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Detailed breakdowns of totals items are collected in surveys. Detail proportions can vary 
greatly by sample unit, and the multinomial distributions can likewise vary by imputation 
cell. Consequently, although it might be feasible to develop viable parametric imputation 
models for the total, it is challenging for the collective set of detail items. Instead, a 
common practice is to use some form of hot deck imputation to match donor and recipient 
records, then impute the donor’s complete set of proportions. Nearest neighbor imputation 
is useful when the set of proportions is correlated with unit size. This approach preserves 
the correlation between the detailed items within imputation cell, as long as the number of 
donors is greater than or equal to the number of recipients. Unfortunately, this condition 
often does not hold in practice. Collapsing imputation cells is not an attractive alternative. 
We explore unrestricted usage of the donor records in the original cell versus the use of a 
random draw from the donor record’s multinomial distribution via a limited simulation 
study.  
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1. Introduction 
 
Detailed breakdowns of totals items are collected in surveys. The detail proportions can 
vary greatly by sample unit, and their multinomial distributions may be related to different 
predictors than the associated total. This creates two separate but related missing data 
challenges: (1) to develop viable imputation models for the total and (2) to develop viable 
imputation models for the set of associated detail items. A preliminary step for many 
statistical imputation methods is to partition the sample into disjoint cells that either contain 
units with the same response propensity or have the same cell means for the key 
characteristics (Kalton and Kaspryzk, 1986). With imputation, it may be preferable to 
develop cells whose covariates are related to the conditional expectation of the variable(s) 
of interest, given the imputation model (Haziza and Beaumont, 2007). Covariates are 
categorical – continuous variables can be “binned” into size categories – and imputation 
cells are formed by cross-classifying the selected covariates or nesting the size category 
cells within the more definitive classifier (e.g., size category within industry). Having 
subdivided the sample, the next step is to determine the appropriate imputation models for 
each outcome variable. Models are developed from the respondents’ data in the imputation 
cells (donors) and applied to create “substitute values” for the nonrespondents’ (recipients) 
missing data. In practice, the complete set of defined imputation cells may not be used. 
Instead, “ad hoc methods are often applied to collapse small imputation cells2” (Fang, 
Hong, and Shao, 2009). Cell collapsing procedures generally attempt to pair cells with 
common response propensities or common conditional expectation (or cell means) to the 
maximum extent possible.  
                                                           
1 Any views expressed are those of the authors and not necessarily those of the U.S. Census 
Bureau. 
2 Imputation cells that contain fewer donors than recipients or whose donor count is less than a 
predetermined threshold. 
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Further complicating the situation, the appropriate imputation cells for the total and for the 
set of details may differ. Consider the fictional pair of industries depicted below. Both 
industries have a similar range of businesses in terms of sales, although the jewelry industry 
distribution is more skewed. Each business is requested to report the amount of their total 
sales obtained by three mutually exclusive sources. The multinomial distributions of these 
sets of details differ by the industry and business size category as measured by sales.  
 

Industry Store Size Sales Range True Underlying Multinomial Distribution 

Inside Store 
Credit Card 

Inside Store 
Cash 

Online 
Purchase 

Jewelry Large $300,000 + 75% 25% 0% 
Medium $25,001 - $300,000 40% 40% 20% 

Small $1 - $25,000 50% 50% 0% 
Books Large $100,000 + 50% 5% 45% 

Medium $20,001- $100,000 50% 20% 30% 
Small $1 -$20,000 5% 20% 75% 

 
If sales is a good predictor of response propensity (e.g., the larger stores are more likely to 
report a value then the smaller stores) or if the mean value of sales greatly differs between 
within-industry size category, then it might be worthwhile to further subdivide the industry-
level imputation cells. Even so, collapsing to the industry level for imputation when 
insufficient cell-level donor (respondent) records are available would not be entirely 
unpalatable. Indeed, it might even be possible to collapse industry cells that have similar 
sales distributions without overly biasing the estimates. Given that sales is a continuous 
variable, it may be possible to approximate its distribution with a parametric model. In this 
case, missing values could be imputed via mean imputation or with multiple imputation 
with random draws from the specified parametric model. If strongly related covariates are 
available, other imputation options could be considered as well, such as pseudo empirical 
likelihood estimators or regression or ratio imputation with single or multiple imputation. 
 
