
Towards a Global Convergent Algorithm for Integer Calibration Weighting

Kelly Toppin∗ Luca Sartore† Clifford Spiegelman‡

Abstract
The USDA’s National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agri-

culture in years ending in 2 and 7. The census describes the characteristics of U.S. farms and the
people who operate them. To adjust for under-coverage, nonresponse and misclassification, NASS
produces the weights on the responding records using a capture-recapture methodology. However,
the weights need to be further refined through a calibration process so that the census estimates agree
with known population values. The current algorithm (called INCA) was developed to provide in-
teger calibrated weights per NASS requirements. In INCA, weights adjusted for undercoverage,
nonresponse, and misclassification are first rounded using an optimal rounding procedure, and then
integer programming using coordinate descent is performed on the integer weights. However, the
existence of multiple local solutions makes the search of a global solution exponentially complex.
This article describes a comparison between two algorithms for integer calibration based on an L1-
norm relative error. The results of a simulation study designed to investigate the properties of the
estimator is presented.
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1. Introduction

USDA’s National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agri-
culture every five years, in years ending in 2 and 7, to provide useful information about the
U.S. farms, ranches, and the people who operate them. The Census is also the only source
of uniform comprehensive agricultural information for every state and county in the United
States.

The Census is based on the NASS list frame that consists of agricultural operations,
some of which do not satisfy the farm definition (see O’Donoghue et al., 2009, for fur-
ther details). The update of the list frame is an ongoing process. The Census Mailing
List (CML) is a “frozen” image of the list frame at a specific point in time. The CML is
incomplete. To address the resulting undercoverage, NASS turned to a Dual-System Es-
timation (DSE) methodology to adjust the estimates not only for under-coverage, but also
for non-response and incorrect classification of farms. The adjustments are expressed as
record weights (DSE weights). However, these are computed without taking into account
the information from reliable administrative sources. Thus, the application of a calibration
weighting technique is necessary to assure that consistent estimates are produced across all
levels of aggregation.

Weighting calibration methods can provide a better set of weights for the Census, for
which known totals from administrative data and other trusted sources are available. These
calibrated weights are associated with their corresponding records to account for under-
coverage, non-response, misclassification, and other fluctuations from known totals. A
two-step approach is commonly adopted to calculate the necessary adjustments. First,
the Census weights are initially adjusted to compensate for under-coverage, non-response
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and/or misclassification. Second, calibration is applied to further improve the weights and
produce unbiased estimates.

The first concept of weighting calibration was introduced by Lemel (1976). Deville
and Särndal (1992) further developed the idea by providing methods that modify the de-
sign weights in the Horvitz-Thompson estimator (Horvitz and Thompson, 1952). Singh
and Mohl (1996) heuristically justified the use of calibration and provided some algorithms
that were compared to each other. Théberge (1999) provided some calibration techniques
based on linear algebra properties to estimate some parameters of the population other than
totals and means. Duchesne (1999) developed a robust method that satisfies the calibration
benchmarks while forcing range restrictions on the weights. Théberge (2000) also studied
the impact of weight restrictions and discussed the effects between outliers and extreme
weights. Estevao and Särndal (2000) proposed the “functional form method” to the cal-
ibration problem to remove the limitation due to the minimization of a distance measure
between the weights by satisfying the calibration benchmarks expressed in a “functional
form”. Calibration successively expanded into the realm of adjustments for nonresponse
and coverage errors (Kott, 2006).

Integer calibrated weights are based on a standard that NASS adopted for its U.S.
Census of Agriculture publication reports. This concept allows NASS to produce more
consistent tabulations where the estimates sum to the correct totals across all levels of ag-
gregation. Scholetzky (2000) investigated the effects of rounding the weights instead of
total estimates. Integer calibration (INCA) was developed at NASS for producing the final
weights of the U.S. Census of Agriculture (see Sartore et al., 2018, for further details on
the algorithm). This methodology has a limitation: INCA converges to a local minimum
that may not be a global solution.

From the authors’ experience, there are two alternative ways to produce integer cali-
brated weights:

1. rounding the DSE weights that are successively calibrated by dealing only with inte-
ger weights, or

2. performing calibration with constrained real weights that will be rounded according
to optimality criteria.

In this article, the second approach is considered and developed to produce an efficient
algorithm to be compared with INCA.

The next section describes an attempt of a globally convergent algorithm that produces
integer calibrated weights. A case study is presented in Section 3, while concluding re-
marks are summarized in Section 4.

