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Abstract
The USDA’s National Agricultural Statistics Service (NASS) surveys are affected by nonresponse

and by incomplete responses that may not be homogeneous across farm types and sizes. To ad-
dress item nonresponse, NASS employs a variety of imputation methods such as ratio imputation,
iterative sequential regression, fully conditional specification, K-nearest neighbor, carry forward of
previously reported data and manual imputation to provide reliable and consistent values on NASS
data. To address unit nonresponse and some other sources of error, NASS currently uses a set of
generalized linear regression models to estimate the number of US farms by calibrating their cor-
responding weights. However, linear models cannot always capture important nonlinear features
of the population. Deep learning (including artificial neural network) models are used successfully
in numerous other applications in order to capture nonlinear properties efficiently. In this paper,
imputation techniques and the adjustment of the survey weights are integrated. A potential unified
deep learning method simultaneously adjust survey weights and impute missing values is discussed.

Key Words: Imputation, Neural network model, Calibration, Dual-system estimation, Capture-
Recapture, Survey data.

1. Introduction

The US Census of Agriculture is conducted by the USDA National Agricultural Statistics
Service (NASS) every five years, in years ending in 2 and 7. The Census provides a detailed
picture of US farms, ranches, and the people who operate them. It is also the only source
of uniform comprehensive agricultural information for every state and county in the United
States. Missing information requires the use of data imputation and calibration of sample
weights.

The Census is based on the NASS list frame, which contains agricultural operations
that should satisfy the farm definition (O’Donoghue et al., 2009). This list frame is also
used to conduct many agricultural surveys, and for this reason, the maintenance of the
list frame is a crucial ongoing effort that intensifies leading up to the Census. When the
list frame is “frozen” at a specific time, it becomes the Census Mailing List. This list is
incomplete, and not all the agricultural operations on the list satisfy the farm definition or
respond to the Census questionnaire. To address these issues, a Dual-System Estimation
(DSE) methodology was developed at NASS (Young et al., 2017) in order to adjust the
estimates for coverage, non-response and misclassification. NASS also obtains information
on most commodities from administrative sources, which provide reliable information used
to reduce the bias of the estimates through calibration.

Furthermore, missing values and outliers cannot be avoided during data collection;
therefore, editing and imputation mechanisms are developed to handle these issues. These
mechanisms consist of three strategies. The first is deterministic; the values to impute are
determined through the evaluation of other data provided by the respondent. The second
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employs previously reported data, and the third is based on a nearest neighbor approach
(Miller and Young, 2015).

It should be noted that the imputation is performed before DSE, which is followed
by calibration. In fact, the mechanism of imputation is not considered in the calibration,
which could be affected by the change of the data distribution risking additional bias in
the estimates. Therefore, a unified approach to data imputation, DSE, and calibration that
can exploit deep learning models is developed both with the purpose of bias reduction and
learning more features (predictors).

Many approaches have been proposed and used to impute for missing or erroneously re-
ported data. The autoregressive integrated moving-average (ARIMA) model (Nihan, 1997)
and the Markov Chain Monte Carlo (MCMC) multiple imputation method (Ni et al., 2005)
are two examples of imputation techniques found in the literature. With the increasing
quality and quantity of data, an automatic and more efficient approach should be developed
to handle massive data sets. Duan et al. (2016) proposed a denoising autoencoder (DA)
deep learning model to deal with traffic data imputation, and the performance of the model
was found to outperform that of ARIMA model and MCMC multiple imputation method
in terms of imputation accuracy. A possible disadvantage of a deep learning strategy lies in
the difficulty of explaining the model. Duan et al. (2016) addressed this by explaining the
DA model by visualization.

A better version of DA based on a deep learning model is described by Gondara and
Wang (2018). Unlike the previous studies, which employed the complete observations for
training and dealt only with the same type of missing mechanism (e.g. missing at random),
their approach and the one proposed here are designed to handle multiple missing mecha-
nisms in the incomplete observation training dataset. Gondara and Wang’s approach (2018)
was also tested with different data sets that were modified by various missing mechanisms,
and its performance is better than other proposed solutions.

To improve the estimates of population totals, Lemel (1976) introduced the first idea of
calibration. This gained importance after Deville (1988), and it was generalized by Deville
and Särndal (1992). Singh and Mohl (1996) distinguished between two types of calibration
approaches:

1. those that iterate until weight restrictions are met while satisfying the calibration
equations;

2. and those that iterate until the calibration equations are met while satisfying the range
restrictions on the weights.