In contrast to sales, the multinomial distributions of source of sales are quite different in 
the six distinct categories. In the jewelry industry, neither the largest nor the smallest stores 
offer an online purchasing option; however, the breakdowns between credit card and cash 
purchases are very dissimilar. The medium-size stores offer an online option, and the 
percentages of credit and cash sales are not very different from that of the small store 
category. However, collapsing the medium and small store categories for imputation would 
be ill-advised, as it would induce an artificial probability of online sales in the small store 
category, as would collapsing the large and medium size store category. In the book 
industry, the multinomial distributions in the three size categories are very different, and 
there is no way to combine the size classes that would correctly preserve any distribution. 
Moreover, collapsing by similar size category across industry would be unwise.  
 
With these multinomial distributions, a response is defined as providing “reasonable” 
information on the complete set of details; for example, requiring the details to add to the 
total within a pre-specified tolerance (e.g. 10%). Response propensity might be related to 
different factors for the set of detail items than for the total, or the relationship might be 
less direct. Small businesses might not provide the detailed breakdowns because the 
information is not part of their recordkeeping; in this case, business size is a good predictor 
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of response. However, response might be a consequence of the placement of the inquiry on 
the questionnaire and could be missing at random (MAR) or missing completely at random 
(MCAR). And of course, the probability of response might be directly related to the queried 
information and would therefore be missing-not-at-random (MNAR).  
 
Moreover, there are few viable imputation model options for the collective set of detail 
items. Instead, a common practice is to use some form of hot deck imputation to match 
donor and recipient records, then impute the donor’s complete set of proportions (Andridge 
and Little 2010, Beaumont and Bocci 2009). Nearest neighbor imputation is useful when 
the set of proportions is correlated with unit size; random hot deck imputation could be 
otherwise useful. Either approach preserves the correlation between the detailed items 
within imputation cell and can yield (nearly) unbiased estimates, as long as the number of 
donors is greater than or equal to the number of recipients. Unfortunately, this condition 
often does not hold in practice, and for the reasons outlined above, collapsing imputation 
cells is not an attractive alternative. However, using a small number of donors in hot deck 
imputation can create very inefficient estimates, as the same donors may be used multiple 
times. The effect of donor overuse in imputation cells with proportions of donor records 
can be especially pronounced with unrestricted nearest neighbor hot deck imputation since 
a single donor can be used several times rather than use a “more distant” neighbor. 
 
In this paper, we explore alternative variations of nearest neighbor hot deck imputation, 
considering unrestricted usage of the donor records in the original cell versus the use of a 
random draw from the donor record’s multinomial distribution. This research is motivated 
by the Economic Census conducted by the U.S. Census Bureau discussed in Section 2. We 
examine the statistical properties of the alternative imputed estimates over repeated 
samples from a census, independently randomly inducing response in the same population, 
yielding R replicates. Using a census greatly simplifies the simulation and eliminates 
confounding with the effects of different sample designs on the imputed estimates. As 
discussed in Section 3, we utilize a multiple imputation (MI) estimator, using Approximate 
Bayesian Bootstrap (ABB), a non-Bayesian method that approximates a Bayesian 
procedure (Rubin and Schenker 1986; Rubin 1987).  
 
Section 2 describes our motivating problem. Section 3 presents the variations of nearest 
neighbor hot deck imputation explored in this paper. Section 4 presents a limited simulation 
study using data generated from a theoretical distribution and modeled using historic data 
from selected industries from the 2012 Economic Census. We conclude in Section 5 with 
general observations and ideas for future research. 
 
2. The Motivating Problem  

 
The Economic Census collects information on the revenue obtained from product sales. 
Often, product descriptions are quite detailed, and many products are mutually exclusive. 
The reported product dollar values are expected to sum to the total receipts reported earlier 
in the questionnaire (within a tolerance). Total receipts is available for each unit, and the 
set of reported product values are the associated details. Fink, Beck, and Willimack (2015) 
report that the same handful of products ( 3) are reported by all establishments in an 
industry, with random variation in reporting for the remaining products provided on the 
industry questionnaire. Auxiliary data on products are not readily available, and total 
receipts are often weakly related to the distribution of detail items. Consequently, 
legitimate missing product values occur frequently and product distribution nonresponse is 
quite high.  
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Although the same product can potentially be produced in different industries under the 
North American Product Classification System (NAPCS), product reporting is intertwined 
with industry classification. Certainly the product distributions will differ between 
industries, even when the same products are reported. As a result, imputation cells cannot 
be collapsed beyond the 6- to 8-digit industry category depending on the sector and it is 
undesirable to drop the unit type classification. The 2017 Economic Census will be the first 
incidence of product-reporting under NAPCS, so no historical data collected under this 
classification system are available yet. 

