can use the area-level model with the conditional posterior density,
pij | YT, 0 ™ Dirichlet(n +ut), j=1,...,m,i=1,....¢

In the same manner, we can consider a sub-area homogeneous model for the sampled counts.
Assuming that there are no area effects (i.e., the sub-areas are homogeneous), let

Dij | Pij ind Multinomial(nij., pij), j = 1,...,m,i=1,....¢,
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pii | w.n ™ Dirichlet(yn),

(c—1) &

my,n) = thk 1,4 >0,n > 0.

g (1+n)?
Now, thep; are the sufficient statistics and there are no reductions. Under the model,

nk 1
Mk=1Mseo "[Ps+ (1—p)yd
)0
T l—ln{ ”;0 [ps+1—p] }

wheren has been transformed o= 1 andpi; | ¢, n, 0" Dirichlet(n; +(,n). Because there
are numeroug;j (1212 in the NLSS data for the largest stratumy, ) will have very small
variation and thep;; will be to close together (no ward effects), thereby loosing the practical import
of the application.

We will obtain a sub-area heterogeneous model for the multinomial counts in which there both
are sub-area effects and area effects. In the Nepal Living Standards Survey (NLSS), the covariates
are different from those in the Census and they do not affect health directly, so that we will call
them indirect covariates, nine covariates commonly used for any study of these data. In this project,
we have NLSS data in individual level and census data in household level. So one way to proceed
is to ignore the covariates in the NLSS in order to proceed to inference about the finite population
proportions where we can use the covariates. A further problem is that while the wards in the
NLSS match the wards in the Census, the households do not (i.e., there are no labels to make this
matching). So we have to match the households in the census and the NLSS using a record-linkage
procedure. There are six variables at the household level (including household sizes) and three
variables at the ward level; these latter variables cannot be used for matching but they can be used
for prediction. Most of the variables are either discrete or just proportions.

We matched the Census and the NLSS as follows (see Section 4.1 for these covariates). We
started by matching all six covariates, and this procedure provides a majority of the matches. For
those that did not match, we went down to five variables at a time (five sets of matching), then three
variables and so on. At the end there were some variables that did not match. For these we use
a nearest neighbor matching procedure using a distance function. Then, the final data set consists
of households within wards, sampled and nonsampled. The sampled households have responses
(counts in different health status). There are also wards not sampled. There are 101 sampled wards
(one lost by matching) and 12,133 nonsampled wards. Prediction is needed for the nonsampled
households of the 101 sampled wards and all the households of the 12,133 nonsampled wards.

Our entire procedure is the following. First, we develop the sub-area model for the multino-
mial counts. We fit both the homogeneous and heterogeneous models using a Markov chain Monte
Carlo sampler. For the small-area model, we use the Gibbs sampler and for the sub-area model we
use the Metropolis-Hastings sampler. Because for a large number of areas this procedure is time
consuming, we also show how to make an approximation to the sub-area model. From these mod-
els, we generate the super-population proportions that are then linked to the Census data through
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the covariates. Noting that the proportions are the same for each househuldr, ave generated
independent and identical proportions for the households within a ward. Then, we fit regression
models to the logarithm of the proportions (iterates) to get the regression coefficients. We have used
either Iterative Reweighted Least Squares (IRLS) or the Nested Error Regression (NER) model to
get the regression coefficients that are then used to generate the counts for both the sampled and
nonsampled households in both the sampled wards and the nonsampled wards. The rest is standard
Monte Carlo procedures to infer a posteriori the finite population proportions for the wards.

The paper has four more sections. In Section 2, the four-stage hierarchical Bayesian model
is described. In Section 3, we describe how to make inference about the finite population pro-
portions. Specifically, we show how to connect the NLSS to the Census. In Section 4, we show
how to analyze Nepal's data. Section 5 has concluding remarks. Technical details are given in the
appendices.

2. Four-Stage Hierarchical Bayesian Models

We extend the three-stage hierarchical Bayesian model of Nandram (1998) to four stages to
capture heterogeneity within areas by modeling the sub-area counts.

2.1 General Modé€

Here, we write down the model for the samplg,.k=1,....c,j=1,....m,i=1,...,¢ but
the model is assumed to hold for the entire population of areas and subrgigéisz 1,...,c, | =
1,...M,i=1,...,L.

