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Abstract
Rubin (1987) introduced multiple imputation in a parametric Bayesian framework and considers it

proper if the uncertainty of the imputation fully propagates. Augmenting it with a semiparametric
concept like predictive mean matching (Rubin 1986, Little 1988) promises both, valid inferences
and robustness against some model misspecifications. Although numerous multiple imputation pre-
dictive mean matching algorithms exist their theoretical properties remain largely unexplored. In
this paper, we show why all of these algorithms are improper, but the one by Siddique & Belin 2008.
On this exception we build a new algorithm and demonstrate its superiority in terms of coverages
of frequentist confidence intervals within a comparative simulation study.
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1. Introduction

Imputation often precedes statistical analysis of missing data. ‘[T]o represent the uncer-
tainty about which value to impute’ Rubin proposed multiple imputation. It replaces each
missing value by M > 2 imputed values and adds an extra component to the variance
of any estimator through Rubin’s combining rules (Rubin, 1987). In contrast to treating
imputed values as if they were observed, multiple imputation inhibits overly progressive
frequentist inference.

In the Bayesian framework, in which multiple imputation is set, draws from well de-
fined distributions give the imputations. As these distributions do typically not reflect em-
pirical distributions appropriately, implausible imputations occur in applications. Predic-
tive mean matching, like other hot deck methods, imputes values from the observed part of
the data set and hence guarantees plausible imputations. As a nearest neighbor technique
predictive mean matching is also more robust to model misspecification (Schenker & Tay-
lor, 1996, p. 429), namely nonlinear associations, heteroscedastic residuals, and deviations
from normality (Morris et al., 2014, p. 4). Nonetheless, the quality of predictive mean
matching imputations largely depends upon the availability of near donors; truncation set-
tings typify its limits as shown in the 2009 Bamberg University PhD thesis by the second
author.

Combining multiple imputation with predictive mean matching promises a robust im-
putation procedure yielding valid inferences and is thus highly appealing to practitioners.
Consequently, a suchlike combination constitutes not only a feature but often the default of
the imputation algorithms in all major statistical software programs (Morris et al., 2014, p.
3). In contrast, skepticism dominates the literature (see, e.g., Little & Rubin (2002, p. 69)).
As an example, Morris et al. (2014, p. 5) note in the given context: ‘... there is thus no
guarantee that Rubin’s rules will be appropriate for inference.’ This contrast between the
uncertainty in theory and the prominence in applications motivated our work.
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In this paper, as our main contribution, we elaborate one key deviation of multiple
imputation predictive mean matching algorithms from the theory of multiple imputation.
Knowing about this deviation we identify the algorithm by Siddique & Belin (2008) as,
in the sense of Rubin (1987), the most multiple imputation proper one and thus as the
foundation for our proposed algorithm. A simulation study demonstrates its empirical pre-
eminence regarding coverages of frequentist confidence intervals.

2. Fully parametric multiple imputation

Let the data be n independent realizations of a p-dimensional normal random vector (Y,X).
We suppose that the n× (p− 1) matrix of covariates X is fully observed and define nmis
and nobs = n − nmis as the number of missing values or recipients and the number of
observed values or donors in the n × 1 vector y, respectively. We assume ignorability for
the missingness as pr(y = missing) = Φ (X∗α+ η), where X∗ denotes the X matrix
of covariates with a leading constant column; η independent normal noise; α a vector of
parameters of length p; and Φ the normal cumulative distribution function. In the given
setting the correct conditional imputation model is the linear model y = X∗β + ε with
β denoting a vector of parameters of length p and ε independent normal noise with zero
mean and variance σ2ε . Fully parametric multiple imputation repeats the following steps
M > 2 times to correctly reflect the uncertainty about the parameters of the imputation
model (Little & Rubin, 2002, p. 216).

1. The posterior step. First draw from the posterior distribution of the residual variance
σ̃2ε | yi, Xi given by Γ−1{nobs/2, (yi −X∗i β̂)T(yi −X∗i β̂)/2}. Then draw from the
posterior distribution of the intercept and slope parameters β̃ | yi, Xi, σ̃

2
ε given by

Np{β̂, σ̃2ε(X∗Ti X∗i )−1}. yi and Xi refer to the fully observed subset of the data, and
β̂ denotes the maximum likelihood parameter estimate.

2. The imputation step. Draw nmis times independently from the imputation model, i.e.
ỹj ∼ N(X∗j β̃, σ̃

2
ε).