 
In the 2017 Economic Census, missing product data will be imputed using hot deck 
imputation. Hot deck imputation provides a flexible approach to dealing with missing data 
that retains multivariate relationships without making explicit parametric model 
assumptions. Instead, hot deck methods impute missing values to recipient units using 
reported values (donors) from a similar unit. 
 
Ellis and Thompson (2015) present the empirical response propensity analysis used to 
determine the hot deck imputation cells. In general, they reported very few covariates that 
are predictive of product distributions besides industry, although product distributions 
within the same industry do often differ by unit type (single or multi-unit establishment 
where a single-unit establishment owns or operates a business at a single location and 
multi-unit establishments comprise two or more establishments that are owned or operated 
by the same company). In our own exploratory data analysis, we have found no evidence 
against a missing-at-random (MAR) response mechanism within the designated imputation 
cells. With business surveys, unit size is often highly correlated with response; larger units 
are more likely to respond than smaller units (Thompson and Oliver 2012; Thompson, 
Oliver, and Beck 2015). However, we were unable to find a similar relationship between 
unit size and product reporting.  
 
Thompson and Liu (2015) gives an overview of the large scale research project conducted 
to determine an imputation method for Economic Census products:  more details are 
provided in Ellis and Thompson (2015), Tolliver and Bechtel (2015), Bechtel, Morris, and 
Thompson (2015), and Knutson and Martin (2015). Because the majority of establishments 
in an industry report often tend to report the same products, these studies focused on the 
statistical properties of the alternatively imputed estimates of the two most frequently 
reported products per industry. In other words, none of these studies examined the 
imputation cell-level multinomial distributions of products. Given the symbiotic 
relationship between industry classification and product reporting, it is not unreasonable to 
assume that there is a single multinomial distribution of products within each imputation 
cell, in contrast to individual establishment-level multinomial distributions perhaps related 
to unit size. 
 
For these reasons, we sought a hot deck imputation method that minimizes or completely 
sidesteps cell collapsing while producing efficient estimates in terms of precision or 
coverage and accurate estimates in terms of bias, at least for the well-reported products. 
We considered a variety of options for selecting donors. Initially, we considered predictive 
mean matching across imputation cells as an alternative to cell collapsing. We attempted 
to use receipt totals and payroll totals to predict the proportions in each of the two most 
commonly-reported products (using simulated data that mimic the distributions seen in 
historical data), with the goal of using these models to create predictive means on which to 
match. However, the predictive ability of these models was extremely low (R2 < 0.1 for 
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more than 90% of industry/unit type combinations studied). Quality matches could not be 
made, and there was no advantage to using the predictive mean instead of a nearest 
neighbor approach based on receipt totals. Thus we dismissed predictive mean matching 
as a viable option and settled on a nearest neighbor approach (based on total receipts), 
despite having reservations about a statistical relationship between unit size and detail 
distribution in our studied datasets. 
 
The Economic Census implements both random and nearest neighbor hot deck imputation, 
depending on the industry. Either method would yield the same expected product 
distributions under the assumption of a single multinomial distribution in an imputation 
cell. One advantage of random hot deck imputation is that there is more control over the 
donor base. For example, restrictions can be placed on how many times a donor is used 
and donors can be randomly drawn from the donor pool with or without replacement. On 
the other hand, random hot deck imputation can add noise to imputed estimates, obscuring 
differences with small sample or respondent cell sizes. Alternatively, nearest neighbor hot 
deck imputation produces less noisy estimates and would be less biased than random hot 
deck imputation if indeed unit size were related to the product multinomial distribution. 
However, one disadvantage of nearest neighbor hot deck imputation is that adding 
restrictions on the usage of donors yields donors that can be very far away from the 
recipient. Accordingly, the Economic Census hot deck imputation methodology does not 
impose restrictions on how many times a donor was used. This limits imputation cell 
collapsing but may fail to preserve the microdata distribution if the donor count is small 
(say, less than 5). Historically, the product response rate tends to be quite low, so 
imputation cells with small number of donors are a frequent occurrence. Consequently, we 
focus on nearest neighbor hot deck imputation, leaving other variations of hot deck 
imputation for future research. 
 