Therefore, lettingy; = (nij1, ..., Nij¢)’, for the sample the multinomial-Dirichlet-Dirichlet model
assumes that

0ij | pij nd Multinomial(nij., pij), pij |Hi,rin~d Dirichlet(uit),j =1,...,m,i=1,...,¢,

Wil g,n " Dirichlet(yn),

(c—1)
1+1)2(1+n)%
where, without any prior information, we have takgnn andr to be independent. For simplicity,
we have use a single(i.e., not depending on areaj.

Note that if T depends on area (i.ert; is used) and we allow; to go to infinity, the first
homogeneous model occurs and if we allpwo go to infinity, we retrieve the second homogeneous
model. For comparison, we need to fit the joint posterior densities under the first homogeneous
(area-level) model and heterogeneous model separately. Inference abpytahe thep; under
the homogeneous model can be obtained by using samples from their joint posterior densities. This
is an intermediate step to make inference about the finite population proportions.

P(QIJ,U,T)Z( n>0,7>0,
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It is straightforward to see that
Pij | Kis T, 0] nd Dirichet(nij + i7),i =1,...,¢.

Again, Rao-Blackwellized density estimatorsmf can be easily obtained. It is useful to note that
this conditional posterior density depends onlyprandt, but not on the other parameters. Then,
integrating out thep;j, we get the joint posterior density gf ¢/, n, T | 0,

1 1 L Mes k™™
(g, g,n, 7| 0)0 (1+1)2(1+n)2 il:lg(yhﬂ I){WL

where,D(-) is the Dirichlet function, and for convenience, we use

m D(pij +
I‘llar‘nl :I_l IJ IJI )7._17"'7‘6'

Note that the conditional posterior density(pf, 7) given(pi, , n) is the product of two parts.

c Yen-1
The first part ig(w, T | 0i), which is complicated, and the second pa@%%, the Dirichlet

prior distribution. We can think of the posterior densityyi, T |mi,Y,n) as the product of two
n-1

densities, one proportional @(ui, T | i), and ﬂkl(+n) In fact, we can think ofy(ii, 7 | ij),

as the posterior density for each area (in a sub-area model) as in Nandram (1998). That is, this
is just the posterior density that Nandram (1998) obtained a Metropolis-Hastings sampler to draw
samples from; see Appendix A.

Note thaty andn are not directly connected to the counts even after integrating oygthe
This indicates that there will be difficulties (weak mixing) in running a Markov chain Monte Carlo
sampler. Therefore, further integration is necessary. That is, we also need to integratejgut the
(i.e., need to draw the parameters simultaneously), but this is not possible analytically.

2.2 Sampling the Joint Posterior Density
We will describe two methods for sampling the joint posterior density. In Section 2.2.1, we
describe an analytical approximation based on Nandram (1998) and in Section 2.2.2, a numerical
integration based on a characterization of the Dirichlet distribution.
2.2.1 Analytical Approximation
In Appendix A, we show how to approximatgii, T | 0i) as
9(ti, T D)~ da(li | T,00)9(T | 0i)

whereda(Li | T,1i) is a Dirichlet distribution, depending on the cell counts an@ndgy (T | 0i)
is a gamma distribution, depending only on the cell counts. Note specificallgdfiat| t,0i) is

1144



JSM 2018 - Survey Research Methods Section

Dirichlet(@t + j), wherej is a vector or onesp depends orr and the cell counts, argh(t | p;)
is Gammag;, vi), Wheren. andv; depend on the cell counts. With this approximation, we can
integrate oupy;, but nott. So we will be left with an approximate posterior densiyy, n, T | n).
The parametergy, n, 1) are now connected to the cell counts, and this provides a better sampler
(but still can be improved).

Using this approximation, the approximate joint posterior densify,0f=1,...,4,y,n, T is

1 1 oy Ml T
(9.0 T D0 gy I'[gb D(@T)D(yn)

This approximation allows us to integrate out feo get

1 1 L . D(at+yn)
@z @n2 1% ™ 5gnnien):

Finally, we can now draw samples @f n, T using the griddy Gibbs sampler. It is convenient
to transformn andt to (0,1) and takings =1/(1+n) andy, = 1/(1+ 1) to get

D(@t+yn)
(Y. v,y D)0 {l‘[gb D(@1)D (Wn)}n_y;,r_y;’

m(Y,n,tin)0

wherey; = 1;—1”1 andy; = 1’7”

2.2.2 Numerical Integration in the Sub-area Model

Another way to integrate out the is to use a representation of the Dirichlet distribution that
is a product of beta distributions; see Darroch and Ratcliff (1971) and Connor and Mossimann
(1969).