Even if both approaches are asymptotically equivalent, the interval length of the range
restrictions imposed on the weights has an impact on the point estimates and their precision.
In light of the DSE methodology proposed by Young et al. (2017), an alternative to these
two approaches is an iterative optimization that stops only when both weight restrictions
and calibration equations are met.

Imputation, DSE and calibration are sequentially performed operations and the effects
of these successive algorithms on the final estimates are not obvious. This motivated Slud
and Thibaudeau (2010) to develop an algorithm that simultaneously performs calibration
and non-response adjustments by minimizing a multi-objective function. Subsequently,
Slud et al. (2013) extended this technique to deal with soft-constraints, and Shaffer et al.
(2014) studied the impact of penalties. Elkasabi et al. (2015) proposed a joint calibration
estimator for a dual survey system, while Toppin et al. (2017) attempted to perform cali-
bration and DSE simultaneously.

As the previous authors investigated the combination of DSE and calibration, a unified
approach that also incorporates data imputation is proposed in this paper. A DA model is
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developed during the imputation stage, and the learned features are used sucessively for
DSE and calibration. Further details on imputation, DSE, and calibration are discussed in
the second section. The joint model will be proposed in the third section. The conclusion
will be delivered in section 4.

2. Methodology review

2.1 Notation

The following notation is used throughout the paper:

xj Vector of covariates in the input layer
hj Vector of values stored in hidden layers
zj Vector of values stored in the output layer
ω Vector of parameters
σ(·) Activation function (often a sigmoid)
U A finite heterogeneous population
S A sample selected from U
sk Statistical unit sampled from U
α Elastic-net factor controlling the regularization
A An n× p matrix of collected data
ak The k-th row of matrix A
y Vector of targets (known totals)
ℓk Lower bound of the k-th target
uk Upper bound of the k-th target
w Vector of final calibrated weights
gk Upper bound of weight restrictions

2.2 Imputation

2.2.1 Missing data mechanism

There are three types of missing mechanisms: Missing Completely At Random (MCAR),
Missing At Random (MAR), and Missing Not At Random (MNAR). Data that are MCAR
indicate that the probability of any observation having missing data is the same. Data that
are MAR imply that the probability of missingness depends on observed information. Data
are MNAR if the missing depends on unobserved information, or the missing in a variable
happens based on the variable itself (Leke et al., 2015).

2.2.2 Handling missingness

Gondara and Wang (2018) proposed a multiple deep denoising autoencoder imputation
model to handle the missing data. Unlike previous studies, which employ the complete ob-
servations in training and only deal with the same type of missing mechanism (for example,
missing at random), their proposed approach is designed to handle multiple missing mech-
anisms in the incomplete observation dataset. US Census of Agriculture data are imputed
by 3 strategies:

1. deterministic (any value that can be determined through the evaluation of relevant
responses (e.g. a missing total) is imputed);

2. previously reported data (previously-reported data assembled from a variety of NASS
surveys together with previous Census of Agriculture data are used for imputation),
and
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3. nearest neighbor donor imputation (an imputation approach named donor imputation,
which adopts nearest neighbor method and is a type of automated imputation, is
used).

The alternative strategy investigated here is to use a deep denoising autoencoder model,
which is based on Artificial Neural Network (ANN).

2.2.3 Artificial neural network

A simple ANN consists of 3 components, i.e. input layer, hidden layer, and output layer.

Figure 1: The structure of an artificial neural network.

In Figure 1, one hidden layer is displayed between the input and output layer. Multiple
hidden layers can be in an ANN but they have the same structure.

A hidden layer consists of several neurons and these neurons are used to form output
layer. Hidden neurons in a hidden layer are calculated as:

hi = σ

ω0i +
∑
j

ωji xj

 ,

zi = softmax

ω0i +
∑
j

ωji hj

 ,

where hi represents the i-th hidden neuron, xj represents j-th input, ωij represents parame-
ters in i-th neuron, ω0i represents bias in i-th neuron, xj represents the j-th component, i.e.
observation of input layer, and σ(·) is the activation function and can be defined as a sig-
moid function, e.g. tanh(·) function or the Rectified Linear Units (ReLU). All parameters
will be randomly initialized and then updated via back-propagation.