2. Methodology

While DSE weights account for nonresponse, misclassification, and undercoverage, they do
not automatically provide integer totals. Calibration weighting methods change the values
of the adjusted weights produced by a DSE approach. These values are usually collected
on a vector w∗, and are calibrated to match known totals. Producing integer calibrated
weights ŵ that are “close” to the DSE weights w∗ is equivalent to solving the following
optimization problem:

min
w∈N⊂Nn

δ(w −w∗) + λρ(y −Aw), (1)
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where

n denotes the number of observations or units responding to the
Census,

y is a vector of m known totals,

A is an m× n matrix of collected data,

δ(·) represents a function based on a distance measure defined as
δ : Rn → R+,

ρ(·) denotes a loss function based on a distance measure defined as
ρ : Rm → R+,

λ is a positive scalar that controls the importance of the errors pro-
duced by the benchmark equations y = Aw.

2.1 Calibration

To solve the integer calibration problem in (1), a similar problem based on real numbers
can be set as

min
w∈W⊂Rn

δ(w −w∗) + λρ(y −Aw),

where the bounded setW is defined as

W =

n⊗
i=1

[1, ui],

where ⊗ denotes the Cartesian product among the sets [1, ui], with ui > 1 is the upper
bound of the i-th weight, for any i = 1, . . . , n.

For a generic approach, gradient descent algorithms can establish a base for an algo-
rithm that converges linearly to a global solution by forcing the search onW . The transfor-
mation

wi =
1 + ui exp(xi)

ui + ui exp(xi)
(2)

is considered to simplify the search; therefore, an optimal solution can be found by per-
forming the optimization in an unbounded setting:

min
x∈Rn

δ(ω(x)−w∗) + λρ(y −Aω(x)),

where the function ω : Rn → Rn performs the transformation (2).
The improved Rprop+ algorithm (Igel and Hüsken, 2003) is used to decrease iteratively

the objective formulated in (1). The algorithm updates the weights according to criteria that
are based on the sign of the derivatives computed in two successive steps.

The algorithm starts by computing the gradient as

g(τ) = J(x)
[
∇δ{ω(x)−w∗} − λA⊤∇ρ{y −Aω(x)}

]
,

where the diagonal matrix J(x) = diag(θ1, . . . , θn), with

θi =
ui exp(xi)(ui − 1)

{ui + ui exp(xi)}2
, ∀i = 1, . . . , n.
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Two constants are set such that 0 < η− < 1 < η+, and a vector ∆(0) is initialized by
setting its components as

∆
(0)
i =


∆−, if di < ∆−,

∆+, if di > ∆+,

di, otherwise,

where ∆− < ∆+ are both non-negative constants, di = |g(τ)i |/max(|g(τ)(1) |, |g
(τ)
(n)|), with

g
(τ)
(1) and g

(τ)
(n) are respectively denoting the minimum and the maximum value of the gradient

at the step τ .
At the step τ = 0, the weights are updated as

x
(τ+1)
i = x

(τ)
i − sign(g(τ)i )∆

(τ)
i , (3)

but for τ > 0, the algorithm computes the gradient g(τ) and it updates the vector ∆(τ) ac-
cording to the changes of the corresponding partial derivatives. At this point, the algorithm
considers three cases:

• when g
(τ)
i g

(τ−1)
i < 0. The values of x are adjusted only if the objective at the step

τ − 1 is lower than the objective at the current step, so that

x
(τ+1)
i = x

(τ)
i − sign(g(τ)i )∆

(τ−1)
i .

The size of the step is then updated as ∆(τ)
i = max(∆

(τ−1)
i η−,∆−), and g

(τ)
i = 0;

• when g
(τ)
i g

(τ−1)
i > 0. The step size is adjusted as ∆(τ)

i = min(∆
(τ−1)
i η+,∆+), and

the values of x are updated as in (3);

• when g
(τ)
i g

(τ−1)
i = 0. No adjustment of the size step is require and the values of x

are updated as in (3).

The procedure terminates its iterations when any among the following convergence
criteria is satisfied:

• the decrement of the objective function is insignificant;

• ∆i = ∆−, for all i = 1, . . . , n;

• τ is greater than a fixed number of iterations.

A better solution can be achieved by starting the optimization from distinct initial can-
didate solutions and taking the best point as the final solution. The rounding algorithm is
performed on the vector of calibrated weights w̃ to obtain integer values.

2.2 Rounding algorithm

The rounding algorithm applies rounding rules as a stochastic search inspired by evolu-
tionary algorithms that heuristically converge to the best rounded values that provide an
optimal solution to the problem (4).

The algorithm starts by taking the lower integer of each calibrated weights so that w̌i =
⌊w̃i⌋. These values are used to compute optimal binary steps si ∈ {0, 1} that will be used
to compute the optimal solution as ŵi = w̌i + si by optimizing the following problem:

min
s∈{0,1}n

δ(w̌ −w∗ + s) + λρ(y −Aw̌ −As). (4)
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The gradient of this objective is computed as

g = ∇δ(w̌ −w∗ + s)− λA⊤∇ρ(y −Aw̌ −As).