Let x be a vector withc components such thz{tlexi =1x;>0,j=1,...,c. Assume that
x ~ Dirichlet(a), wherea is a vector withc known elements. Then,

c-1
P(X1, ... Xk1) O ( I_IIXT‘ )(1— le -1
J:

Letvy =xg, V;j :xj/(l—z’;ixs),j =2,...,c—1. Theny; v Beta@j,ys ji18s),i=1,...,.c—1.
Let u have a Dirichlet distribution, and(u) be a function ofu. Then, lettinge’ = {x: x; >
0,j=1,....c— 1,2‘1?;}xj < 1}, we require the integral,

= / , NP
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Then, transforminga, ..., %X._1 (as is done above), we have

| = /01--./01{ﬁ(1— uj)® 1" (u)p(u)dy,
-

whereuy,...,u._1 are independent beta random variablgg) becomed*(u) and%’ transforms
to [0,1)° L.
Using this characterization on the| {, n nd Dirichlet(¢/n), we get

1 1 l X c-2 k.
T[(l!/,r],'l' |n) 0 (1—|—T)2 (1+n)2 II__l/g (yivr,nij)ﬂl(l_vik) . 17'[(1/i)dl/i,

wherevy,k=1,...,c— 2, are independent beta random variables ferl, ..., ¢ The integration

is easy to carry out by discretization over the range of the independent beta random variables.
We can now drawy,n, T using a Metropolis sampler. The candidate generating is the an-

alytic approximation discussed in the previous section. We draw a sample=ofL0,000 iter-

ates using the Gibbs sampler (to allow a “burn in” and thinning to get 1,000 samples). We show

how to construct a proposal density fap,n, 1) to run the Metropolis sampler. We have sam-

ples from the approximate posterior density(qwl(h ™) h=1,...,M. We transform these

topM.h=1,....M where 3" = log(y™ /(1 -y )),i =1,....c—1, " = log(n™),
Bei1 = log(t™). Then, we fit a multivariate normal densﬂy@éh), wheref ands are the mean
and covariance matrix of the samples, ant? ~ Gammak/2,1/2) to complete thgp+ 1)-
variate Student’s density onk degrees of freedom, whereis a tuning constant. We restart the
algorithm if it is necessary. Both the Metropolis sampler for the exact computations and the Gibbs
sampler show good performance as evident by the trace plots, auto-correlations, Geweke test of of
stationarity, the effective sample sizes and the jumping rate of the Metropolis sampler.

To draw they;, we use a Metropolis algorithm with the approximate Dirichlet distribution
(Nandram 1998) as the proposal density to draw samplgs ofdependently given,n, T and
data. We run each Metropolis 100 times (500 times did not make a significant difference) and
picked the last one. If the Metropolis step fails (jumping rate is n¢tdB, 50)), we use the griddy
Gibbs sampler within this Metropolis step. Parallel computing can also be used in this latter step.
This is performed in the same manner for the exact method (i.e., numerical integration). For our
application with 101 wards, this latter step runs very fast. Of course, with much larger number of
wards, the computing time will be substantial, but now parallel computing is available.

3. Inferencefor Finite Population Proportions

We have now obtained samplgg]) = (pik,k=1,....,c=3),j=1,....m,i=1,....0,h=

1,...,M, sayM = 1000. The next step is to link thegﬁh) to the census. The census has covari-
atesy;j, a vector of (r=10) components, including an intercept, for all households, sampled or
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nonsampled. There are three parts, the sampled households in the sampled waaissahgled
households in the sampled wards and the nonsampled households in the nonsampled wards.
We use the following steps to implement the projection procedure.

a. Model theyjjc for eachk = 1,...,c—1 (independent regression-type analyzes)

c-1
Yijk = log{pij/(1— 3 pig)}.k=1,....c—1,
&

see Agresti (2012) for the multinomial logit transformation;
b. Projecty;j for eachk using the model (entire census);
c. Define newp;jk using theyijx,

c-1

pijk = ik /(1+ Z eiK) k=1,...,c—1,
=1

wherepijc = 1—- St 1 pijk, j =1,...,Mi,i=1,...,L;
d. Draw then;jx from multinomial models; obtain copies of the census counts.