2.2.4 Autoencoder and denoising autoencoder

An autoencoder is a type of ANN that is trained to attempt to copy its input to its output.
Internally, it has a hidden layer that describes a code used to represent the input. The
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network may be viewed as consisting of two parts: an encoder represents a feature extracted
process and a decoder that produces an input reconstruction. This architecture is presented
in Figure 2. Three hidden layers are in Figure 2, but the size of the middle hidden layers in
encoder and decoder have the same structure.

Figure 2: The structure of an autoencoder network.

Denoising autoencoder is an extension of autoencoder (Vincent et al., 2008) that seeks
to learn more robust features, i.e. avoid overfitting, by corrupting the input data. Corrupting
can be completed through a number of ways and one approach is randomly removing some
observations.

2.3 Dual-system estimation

DSE methods are sophisticated techniques to estimate the number of unsampled units
within a closed population U . At least two independent samples are collected from the
same finite population, S1 ⊂ U and S2 ⊂ U , must satisfy the inequality S1 ∩ S2 ̸= ∅. It is
possible to estimate the cardinality of the set U\(S1 ∪ S2) under the assumption that it is
not empty.

Alho (1990) proposed a logistic regression model in a capture-recapture setting to esti-
mate the size of a heterogeneous closed population. When all units in the population belong
to a sample S , it is called a census. However, a complete enumeration rarely occurs due to
under-coverage, non-response and, sometimes, misclassification. Thus, most censuses can
be viewed as extensive surveys that require adjustments to extend the inferential results to
the entire population. This can be achieved by a capture-recapture methodology that takes
into account the enumeration issues mentioned above.

Young et al. (2017) developed a DSE method for the US Census of Agriculture that
performs separate logistic regressions to compute four distinct probabilities that are suc-
cessively used to compute the adjusted weights. These are formulated as

w
(DSE)
k =

Pr(F |FCensus)

Pr(C|F ) Pr(R|C,F ) Pr(FCensus|R,C, F )
, (1)

where Pr(F |FCensus) and Pr(FCensus|R,C, F ) respectively address farm over-count and
under-count due to incorrect farm-classification, Pr(C|F ) accounts for under-coverage
given that the statistical unit is a farm record, and Pr(R|C,F ) quantifies the propensity
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of a farm to respond to the Census questionnaire. This approach however does not take
into account possible nonlinear relationships among the data. Also it necessitates extensive
training to deal with variable selection to improve the accuracy of the results.

In line with the approach described for imputation, artificial neural networks can in-
troduce nonlinear features in the model and allow for a simultaneous process of the infor-
mation required to fit the four probabilities. The adjusted weights are then produced as a
combination of the four probabilities stored in the four neurons of the output layer, i.e.

zi = logit−1

ω0i +
∑
j

ωji hj

 .

Figure 3: The structure of the DSE neural network with four neurons in output.

2.4 Calibration

The DSE weights are further adjusted to produce consistent estimates across all levels of
aggregation. NASS employs integer calibrated weights to calculate the final values of its
Census estimates and avoid fractional farms. Ideally, the benchmark equations should be
already satisfied just by rounding the DSE weights instead of processing them by rounding
algorithms developed ad-hoc (Sartore et al., 2018).

Calibration is generally performed to find an optimal vector of weights that satisfy a
set of linear equations. At NASS, the calibration equations are evaluated as a loss function
rather than considered as constraints. The reduction of the relative errors between bench-
marks and estimates is performed while satisfying the range restrictions of the weights.

Given the formulation of the adjusted weights as in (1), the range restrictions are not
considered as constraints but as an additional term in the objective function that penalizes
those solutions that lie outside the assigned intervals. As it was pointed out by Toppin et al.
(2017), the DSE weights before rounding should lie between 1 and the upper bound gk ∈ N,
which is defined for any Census record, i.e. for any sk ∈ S1. The approach proposed below
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is consistent with the application of artificial neural networks to estimate the probabilities
involved in the computation of the DSE weights.

The calibration equations are incorporated into a loss function that accounts for bench-
marks defined both by numbers (hard targets) and intervals (soft targets).

∑
k∈H

∣∣∣∣akw − yk
yk

∣∣∣∣+∑
k∈I


(yk − akw)/(yk − uk), if akw > uk,

(yk − akw)/(yk − ℓk), if akw < ℓk,

0, otherwise.

where H represents the set of indexes of the known totals that need to be matched exactly,
I represents the set of indexes of the totals that has to lie within confidence boundaries, ak
corresponds to the k-th row of A, which is an n×p matrix of collected data (some of which
are imputed), yk denotes the k-th known totals, while ℓk and uk respectively represent the
lower and upper bound of the confidence interval of the k-th target. The vector of final
calibrated weights w is computed such that its components satisfy the following equation:

w
(Cal)
k = ⌊w(DSE)

k ⌋.