3. Imputation Methods 
 
Hot deck nearest neighbor imputation uses auxiliary variable(s) available for both donors 
and recipients. Ideally, these variables should be highly correlated with the variables that 
are being predicted. A distance function determines the distance of each donor from each 
recipient; there are several different distance functions used in practice, and the selection 
generally depends on factors such as the number of available variables, the number of items 
to be imputed, and the form of the predictive relationship. The donor that is the smallest 
distance from the recipient is selected for imputation. In our implementation, we had very 
little auxiliary data to use for a distance function, and we used the Euclidian distance 
(absolute value of the difference) between each recipient and each donor’s total receipts 
values.  
 
We considered five variations of nearest neighbor hot deck imputation. Each variation 
selects a “donor” multinomial distribution and applies these percentages to the recipients’ 
value of total receipts as described in Section 1. The procedures are outlined below. 
 
Collapse: We collapsed the imputation cells to the highest category when 

there were fewer than five donors in at least one of the 
subcategories. In our application, industry is the highest category, 
and each industry is further subdivided by unit type. The nearest 
neighbor donor is selected using the Euclidean distance within the 
collapsed cell.  
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Unrestrict: Essentially the same procedure, without cell collapsing. This 
allows unrestricted use of donors.  

 
Draw: Uses a random draw from the donor record’s multinomial 

distribution instead of the donor distribution, where the donor is 
selected from the same imputation cell (no collapsing) 

 
Cluster-Draw: When an imputation cell contains fewer than five donors, average 

the multinomial distributions of all donor records in the cell and 
randomly draw the multinomial distribution from the cluster. Each 
average is obtained as product values (averaged over donors) 
divided by the total receipts (averaged over donor). Use the Draw 
procedure when there are at least five donors in an imputation cell.  

 
Cluster-All: Obtain averaged the multinomial distribution of the cluster of the 

five nearest neighbor donors when the imputation cell contains at 
least five donors; otherwise, use the average of the available donor 
records in the imputation cell. 

 

Using a draw instead of directly applying the donor ratio should variability to the imputed 
data. We expect that this should improve coverage, as the Unrestrict procedure can overly 
smooth the data when the same donor is used multiple times.  
 
The two uncollapsed procedures (Unrestrict and Draw) can artificially increase the 
probability of a zero value of a rarely reported product if the actual probability is small 
(close to zero) and the donor record contains a zero for the item. By selecting a cluster of 
nearest neighbor donors and using the average value within “details” to obtain the donor 
probabilities, we hope to alleviate this problem. 
 
With each of these methods, we utilize a multiple imputation (MI) estimator, using the 
Approximate Bayesian Bootstrap (ABB), a non-Bayesian method that approximates a 
Bayesian procedure (Rubin and Schenker 1986; Rubin 1987). ABB involves drawing a 
random sample of respondents (donors) with replacement and imputing values for missing 
data using the sample of respondents as the nearest neighbor hot deck imputation base and 
applying each studied imputation method using the resampled donor pool. Our applications 
create 20 multiply imputed data sets per replicate; the implicate estimates were combined 
to estimate total values of each studied item along with their associated variance estimates. 
Because we are restricting this research to a census, we select simple random samples with 
replacement. If these imputation methods were applied to sample survey data, some 
consideration on resampling would need to be given for unequal probability sample signs; 
see Andridge and Little (2009) for example. In a similar vein, the appropriate MI variance 
estimator for a sample survey would need to account for both the sample survey design and 
the imputation/nonresponse variance and the combining rules would need to be modified 
from those provided in Rubin (1987); for example, see Zhou, Raghunathan, and Elliot 
(2012).  
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4. Simulation Study 
4.1. Simulation Study Design 
To evaluate the proposed nearest neighbor hot deck imputation variations, we created three 
different simulated populations, using the models and parameters provided in Table 1. 
 
The first population is designed 
to work well with nearest 
neighbor imputation when the 
Euclidean distance measure is 
defined by value of total receipts. 
Population 1 comprises two 
disjoint imputation cells (no 
overlap in total receipts values) 
with entirely different 
multinomial distributions of five 
products in each imputation cell. 
In each cell, total receipts was 
generated from a gamma 
distribution, with shape and scale 
parameters selected to ensure no 
overlap in values between cells. 
Product proportions were 
randomly drawn from the 
multinomial distributions shown 
in Table 1, so that the expected 
value of each product is the same 
within imputation cell (i.e. no 
relationship between unit size and 
expected proportion of a 
product). Product values (in 
$1000) were obtained for each 
simulated unit by multiplying 
each product proportion by the 
unit’s simulated value of total 
receipts and rounding the product 
to a single digit. The second two 
populations were modeled from 
2012 Economic Census data. In 
these populations, products 1 
through 4 are specific items, and 
product 5 contains the balance of 
the reported product values. Here, 
the imputation cells are defined by 
unit type, not total receipts, so that 
the nearest neighbor donor for a 
recipient record in a collapsed cell may be drawn from a different cell. Total receipts was 
generated within imputation cell from a lognormal distribution, using sample moments 
from the original census data files. In both of these industries, there is some overlap in the 
size of total receipts between the imputation cells. Figure 1 presents side-by-size boxplots 
of the distribution of total receipts by imputation cell within simulated industry.  
 