This regression analysis will be performed for each ofitheamples opi(jh). We can obtain all
the nonsamplegjx for all M iterates in the same manner. Having obtained the the cell probabili-
ties, the multinomial counts can be generated for each dfttliterates, thereby obtaining a large
sample (sizeM) of contingency tables for the entire census. We have two methods of doing this
operation in a comprehensive manner.

3.1 Iterative Re-weighted Least Squares Method

We have used the ensemble M-estimation model in small area estimation; see Chambers and
Tzavidis (2006), where the regression coefficients are estimated using lterative Re-weighted Least
Squares (IRLS). This is an attractive honparametric procedure for small area estimation because
there are no random effects to model, but random effects come out as summaries of g-scores.
A good review paper is given by Dawber and Chambers (2018). This is directly related to the
procedure mentioned above.

Lety;; denote the responses aggdthe covariates for unitin areai, j =1,...,nj,i=1,...,%

We string out these values and relabeling, the responseg arel the covarlates ae for i =
1,...,n=yE n. Inthe IRLS B for eachgin (0,1) is obtained by solving

lequ-’qk ) =0,
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wheredyy are the median absolute deviationypf—gq@q and the weights are
yi—xB
~q
Ll/qk( Bak )

Yi —Zﬁéq
Oqk

Wigk =

with Yge (U) =2[(1—g)lu<o+ qluso][—Klu<—k + Ul_x<u<k + Klu>«], Wherel is the indicator func-

tion, K is a tuning constant and the second term is the Huber influence function. In our analysis,
we have sek = 2. In the ensemble M-estimation model, the IRLS procedure is executed for every
gon afine grid in(0,1). Then, theé'" g-score solves the equation,

The random effects are then obtained as a summary (e.g., median)pfftreareai, denoted
by g*. Now, @q* are the estimated regression coefficients for this area. The IRLS is performed
sequentially as follows. Start up the process using standard least squares estimators, obtain the
residuals and the median absolute deviation of the residuals, and finally the weights. Then, use the
weights and the median absolute deviation to get the first re-weighted least squares estimates of the
regression coefficients. Now iterate the process for each valgédd fine grid in(0,1); we have
used(.10, 90) because of computational instability.

3.2 Nested Error Regression Method

The second method is the nested error regression (NER) model; see Battese, Harter and Fuller
(1988). We use the full Bayesian version of the NER model which was originally developed by
Toto and Nandram (2010) and later applied to poverty estimation by Molina, Nandram and Rao
(2014).

Letting, yij = zjk for eachk, k=1,...,c— 1, the Bayesian NER model is

vii "% Normal(; B +vi,02),j = 1,....,

v |p,o2™ NormaI(O,lppaz),i =1,...,¢,

n(B,0% p) 01/0%

Again, the Bayesian NER model is applied 1 times for each of th& samples.

The joint posterior density is proper provided the design matrix is full rankgang < 1—¢,
wheree is a very small number. For exampkez .0001, and Molina, Nandram and Rao (2014)
showed posterior inference about poverty parameters is not sensitive to a choice ofa small

The posterior density gb can be obtained apart from the normalization constant, and all the
other conditional posterior densities, in order to use the multiplication rule to get the joint posterior
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density, are in standard forms. Therefore, it is easy to get a sample from thpgetetior density
using the composition method (i.e., the multiplication rule of probability). Draws from the posterior
density ofp is obtained using a fine grid d®,1). This method is very fast, and much faster than
the IRLS, because it simply uses random draws, not a Markov chain, and the IRLS has to be done
on a fine grid. While the IRLS projection method took more ten hours even with a parallel system
with 32 processors, the NER method took about 5 hours on a single processor.

Of course, the ensemble M-quantile estimation model is nonparametric, but there may be some
difficulties in finding the g-scores near 0 and 1, if these are actually needed.

3.3 Bayesian Projective Inference

We can perform either a Bayesian predictive inference or a Bayesian projective inference about
the finite population for each ward or even at a more micro level for each household. Predictive
inference means that the non-sampled households are filled in while projective inference means
that all households (sampled and non-sampled) are filled in. We have actually used the projective
method for the NLSS data and the census because smoothed estimates of the household proportions
may be needed for the sampled households.