The next section introduces three nonparametric algorithms within the multiple impu-
tation set-up that underlie our proposed algorithm.

3. Nonparametric multiple imputation

3.1 The approximate Bayesian bootstrap imputation

The approximate Bayesian bootstrap imputation was the first nonparametric multiple im-
putation algorithm (Rubin & Schenker, 1986, p. 131). In the posterior step the approximate
Bayesian bootstrap imputation algorithm draws a bootstrap sample from the donors instead
of parameters, and, in the imputation step, it draws from this bootstrap sample consider-
ing the integer bootstrap frequencies ω instead of from the conditional predictive distribu-
tion. However, Kim (2002, p. 472) shows that inferences are correct for nobs → ∞ only,
because, just like the maximum likelihood estimator, the bootstrap estimator ignores the
appropriate degrees of freedom correction (Davison & Hinkley, 1997, p. 22). Thus, for
finite nobs the total parameter variance is underestimated. Parzen et al. (2005, p. 973) show
that multiplication of the total variance estimate for the mean with the following factor φ
removes the bias.

φ(nobs, nmis,M) =

n2

nobs
+ nmis

M
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− n
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Some criticism about this correction factor stems from Demirtas et al. (2007).

3.2 Predictive mean matching

As opposed to the approximate Bayesian bootstrap, predictive mean matching (Rubin,
1986, p. 92) substitutes the draw from the conditional predictive distribution only, i.e.
the imputation step.

1. Calculate the predictive mean for the nobs elements of y as ŷi = X∗i β̂.

2. Calculate the predictive mean for the nmis elements of y as ỹj = X∗j β̃.

3. Match each element of ỹj to the its respective closest element of ŷi.

4. Impute the observed yi of the closest matches.

Algorithm 1: The following four steps constitute the predictive mean matching proce-
dure by Little (1988, p. 292).

3.3 Distance-based donor selection

For the posterior step the distance-based donor selection algorithm by Siddique & Belin
(2008), which Siddique & Harel (2009) later called MIDAS, employs bootstrapping as
originally proposed by Heitjan & Little (1991, p. 18). Maximum likelihood estimation of
the imputation model parameters on M independent bootstrap samples replaces the draws
from the posterior distribution (Little & Rubin, 2002, p. 216). The unique feature of the
algorithm by Siddique & Belin (2008) is that it reuses the donor’s bootstrap frequencies
for the imputation step. For recipient j donor i from the full donor pool is drawn with
probability

vi,j = f(ω, ỹi, ỹj , κ) = ωid̃
−κ
i,j /

nobs∑
i=1

(ωid̃
−κ
i,j ). (2)

ω denotes the nonnegative integer bootstrap frequencies of the donors, d̃i,j the scalar ab-
solute distance between the predictive means of donor i and recipient j and κ a closeness
parameter adjusting the importance of the distance. For κ = 0 the procedure is equivalent
to the approximate Bayesian bootstrap, for κ → ∞ the procedure becomes equivalent to
nearest neighbor matching as in algorithm 1.

4. Why predictive mean matching is not multiple-imputation-proper

Using PMM for the multiple imputation of data sets causes the between variance of the
parameter estimates of interest to suffer from attenuation bias.

To illustrate this situation, consider an analysis of variance example with ψ = 1, . . . ,Ψ
different predictor cells. Suppose that the incomplete variable Y in cell ψ is normally
distributed with mean µψ and variance σ2ψ. Furthermore, suppose that each of the Ψ cells
contains a sufficient number of donors, say, five or more. Now, without loss of generality,
let us examine at the recipients in the first cell. Parametric multiple imputation draws M >
2 times σ̃21 , then µ̃1 | σ̃21 , and then ỹψ=1 | (µ̃1, σ̃

2
1), which is efficient. A nonparametric

alternative is an approximate Bayesian bootstrap imputation in cell ψ = 1 that proceeds
as follows. It draws M > 2 times a bootstrap sample from the donors in the cell and
draws values to impute from this bootstrap sample. The key element that these two proper
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procedures have in common is that the distribution from which the imputed values are
drawn varies over the multiple imputations. In the parametric case the parameters of the
underlying normal distributions vary, and in the nonparametric case, the composition of the
empirical distribution varies.

fully parametric PMM ABB imputation

Posterior
step

Draw (β̃, σ̃2v) from the imputation model y =
β0 + β1x1 + β2x2 + β3x1x2 + v, with het-
eroscedastic residuals, i.e., var(v | ψ =
1) = σ2v,1, . . ., var(v | ψ = 4) = σ2v,4.