Figure 1: Side-by-Side Boxplots of Distributions of Total Receipts 
by Imputation Cell within Industry with Imputation Cell 1 in Blue 
(Left) and Imputation Cell 2 in Red (Right) 

3378



 

 

In contrast to the Population 1 procedure, the unit-level multinomial distributions were not 
drawn from a single multinomial distribution within imputation cell. Instead, the unit-level 
establishment proportions were obtained from the original Economic Census data. These 
proportions were randomly assigned to each simulated unit and the same procedure 
described above was applied to obtain final product value estimates. This added noise to 
the simulated data, although the product proportions for the first two products tend to be 
fairly stable within imputation cell. Table 1 presents the mean and median cell proportions 
by imputation cell.  
 
Table 1: Simulation Models and Parameters by Imputation Cell 
Industry Imputation 

Cell 
Total Receipts Average Cell Percentages  (Median in 

parenthesis) 
Model Parameters Product 

1 
Product 
2 

Product 
3 

Product 
4 

Product 
5 

1 
(Imagined) 

1 Gamma =4, =0.6 34.62 
(35.01) 

35.66 
(37.08) 

13.6 
(12.95) 

10.26 
(9.89) 

5.86 
(6.14) 

2 Gamma =4, =0.1 67.38 
(66.67) 

6.38 
(6.45) 

4.8 
(5.26) 

16.04 
(15.79) 

5.4 
(5.88) 

2 
(31211100) 

1 Lognormal  = 11.30, 
=1.12 

25.47 
(25.53) 

21.82 
(22.20) 

13.18 
(0.73) 

16.83 
(1.03) 

22.71 
(21.86) 

2 Lognormal  =8.66, 
=1.28 

20.09 
(0.00) 

10.89 
(0.00) 

20.83 
(0.00) 

18.66 
(0.00) 

29.53 
(11.69) 

3 
(51121000) 

1 Lognormal  = 8.48, 
=2.14 

42.55 
(40.00) 

22.96 
(4.13) 

13.02 
(0.00) 

6.67 
(0.00) 

14.8 
(8.00) 

2 Lognormal  =6.54, 
=1.77 

61.71 
(64.90) 

5.47 
(0.00) 

0.58 
(0.00) 

3.06 
(0.00) 

29.19 
(7.30) 

 
The product distribution in the first industry is fairly homogeneous by design as the product 
distributions were randomly generated from multinomial distributions. Industries 2 and 3 
are quite different. With Industry 2, units in the first imputation cell tend to report either 

Product 1 or Product 2 or Product 3, and the product averages are influenced by a few large 
cases. Units in the second imputation cell tend not to report Products 1 through 4. In this 
case, using the cell averages to estimate the underlying product distribution yields 
misleading results. In Industry 3, Product 1 is reported by a high proportion of units, but 
Products 2 through 4 are very rarely reported in the second imputation cell. Thus, for 
Industries 2 and 3, collapsing imputation cells for nearest neighbor imputation should result 
in overly large (and overly frequent) imputed product values. 
 
Table 2 provides the sample sizes under full response and proportion of units that reported 
a non-zero value for the product. All of the industries have more sample in their 1st 
imputation cells. Furthermore, the proportion of units in the 1st imputation cell is 
substantively larger than that in the other cell in Industries 2 and 3. Recall that overlap in 
nearest neighbor units is likely in collapsed cells in these two populations. Consequently, 
we expect increases in relative bias in the second imputation cell with cell collapsing 
procedures over the other considered nearest neighbor hot deck variations. 
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Table 2: Population Sample Sizes and Percent Units Reporting a Non-Zero Value for the 
Product  

Industry Imputation 
Cell 

Number 
of Units 

Establishment Counts 
Product 

1 
Product 

2 
Product 

3 
Product 

4 
Product 

5 
1 

(Imagined) 
1 25 100.00 100.00 100.00 100.00 100.00 
2 15 100.00 100.00 93.33 100.00 86.67 