Finally, in a projective method, we will obtain all thgy for both the samples and the nonsam-
ples. Then, we will draw the cell counts for all households. For each ward, sum all the cell counts
of the households in a ward, and divide by the population size (known) to get the finite population
proportions in the three cells. Then, draw all the cell counts. For each ward, we will add these
counts to the already observed counts. For the nonsampled households, use the IRLS estimates at
Xi; Bs. For the NER model, we would need to uggS + vi for the nonsampled households within
sampled wards via the posterior samples ofuh@lready drawn). For the nonsampled wards, we
will need to use a draw from the the prior distributiorp{no-data posterior density) and compute
Z(i/j @ + Vi.

4. Analysisof Nepal’s Data

We use data from the Nepal Living Standards Survey (NLSS II, Central Bureau of Statistics,
2003-2004) to illustrate our methods. In Section 4.1, we describe the 2001 Census and NLSS 1. In
Section 4.2, we apply our method to Terai Rural stratum, the narrow strip of rural areas in southern
side of Nepal bordering India; see Figure 1 that shows the districts, not the lower levels of wards
and households. We note that in the Terai Rural the wards are scattered in the whole strip.
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Figure 1: Map of Nepal showing the Terai Region
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41 Censusand NLSS

NLSS isa national household survey in Nepal, actually population based (i.e., interviews are
done for individual household members). NLSS follows the World Bank’s Living Standards Mea-
surement Survey methodology with a two-stage stratified sampling scheme, which has been suc-
cessfully applied in many parts of the world. It is an integrated survey which covers samples from
the whole country and runs throughout the year. The main objective of the NLSS is to collect data
from Nepalese households and provide information to monitor progress in national living stan-
dards. The NLSS gathers information on a variety of subjects. It has collected data on demograph-
ics, housing, education, health, fertility, employment, income, agricultural activity, consumption,
and various other subjects. We choose the polychotomous variable, health status, from the health
section of the questionnaire.

Health status is covered in Section 8 of the questionnaire, which collected information on
chronic and acute ilinesses, uses of medical facilities, expenditures on them and health status.
Health status questionnaire is asked for every individual that was covered in the survey. The health
status questionnaire has four options (excellent, good, fair, poor), but because the fourth cell is
overly sparse, we combine fair and poor into a single cell (renamed poor).

In the NLSS II, Nepal is divided into wards/sub-areas (psu’s) and within each ward/sub-ward
there are a number of households. The sample design of the NLSS Il used two-stage stratified
sampling. A sample of psu’s was selected using PPS sampling and then twelve households were
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systematically selected from each ward. Thus, households have equal probabi@ecion.

But while individuals in a household have equal probability of selection, the survey weights have
various adjustments, so they vary with the size of the households and the individuals. For this
project we will ignore the survey weights because this heeds a multinomial logit model that we are
currently studying.

There are five relevant covariates that are normally used to study health status from the same
NLSS survey. They are age, nativity, sex, area and religion. These binary variables are nativity
(Indigenous =1, Non-indigenous = 0), religion ((Hindu = 1, Non-Hindu = 0), sex (Male = 1, Female
= 0) and area (Urban = 1, Rural = 0). Older age and child age are more vulnerable than younger
age. Indigenous people can have different health status from non-indigeneous people. Similarly,
health status of urban and rural citizens could be different. Unfortunately, these covariates are at
the individual level, whereas the available covariates in the census are at the household and ward
level. This is one of the reasons that we did not use the covariates at the individual level for the
sample.

We chose nine relevant covariates which can possibly influence health and they are available
in the 2001 census data. They are (i) “Household size” (hhsize), (ii) “proportion of kids aged 0
- 6 in the household” (skid36(iii) “proportion of kids aged 7 - 14 in the household” (skids714),

(iv) “abroad migrant” (remtab), (v) “House temporary” (hutype3), (vi) “House owned” (huown2),
(vii) “proportion of households with cooking fuel LP/gas in Ward” (ckfuel3w), (viii) “proportion
of households with land-owning females in municipality/VD@flandv), and (ix) “proportion of
kids 6-16 attending school in municipality/VDC” (pschv) from NLSS-II, 2003—2004.