Within each of the Ψ =
4 cells draw a bootstrap
sample of the nobs,1, . . .,
nobs,4 donors

Impu-
tation
step

Draw from the
normal imputa-
tion model: ỹj |
(β̃, σ̃2v , x1, x2)

As within each cell the pre-
dicted means ˆ̃yψ are iden-
tical, algorithm 1 draws
nmis,ψ values from nobs,ψ,
i.e., a simple random hot-
deck imputation within the
cell

Within each cell, draw
nmis,ψ values from the
bootstrapped nobs,ψ, i.e.,
a simple random hot-
deck imputation within
the bootstrapped cell

Table 1: The algorithms of proper fully parametric imputation, proper approximate
Bayesian bootstrap (ABB) imputation, and PMM are compared. The underlying data situ-
ation involves two binary predictors (x1, x2), one incomplete variable y, and normal noise
v. The two predictors form Ψ = 4 cells: ψ(x1 = 0, x2 = 0) = 1, . . . , ψ(x1 = 1, x2 =
1) = 4. Ignorability is assumed. In the imputation step, PMM is very similar to ABB
imputation, but it ignores the bootstrap. Because ABB imputation is approximately proper,
PMM must attenuate the between imputation variance.

PMM proceeds in a considerably different manner. The recipients and the donors in
cell ψ = 1 end up having exactly the same predicted mean1. Choosing the nearest neigh-
bor ultimately consists of making a random draw from the donors in cell ψ = 1. This may
be valid once, but the procedure is the same for all m = 1, . . . ,M imputations. It thereby
mimics the simple random hot-deck (Lillard et al., 1982, p. 15), which is known to under-
estimate the between variance component because it partly omits the posterior step. Table
1 schematically presents this reasoning.

It appears to be surprising that although PMM contains a draw from the estimated
distribution of the intercept and slope parameters β (see section 2 and algorithm 1), the
parameter uncertainty does not propagate. In this regard, the above example is deceptive.
Therefore, consider another example. For simplicity, suppose that there are two normal
orthogonal predictors x1, x2. Now, the definition of the relevant donors is less clear than in
the previous example, where it appeared obvious that all donors of ψ = 1 are suitable. The
job of the β is simply to define the relevant ‘cell’. Drawing β̃ is an important task, because
the cell definition is not certain and must thus vary over the multiple imputations. Figure 1
displays the effect of varying β coefficients on the cell definition.

However, PMM then goes wrong. The cells are defined, i.e., we have conditioned on
β̃, and all PMM does is make a random draw from the cell or even take the nearest one.
It thereby ignores parameter uncertainty to a large extent. To be precise, the β̃ define the
mean of the cell; however, the uncertainty in estimating the residual variance parameter
σ2v from the imputation model (see section 2) remains unconsidered. In any given cell,
we observe a distribution of units in a sample, which suffers from sampling error. Thus,

1This is only true if type-2 matching is applied, which slightly differs from algorithm 1. For details see van
Buuren (2012, p. 71).
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Figure 1: The plots show 100 random draws from a bivariate normal distribution with
zero correlation. The shading indicates distances in the predictive means to one recipient
P0(x1 = 1, x2 = 1). Different draws from the estimated distribution of the β parameters
can alter the definition of the cell from which the donor is drawn. Considering distances,
not frequencies, the cell is a circle in the left plot, a long ellipse in the middle plot and a
wide ellipse in the right plot.

what is needed is some type of approximate Bayesian bootstrap imputation algorithm after
conditioning on the β̃ parameters.

5. Existing ideas to make predictive mean matching proper

PMM has recently been under suspicion for underestimating the between variance. Van
Buuren (2012, p. 71) and Morris et al. (2014, p. 7) criticize the selection of the nearest
neighbor of algorithm 1. Selecting the nearest neighbor is a special case of general k-
nearest-neighbor selection (Heitjan & Little, 1991, p. 16), which is typically applied in
current statistical software programs (see table 3). An adaptive procedure for choosing the
optimal k exists (Schenker & Taylor, 1996, p. 442), but software implementations of this
procedure are lacking. The attenuation bias argument is that k = 1 leads to selecting the
same donor repeatedly across imputations. The insight of section 4 is that once the cell is
defined, the bootstrap frequencies are necessary to correctly reflect the between variance.
The nearest neighbor selection function, however, is unable to fully capture the variance
of bootstrap frequencies var(ωi). If the nearest donor receives a bootstrap frequency that
is larger than zero, then it will be selected. The exact value of the bootstrap frequency
is irrelevant. It is easily found that var(ωi) > var{I(ωi)}, where I is a function that
indicates whether ωi is larger than zero. Therefore, the nearest neighbor selection is not
compatible with the necessary bootstrap step. This finding underpins the criticism by van
Buuren (2012) and Morris et al. (2014).