The adaptive strategy updates the vectors α and β, which are initialized as

α(0) = 1− w̃ − w̌ − v + 2s∗,

β(0) = 1− w̃ + w̌ + v + 2(1− s∗),

where 1 is a vector of ones, the components in the vector v are defined as

vi =

{
0, if gi ≥ 0 or w̌i + 1 > ui,

gi/g(1), otherwise,

and s∗ is a suboptimal solution for the problem in (4) obtained with deterministic methods
(e.g. see Sartore et al., 2018). Whenever s∗ is not available, let it be a vector where its
components are set to 0.5.

At each iteration the components of possible candidate solutions s̃k are simulated from
a Bernoulli(pi), where pi = αi/(αi + βi), for k = 1, . . . ,K, where K denotes the total
number of simulations to perform. For τ > 0, the values of the two vectors are updated as

α← α+
∑
k∈K

s̃k,

β ← β +
∑
k∈K

(1− s̃k) ,

whereK is the set of the indexes, which have binary steps s̃k that achieve the most reduction
of the objective.

This algorithm converges when pi tends to zero or one for all i = 1, . . . , n, or τ exceeds
a fixed number of iterations to perform.

The optimal values of the steps are obtained as

ŝi =

{
0, if αi < βi,

1, otherwise.

3. Case study

The performance of the proposed algorithm is studied through simulations, and the results
are compared to those produced by the integer calibration algorithm developed by Sartore
and Toppin (2016). The values of 150 weights ωi are drawn from a Gamma(3.333, 1)
distribution, and the data stored in the components of a 201 × 150 matrix A satisfy the
following equality:

aji =

{
1, if j = 1,

bjicji, otherwise,

where bji is drawn from a Bernoulli(0.3) distribution and cji from a Poisson(4), for any
j = 2, . . . , 201 and i = 1, . . . , 150. The calibration benchmarks are successively computed
as a system of linear equations, i.e. y = Aω, while the DSE weights are drawn from
a U(0, 7.5) distribution to increase the difficulty of attaining an optimal solution to the
calibration problem. This means that more operations are performed to obtain a solution
that satisfies NASS requirements, i.e. ŵi ∈ [1, 6], for any i = 1, . . . , 150.
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Table 1: Results of the simulation study
λ = 0.09 λ = 0.37 λ = 1.49 λ = 5.97

Objective 910.43 3102.69 11894.86 47097.84
MAD 1.16 1.10 1.07 1.07
TAE 7901.00 7873.00 7862.00 7862.00

Time (s) 44.52 44.08 47.41 44.01

For this study, a simplified objective function was designed to reduce the distance of
the population totals from the calibration benchmarks, i.e.

ρ(y −Aw) =
201∑
j=1

∣∣∣∣∣yj −
150∑
i=1

ajiwi

∣∣∣∣∣ ,
which has a straightforward evaluation of its gradient, i.e.

gi = −
201∑
j=1

sign(εj)aji,

where the error εj = yj −
∑150

i=1 ajiwi, and the function

sign(z) =


−1, if z < 0,

0, if z = 0,

1, if z > 0.

To evaluate the performance of the algorithm, it was applied using four values of λ, in
particular λ ∈ {0.09, 0.37, 1.49, 5.97}. The optimizations all started from the same initial
DSE weight vector. The final value of the objective function, the Total Absolute Error
(TAE) from the calibration benchmarks, the Mean Absolute Deviation (MAD) from the
DSE weights, and the computational cost expressed in elapsed seconds were all evaluated
(see Table 1).

INCA produces a vector of integer weights with MAD at 1.84 and total absolute error
of 1992.

4. Summary

From the data collection through the publication of the US Census of Agriculture, specific
deadlines are set for each step of the process. Thus, it is not possible to adopt and execute
computational intensive algorithms within the time available. However, improvements can
be made within a limited amount of additional time for a particular task. Thus, the goal is
to provide a set of methods to compute the most precise estimates within the available time.

The proposed calibration algorithm adjusts the weights on an unbounded space and
successively produces integer weights with the desired characteristics. However, the com-
putational efficiency is dramatically reduced by performing several optimizations starting
from different initial weights each time. This approach is necessary to allow for a more
accurate search of a global solution. Under specific conditions on the objective function
(Koenker, 2005) the optimal solution is unique and the developed algorithm heuristically
converges to a vector of integer calibrated weights that coincides with the global solution.

Even if the methodology based on resilient back-propagation overcomes the main lim-
itation of a discrete coordinate descent algorithm, INCA still finds better vectors of integer
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calibrated weights within a small amount of time. This also provides more evidence to the
fact that calibration performed by dealing with integer weights surpasses the achievements
of the most efficient optimization algorithms for real-valued weights.

Future research can speed-up the minimization process and exploit a combined swarm-
optimization when the objective function presents many local minima.
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