Six of these covariates are directly related to the houseligize, skids6, skids714, remtab,
hutype3,andhuown2. Size of household and proportion of children in different age group have
influence on expenditure and consumption. Any household member as abroad migrant indicates
the sources of remittance. Covaridteutype3” indicates a temporary type of house; there are
three types of houses according to the construction material of the outside walls of the house:
permanent, semi-permanent, and temporary. The house owned variable is a binary variable that
indicates whether the household has its own house to live in or not. Covdmisten2” indicates
that the household has their own house to live in.

The other three area level variables akéuel3w, pflandvand pschv. Around 2003—-2004 in
Nepal very few rural areas used LP/gas as cooking fuel while urban households did. LP/gas is ex-
pensive compared to other sources of fuel. Covafjaflandv” indicates the proportion of house-
holds with a female owning land in the Municipality/VDC. The proportion of children aged 6-16,
pschv, who are supposed to be in school indicates the awareness of the community and strength of
the future.

There are six strata and we study the Terai Rural stratum, the largest stratum in Nepal. It
has 102 wards/sub-wards with 1,224 households in the sample of 12,239 wards in the population
(sample frame) with 1,686,317 households with 9,744,810 people. After matching we ended up
with 101 wards in the sample and 12,133 wards in the nonsampled part of Terai Rural. The number
of people in the sample is 6,979 with 3901 in the first cell, 2921 in the second cell and 157 in the
third cell with percentages 55.9%, 41.9%, and 2.2%. The sample of 6,979 will speak for 9,744,810
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people (i.e., a sample of just 0.07%). So we have imposed an order restricticth@vieree cells
to assist the computations.

4.2 DataAnalysis

Because the counts in the households are sparse for many households, it is necessary to adjust
the heterogeneous model. The counts in the last cell are mostly zeros, so we decided to combine
the last two cells. Even as such it is still sparse. However, we noticed an order restriction of the
proportions of household members in the three cells. So we impose the order restristign 1
yn > Y > 0. We apply this restriction to the homogeneous model also. The order restriction also
helps to provide a better MCMC algorithm.

Let us consider how this order restriction changes the conditional posterior densitied (cpd’s) of
Y1 andyr; noticeys = 1 — Y — Y. Thus, the order restriction is really

1>y >yp>1-yn—yr>0,

and this is a key inequality. Now, we need the support of the cpfh @fiven the other parameters
and the support of the cpd gk given other parameters. See Appendix B, where we show that that
given (s, the support of; is max{%, Yo, 1— 24} < Yy < 1— P and giveny, the support of

Yo is %(1— ) < yPp< min{%, Y1,1— yn}. We have drawn samples from the cpdsjafand @,

using the grid method.

In Figures 2, 3 and 4, we compare the approximate method with the exact method. We can see
that the posterior means are very close, the posterior standard deviations and posterior coefficients
of variation are close but a little less close than the posterior means. As we c&3 Emdhe three
plots (PM2 vs. PM1, .9993; PSD2 vs, PSD1, .9749; PCV2 vs. PCV1, .9942) are very high, very
close to the 45straight lines.

1152



JSM 2018 - Survey Research Methods Section

Figure 2: Posterior means - Approximate versus exact for all sampled households
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Figure 3: Posterior standard deviations - Approximate versus exact for all sampled households
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Figure 4: Posterior coefficients of variation - Approximate versus exact for sample households
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In Figures 5 and 6, we compare the homogeneous model and the heterogeneousherdale
NER method and the IRLS method respectively. We can see that the points do not fall reasonably
well on the 48 straight line. This indicates, everything being equal, the homogeneous model is
inadequate. A shortcoming of the homogeneous model is that it does not model sub-areas, an
additional source of variability that is accommodated by the sub-area model.