In addition to the nearest neighbor selection, van Buuren (2012, p. 71) and Morris et al.
(2014, p. 7) criticize the very popular match type 2 (see table 3). In the discussion of
match types, three different types can be distinguished. Type 1 refers to the matching of
ŷi to ˆ̃yj , as in algorithm 1. By contrast, type 2 refers to the matching of ˆ̃yi to ˆ̃yj (Heitjan
& Little, 1991, p. 19). Type 3 refers to a procedure in which two sets of parameters,
denoted by {(β̃1, σ̃2v,1), (β̃2, σ̃2v,2)}, are drawn from the posterior distribution, one for the
donors and one for the recipients, and ˆ̃yi | (β̃1, σ̃

2
v,1) is then matched to ˆ̃yj | (β̃2, σ̃

2
v,2)

(Royston & White, 2011; Harrell, 2015). The criticism relates to the one predictor case,
where type-2 matching linked with k = 1 causes theM multiple imputations to be identical
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and therefore, prevents the uncertainty associated with parameter estimation from being
propagated; again, this is an attenuation bias argument.

The insight from section 4 reveals that the M multiple imputations are identical only
because the algorithm lacks the necessary bootstrapping. The parametric imputation step
as in section 2 is conditioned on one set of parameters drawn in the posterior step, as in the
case of type 2. Other match types alter the cell definition and are an engineering trick that
treat the symptom, which occurs in the special case of one predictor, but do not cure the
disease of effectively omitting the posterior step. Consequently, the discussion on match
types is dispensable, and the use of type-2 matching should be advocated for.

6. The proposed algorithm

6.1 Revisiting the MIDAS algorithm

In contrast to algorithm 1 and all other PMM implementations (see table 3), the MIDAS
algorithm proposed by Siddique & Belin (2008), which has been introduced in section 3.3,
explicitly combines the two steps that are required based on the insights of section 4. The
parameters β̃ and κ define the cell. The larger κ is, the smaller is the cell. The uncertainty
involved in estimating β is correctly considered, and κ is not an estimate. However, be-
cause the within cell distribution has sampling error, equation (2) involves the bootstrap
frequencies. The MIDAS algorithm is thus a major improvement in terms of multiple im-
putation theory, although its inventors have not been aware of this fact (Juned Siddique,
personal communication 2016; Thomas R. Belin, written communication 2017). The pro-
posed algorithm 2 largely builds on MIDAS. Although other PMM algorithms (i.e., distance
functions) could easily be adjusted to deploy the bootstrap frequencies in the imputation
step, very recent and yet unpublished research by Anna Poehlmann a graduate student from
the University of Bamberg, Germany indicates that MIDAS significantly outperforms all
known alternatives.

6.2 Making predictions for recipients and donors

The magnitude of the error, which is caused by partly omitting the posterior step, depends
on the magnitude of the variance of the imputation model parameter estimates that is in
turn inversely proportional to the number of available donors. Consequently, the MIDAS
algorithm will be particularly beneficial when nobs is small. In small samples, however,
the influence of a single data point on the model parameter estimates can be considerable.
Because model estimation implies minimizing the distance from the model to the donor
data, the model is, by construction, closer to the donors than to the recipients, particularly
for small nobs, i.e., residuals systematically differ between donors and recipients. Con-
sequently, the expectation of the residual variance added to the recipients is too small.
Although this implementation is still the most common, Gelman & Hill (2011) and Mein-
felder & Schnapp (2015) estimate the parameters on the full set of observations by using
previously imputed values for yj . These algorithms make in-sample predictions for both the
donors and the recipients. By contrast, the proposed algorithm 2 makes only out-of-sample
predictions by estimating the β parameters with the leave-one-out principle.

6.3 A flexible closeness parameter

The closeness parameter κ in equation (2) determines the influence of the imputation
model, i.e., of the conditionality on X , on the donor selection. In contrast to Siddique &
Belin (2008), who simply employ a fixed value, we argue that κ could reflect the goodness
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1. Obtain bootstrap frequencies ωi for the donors.