Since the rounding w
(DSE)
k does not take into account of the range restrictions on the

weights, it is necessary to add a penalty defined as
1− wk, if wk < 1,

wk − gk, if wk > gk,

0, otherwise.

2.5 Penalty function

Usually, regression models are fitted and evaluated to select the best predictors according
to specific criteria. Among the most common variable selection techniques, the elastic-net
penalty developed by Zou and Hastie (2005) is a function of the parameter to estimate and
combines the LASSO and ridge penalty (Zou and Hastie, 2005; Friedman et al., 2010). It
is formulated as

(1− α)
1

2
∥ω∥22 + α∥ω∥1,

where the notation ∥·∥1 represents the L1-norm used to perform the LASSO regularization,
and ∥ · ∥2 denotes the L2-norm for the ridge regularization. The factor α is used as a trade-
off between the LASSO (α = 1) and ridge regularization (α = 0). The elastic-net can be
a valid solution to reduce the number of edges between neurons of two different layers in
the networks described in the previous sections. Regression models are fitted using all the
predictors; therefore, adding this penalty to the objective function is useful for dealing with
many correlated predictor variables and hidden neurons.

3. Joint optimization

The proposed approach simultaneously optimizes two neural networks. The first network,
the autoencoder, addresses the problem of missing values by providing a reliable value to
be used successively by the other network. The second network removes the decoder part
of the first network and employs features extracted from the imputation process to quantify
the DSE probabilities that are used to compute the adjusted weights. Mathematically, the
adaptation of these networks can be formulated as a single objective function that can be
expressed as the sum of the loss functions employed for imputation, DSE and calibration.
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Without loss of generality, the objective function is formulated as

min
ω

LImp(ω) + LDSE(ω) + LCal(ω) + LPen(ω) + LRes(ω),

where LImp denotes the loss function used for imputation, LDSE represents the loss function
used for DSE, LCal measures the distance from the calibration benchmarks, LPen quanti-
fies the elastic-net penalty, and LRes accounts for the range restrictions on the calibrated
weights.

Figure 4: The first network used for imputation.

Figure 4 displays the first network, which is used for imputation; mean square error and
cross entropy are the most common loss functions for numerical and categorical variables
respectively. These two loss functions will be minimized simultaneously through backprop-
agation. A grid search is conducted to look for the number of layers and neurons in terms
of the minimized loss. The model can be trained for 500 epochs using an adaptive learning
rate with a time decay of 0.99 and Nesterov’s accelerated gradient (Nesterov, 1983, 2012,
2013). The dropout ratio is set to 0.5 and tanh is used as the activation function because
tanh performs better than other activation functions for small or moderate size datasets.
Since a DA model requires complete data at the initialization, the median for numerical
variables and the most frequent class for categorical variables are used initially to replace
the missing values within each variable. These missing values will be imputed later when
the network is constructed (Gondara and Wang, 2018). In practice, when the DA model
is constructed, the decoder part is removed and the second network is formed as indicated
in Figure 5. The weights of hidden layers of this network are fixed before the addition
of new hidden layers. Then the weights in the newly added hidden layers will be trained
through back-propagation to minimize the objective function. Finally, the probabilities are
calculated and the calibrated weights can be calculated by combining those probabilities
and truncating to the lowest integer.

The values generated by the encoder are used by the other loss functions; consequently
their impact can be measured on both the DSE probabilities and the calibrated totals.
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Figure 5: The second network used for DSE.

4. Conclusion

NASS currently handles imputation, DSE, and calibration in separate steps. Toppin et al.
(2017) improved the variable selection and computational costs, and designed a model that
combines DSE and calibration. However, the mechanism of imputation was not considered
as part of that joint approach. This may introduce some bias in the final estimates. A unified
approach integrating all three processes jointly was derived in this study.

The proposed methodology has the potential to automate several processes within NASS,
and will decrease computational time and estimation efforts. This approach has the poten-
tial to take into account all sources of variation and simplify the computation of standard
errors. Future research will focus on the formalization of a multifunctional network, and
on a broad simulation study to identify the best estimation strategies and loss functions.
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