1155



JSM 2018 - Survey Research Methods Section

Figure 5: Comparison of the homogeneous model and the heterogeneous model for prediction of the finite
population proportion§posterior means) for all wards under the NER method
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Figure 6: Comparison of the homogeneous model and the heterogeneous model for prediction of the finite
population proportion§posterior means) for all wards under the IRLS method

Prediction - IRLS

Het: Sub—area

Hom: Area

Finally, in Table 1, we compare the IRLS and the NER model under the sub-area (Hetkel
and the area-level model (Hom) with respect to posterior inference about the finite population pro-
portion by health class. We have used the posterior means and the posterior standard deviations
for this exercise, and we have summarized the 12,334 by their medians and inter-quartile range for
each of the three finite population proportions. If we consider only the proportion of people in ex-
cellent health, we can see some interesting things. For the sample, the medians of the proportions
under Hom are always larger regardless of whether IRLS or NER is used; the IQR of the propor-
tions follow the same pattern. [Note the large IQRs under NER (Hom).] The same results hold
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for the nonsamples; here the IQRs are much smaller perhaps because the nonsavapige£o

are more homogeneous. We can see also that these proportions are larger for the samples than the
nonsamples perhaps reflecting a possible selection bias. Also, for the sample (hsample), the PSDs
under Hom are always smaller (larger) than the corresponding ones under Het; these differences
are small.

Table 1: Comparison of IRLS method and the NER projective method, the sub-area model (Het) and the
area-level model (Hom) with respect to posterior inference about the finite population proportions by health
status (three proportions)

IRLS, Het IRLS, Hom NER, Het NER, Hom
Med IQR Med IQR Med IQR Med IQR
a. Sample
PM 540 .098 .608 .164 512 .185 574 361

375 .105 379 159 425 .208 406 .361
.095 .016 .022 .018 .069 .034 015 .021

PSD .078 .020 .073 .029 .077 .039 .031 .011
.071 .011 .068 .027 .074 .037 .031 .010
.038 .010 .008 .004 .038 .030 .006 .004

b. Nonsample

PM 453 .005 512 .016 378 .003 389 .004
454 .004 466 .012 .382 .008 375 .004
.093 .008 .022 .005 241 011 237 .007

PSD 138 .017 185 .051 .046 .014 .053 .017
138 .017 184 .051 .045 .014 .052 .017
.040 .006 .013 .002 .036 .009 .042 .013

NOTE: Entries are the medians and IQRs over the 101 sampled wards and the 12,133 nonsampled
wards for the three health status.

5. Concluding Remarks

We have shown how to obtaM = 1000 copies of the contingency tables of the2I3 wards
in the Nepal Census. We have actually studied the largest stratum among six strata of Nepal, Terrai
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Rural. Our procedure can be applied to each of the six strata in much the samé&Nwaew
methodology is needed. However, this matching procedure has been a very extensive endeavor.

It is not obvious how to incorporate survey weights in this procedure. A possible procedure
is to use a multinomial logit model for the cell counts, and incorporate the survey weights in this
multinomial regression using the individual health covariates. Then, we can proceed with the cell
probabilities and the census covariates as we have done. This is not really easy for the sub-area
model. To be specific, for unk within sub-areg and area, the model is

yiik | B, vi, @ " Multinomial(L, ijc),

wheref = (B;,..., B 1)’ and@jk = (@jk1,- - -, Pjke) With

KikPatvitaj c-1
= 7 —,0=1,....c— 1, @jkc =1— Pikg -
1457 by ruran J gzl "

@ikg

Then, the random effects have

vi | 62" Normal(0,02), w;j | 8% " Normal(0,52),

1 1
(1+02)2(1+8%)%
One can pitch the survey weights to form a composite likelihood (preferably normalized); see
Nandram, Chen, Fu and Manandhar (2018) for an individual area-level model without sub-area
effects. Letting the standardized weightshg and % = {(ay,...,a) 1 ag = 0,1,55 ;89 = 1},
the normalized composite likelihood is

nB) =1, n(o? 6% =

c—1 ,.Yijk c-1 ... n
Mg=1%ikg (1 — T g—1 Pikg )"
~1,Vik 1 .
zyijke%” |_|§:1 (pljlligg (1- ZS’:l (njkg/)y”kg

Itis, indeed, a challenge to fit this model to the NLSS data with the individual covariates and survey
weights.

There are many problems like the one we just discussed. Surveys generally use stratified sam-
pling with PPS sampling of households, schools or farms within each stratum and systematic sam-
pling of equal size within each household, school or farm. While this leads to equal probability
sampling, there are sampling adjustments that are usually made, thereby producing unequal survey
weights per individual. One would need to add desperate administrative data, typically obtained
from a census. Such large surveys are common. The covariates in the survey may be different from
the census covariates, as in the Nepal application, poising additional challenges.