2. Draw β̃ from a weighted least-squares regression with the weights ωi and calculate
the according coefficient of determination ˆ̃R2.

3. Calculate the elements of the nmis × nobs distance matrix using the leave-one-out
principle as follows: ˆ̃ϕi,j = |(xi − xj)β̃−i|. Here, xi denotes the row vector of Xi

for the ith donor, xj denotes the row vector of Xj for the jth recipient, and β̃−i
denotes the weighted least-squares parameter vector from the donor sample without
the ith row.

4. Calculate the closeness parameter as follows:

ˆ̃κ( ˆ̃R2) =
{

50 ˆ̃R2/
(

1 + ε− ˆ̃R2
)}3/8

, (3)

where ε is a very small positive scalar number used to ensure real results for ˆ̃R2 = 1.

5. Insert ωi, ˆ̃ϕi,j , and ˆ̃κ from above into equation (2) and draw the donors.

6. Repeat the above steps M > 2 times, apply Rubin’s rules, and multiply the total
variances of the means by the correction from equation (1). Substitute nobs with
neff from equation (4), and thus, n with neff + nmis.

Algorithm 2: This touched-up version of the MIDAS algorithm is named midastouch ,
which is implemented in the R::mice package (van Buuren & Groothuis-Oudshoorn,
2011).
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of fit of the imputation model such that ∂κ/∂R2 > 0. The rationale is that the probability
of drawing a distant donor should decrease as the imputation model quality increases, as in
equation (3). Its functional form is the inverse of the form of the sales response to advertis-
ing function presented by Little (1970, p. B472). Siddique & Belin (2008, p. 88) state that
reasonable values for κ lie within the range [0, 10], and they found in a simulation study
that in a setting with R2 = 0.29, the ideal value for κ is 3 (Siddique & Belin, 2008, p. 98).
Equation (3) reflects these findings as follows:

κ(R2 = 0) = 0, κ(R2 = 0.9) ≈ 10, κ(R2 = 0.29) ≈ 3

6.4 Fixing the attenuation bias of the approximate Bayesian bootstrap imputation

Because equation (2) generalizes the approximate Bayesian bootstrap imputation, it also
suffers from the underestimation of the total variance for finite nobs (Kim, 2002). Applying
the correction factor φ from equation (1) appears to be the most obvious solution. It ap-
plies directly to the k-nearest-neighbor distance function2 if conducted on the bootstrapped
donor sample. The available donors for each recipient, however, are no longer nobs, but
rather k, which causes a slight adjustment in equation (1): nobs must be substituted by k,
and n must be substituted by k + nmis. After conditioning on the bootstrap frequencies,
all donors have the same probability of being drawn. This is different for the MIDAS algo-
rithm and for algorithm 2, because the drawing probabilities depend on the distance to the
recipient. Therefore, we propose replacing nobs in equation (1) with a measure of the effec-
tive donor sample size for each recipient nj,eff (Kish, 1965, p. 427), which is expressed as
follows: nj,eff = n2j,obs/

∑
i (wi,j/ωi)

2 (Bosch, 2005, p. 5). wi,j and ωi denote the draw-
ing probabilities from equation (2) and the bootstrap frequencies, respectively. Averaging
over all recipients and the M imputed data sets yields

neff =
1

Mnmis

M∑
m=1

nmis∑
j=1

nobs∑
i=1

{
ˆ̃ϕ−

ˆ̃κm
i,j,m/

nobs∑
i=1

(ωi,m ˆ̃ϕ−
ˆ̃κm

i,j,m)

}2
−1 (4)

Variance correction factors for parameters other than the mean do not yet exist; for linear
regression parameters, Wu (1986, p. 1280) offers a starting point.

7. Simulation study

7.1 Simulation settings

We present a simulation study to assess the magnitude of both, the identified shortcomings
of the existing predictive mean matching algorithms and our proposed improvements. To
give a full picture we compare algorithm 2 to all major statistical software programs as
listed by Morris et al. (2014), but Solas for technical reasons. Furthermore we compare it
to two benchmark algorithms, a fully parametric one utilizing the additional information of
a normal likelihood and a fully improper one that treats the maximum likelihood parameter
estimates as if they were the true parameters.