C
f(Yijk | @) = Yikg = 0.1, Vijkg = 1.
g=1
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APPENDIX A: Approximation of Posterior Density of (g, T)

We show how to approximate

M D(nij + Ul .
=1,...
I-ll ) T | nI {I_!l D IJ| ) 7£
by a Dirichlet-Gamma distribution motivated by Nandram (1998). For ease of exposition, we will
drop the subscrigt and we consider

S D(Ds+UT)
o1 D(ur)

whereSis the number of households within a ward gmé@ndps are vectors of length. It also
convenient to writgy(u, T | n) as

B S L I(nsj+ 1)\  F(Ns+71)

Note thatg(y, T | n) does not contain prior information abqutandz(ie., prior distributions). We
seek a convenient approximation of the posterior dergs{mﬂ | n). Nandram (1998) obtained an
approximation for the conditional density| 7, and one forr | 1, p which he used to obtain can-
didate generating densities to facilitate the executlon of a Metropolls Hastings sampler. Here, our
purpose is different and we adapt the approximation of Nandram (1998) to facilitate a composition
method.

First, we obtain the approximation for the posterior densityr dfy pa(7 | n) starting with
conditional posterior density af | y,n. This approximation is a gamma density. Def'@]e:

n;j+1

ZJ l +J+1 J - l
n(t | n),is

)

g, Tln)=

..,I, wheren,j = zg:l nsj. Then, an approximation to the posterior density,

p(t| u=6.,n) Drl{ :S‘6+9‘)}/{F(ns,+r)/r(r)},r>0.
J

Let 7. denote the posterior mode pft | yu = Q,n) or some reasonable estimator (e.g., the posterior
median if the posterior mode does not exist). Nandram (1998) obtained the posterior mode using
the Nelder-Mead algorithm, and we have used a similar approach here. Now, define

-1
S| 1 1 ro.,1 1
2 2
o, = — — + 07 (= — ~ .
[;{(T* T*+ns.) JZl J(er* nsj+91T*)}]

Then, essentially equating moments,

20, 20,

2
1={ 5 +\/ge 2 H1} andv=via. (A1)
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and the gamma approximationig p ~ Gammafj,v). Once a deviate of is obtained, we can
draw g from p | 7,n ~ Dirichlet(gt). Next, our departure from Nandram (1998) is in the specifi-

cation of¢.
Let
s R s R _
Aj:Tlen(l—i-nsj/Tej), Bj:TZ{Gj‘l—(6j+nsj/r)‘1},J:1,...,r,
S= S=

where we assume that; > 1 for eachj and at least ons (i.e., B; > 0). Specifically, we are
assuming that there is at least one positive entry across all tables. Next, we define

_ r r
A=YS B1A/S B!
N
and forj=1,...,r, using Nandram (1998), we have
- (B, O0<f<1
{5 :
J 6]
Finally, we take
r
G =0/ Bii=1,...1 (A.2)

Observe that they are functions ofr. These posterior distributions are reasonable to use as impor-
tance functions.
As a summary, our approximation ¢gu, T | n) is

g, T~ (| T,0)m(T [ 1),

where inti(p | T,0), W | 7,0~ Dirichlet(ot + j), jtil a vector of ones ang comes from (A.2),
andt | pn~ Gammaf,v) andn andv comes from (A.1). Note that, as an adjustment to Nandram
(1998), it is convenient to add unity to each componergnf

APPENDI X B: Order Restriction on the Prior Distribution of Y
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We need the supports of the cpdsyafandys, in their joint prior distribution.
First, consider the support of the cpd ¢f. We have the following inequalitiegjy > (»;

W2 > 1— (1 — P, so thatyy > 1— 24, (giving Y2 < 3). Finally, 1— gn — ¢ > 0 givesyn < 1— .
Second, consider the support of the cpdief We have the following inequalitiegy > y;
We > 1— 4 — Y givesy, > 1(1—yn). But, of courseys > 3(1— yn), that givesyy > 1. Finally,
1—-yn—yp>0givesy, <1—ys.
Putting these together, we get that givwgn the support ofp; is

1
max{é, Yr,1— 2(,[!2} <Y <l-—yn, (B.1)

and givenys, the support ofls is

1 o1
5(1—411) <Y< mm{é,‘-ﬂlal—‘#l} (B.2)
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