For simplicity we refer to the multivariate normal setting presented above and set all
off-diagonal elements of the correlation matrix equal. To recognize different challenges
in real-world applications we set up a full factorial design considering the following four
binary factors. We distinguish missing always completely at random versus missing always

2k-nearest-neighbor selection means that the drawing probability for the k nearest donors is k−1, and zero
for all others.
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950h confidence interval coverages
nobs = 10 nobs = 200

Ref Software Predictive mean matching command µ̂ β̂1 µ̂ β̂1

Proposed algorithm (algorithm 2)
1 R::mice method="midastouch" 936 961 945 955
2 with correction factor φ 973 − 972 −
3 R::mice method="midastouch",kappa=3 931 961 946 945
4 with correction factor φ 960 − 978 −
Predictive mean matching software listed by Morris et al. (2014, p. 3)
5 R::mice method="pmm" 605 899 941 959
6 R::Hmisc aregImpute 515 872 936 959
7 R::BaBooN BBPMM 686 781 937 958
8 R::mi .pmm 573 664 908 913
9 SAS::proc mi regpmm 487 841 928 943
10 SAS::MIDAS MIDAS 899 967 937 954
11 SPSS multiple imputation

/impute scalemodel=PMM 640 659 907 911
12 Stata mi impute pmm 616 652 907 911
13 Stata ice, match 443 727 935 958

Benchmark algorithms
14 R::mice parametric: method="norm" 962 959 946 958
15 R Fully ignoring between-variance 382 468 877 912

Table 2: 1-8,14,15, R Core Team (2015); 5,14, van Buuren & Groothuis-Oudshoorn
(2011); 6, Harrell (2015), unable to cope with small sample sizes; 7, Meinfelder & Schnapp
(2015); 8, Gelman & Hill (2011); 9,10, SAS Institute Inc. (2015); 10, Siddique & Harel
(2009); 11, IBM Corp. (2015); 12,13, StataCorp. (2015); 13, Royston & White (2011).

at random (Mealli & Rubin, 2015, p. 998) and define the latter as pr(y = missing) =
Φ [(1/4) {X1 +N(0, 3)}]; p−1 = 1 covariate versus p−1 = 8 covariates; R2 = 0 versus
R2 = 0.75; and nobs = 10 versus nobs = 200. Furthermore, we fix M = 25, nmis = 100,
all marginal means at zero, all marginal variances at one and the number of Monte Carlo
simulations at nsim = 250 for each combination.

7.2 Simulation results

We focus on the estimates of both, the mean of y, denoted as µ̂, and the regression coeffi-
cient of X1 in the linear regression model of y on X∗, denoted as β̂1. Utilizing the multiple
imputation variance estimator by Rubin (1987), which is unbiased in our setting (Yang &
Kim, 2016, p. 246), and the appropriate degrees of freedom (Barnard & Rubin, 1999) we
construct 95% frequentist confidence intervals. For each simulation run we note whether or
not such a confidence interval covers the true parameter value. We present the key results
in table 7.1 and the details in the supplementary material. For each cell in table 7.1 we
average the coverages over 2(4−1)nsim = 2000 simulation runs.

The most striking result is that the MIDAS algorithm by Siddique & Belin (2008) and
Siddique & Harel (2009) outperforms all predictive mean matching algorithms of the major
statistical software programs. Its advantage is especially large when the the uncertainty

 
1034



about the imputation model parameters is considerable, i.e. when the number of donors
is small and thus diminishes when the number of donors increases. This result strongly
supports the findings in section 4.

With one predictor only, i.e. p − 1 = 1, some algorithms perform as badly as the bad
benchmark that does not propagate parameter uncertainty at all. All these algorithms, rows
8, 11, 12 in table 7.1, rely on both, type-2 matching and the deterministic hot-deck. This
attenuation bias buttresses the criticism by van Buuren (2012). Although the MIDAS algo-
rithm by Siddique & Belin (2008) and Siddique & Harel (2009) involves type-2 matching
it outperforms the bad benchmark.

7.3 The proposed algorithm

Especially the results for the small donor sample size nobs = 10 indicate that our proposed
touching up of the MIDAS algorithm by Siddique & Belin (2008) and Siddique & Harel
(2009) leads to a considerable improvement. This seems to be true for all means, more
specifically, the out-of-sample predictions for the donors from proposition 1, compare row
10 to row 3; the modified closeness parameter from equation (3), compare row 3 to row 1;
and the application of the correction factor φ from equations (1) and (4), compare rows 1
and 3 to rows 2 and 4, all comparisons in table 7.1.
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