2 
(312111000) 

1 102 63.73 61.76 64.71 62.75 71.57 
2 22 27.27 18.18 31.82 36.36 63.64 

3 
(51121000) 

1 82 82.93 54.88 42.68 42.68 79.27 
2 19 89.47 15.79 10.53 10.53 63.16 

 
To avoid confounding results with a specific sample survey design, we treat each 
population as a census. Given population POPi  (i = 1, 2, 3), we independently repeat the 
following procedure in replicate s (s =1, 2, …,1240): 
 
 Induce “product nonresponse” using a MCAR response mechanism with response 

propensity (r) = 0.25, 0.50, and 0.75, resulting in three different sets of respondents per 
replicate and population labeled POPi,r,s. We deleted all samples that contained one or 
more imputation cells with zero donors to prevent the need for a back-up method and 
to simplify the interpretation of the results; 

 In each POPi,r,s, resample the donors using the Approximate Bayesian Bootstrap with 
20 implicates; 

 Apply nearest neighbor hot deck imputation variation v (v = 1, 2, …,5) to the ABB 
implicate within POPi,r,s to obtain the complete data set of products. Note that each unit 
has a nonmissing value of total receipts; 

 For each product, obtain the multiply-imputed (MI) estimate and variance estimate of 
the total; 

 For each pair of products, obtain the MI correlations and associated variance estimates, 
using the Fisher’s z transformation with no bias adjustment available in the SAS PROC 
CORR. 

 
Of course, a MCAR response mechanism is not realistic. However, using the same 
response propensity in each imputation cell greatly simplifies the interpretation of the 
results. Our focus is on the results with response propensities of 50% and 25%; the results 
obtained using a 75% response rate serve as a baseline. Cell collapsing is very infrequent 
with the 50% product response rate in all industries, as is likewise rare with a 25% response 
rate in Industry 2. When the product response rate is 25%, collapsing occurs frequently in 
Industry 3, and a high proportion of samples collapse imputation cells in Industry 1 with a 
25% product response rate. In that industry, however, the values of total receipts do not 
overlap between imputation cells, so that the selected nearest neighbor in the “collapsed 
cell” will be from the recipient’s imputation cell, essentially making the collapsing 
procedure equivalent to the Unrestrict procedure. 
 
We assume that the primary function of the survey is to produce estimates of totals. 
Consequently, minimizing the bias is very important. That said, an imputation method that 
is known to be approximately unbiased over repeated samples can certainly yield biased 
estimates for rare characteristics. Moreover, the bias of any hot deck imputation procedure 
will be a function of the donor-to-recipient ratio (preferably greater than one) and by the 
number of sampled units in the imputation cell. Lastly, the performance of any imputation 
method is related to the response rate. For example, if the nonresponse rate is quite high, 
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then the variance estimates may be quite large. We use 95% confidence interval coverage 
rates to jointly assess the combined precision and accuracy of the imputed totals.  
 
An advantage of hot deck imputation over mean or ratio/regression imputation is that it can 
preserve the underlying distribution of the microdata. If the imputed microdata are being 
used in other analyses such as regression modeling, then it is important to preserve the 
correlation structure. Again, with very small samples and high nonresponse, it may be 
impossible to exactly recreate through imputation the population level of correlation for 
each pair of items. However, it is important to preserve the sign of the correlation 
coefficients (negative or positive) along with the “significance” (zero or nonzero). 
 
We compute the relative bias and 95% confidence interval coverage of each nearest 
neighbor hot deck variation v estimate of Product p (p = 1, 2, 3 in Population 1; p = 1,2,…,5  
in Populations 2 and 3) in Population i under response propensity r (�̂�𝑖𝑟𝑣

𝑝
) as 

 

Relative bias 𝑅𝐵(�̂�𝑖𝑟𝑣
𝑝

) =
∑ �̂�𝑖𝑟𝑣𝑠

𝑝1240
𝑠=1

𝑌𝑖
𝑝 − 1 

Coverage Percentage of samples whose 95% confidence intervals (normally 
distributed) constructed with the MI estimate and MI variance contain the 
true population value for product p (𝑌𝑖

𝑝
). 

 
Each industry estimate is computed overall and by imputation cell. With the exception of 
the estimates obtained with the collapsed cell procedures, we expected to attain 
approximately the same percentage of bias for each estimate within population and 
response propensity. Moreover, we did not expect to see increases in relative bias under 
cell collapsing for the larger-sample imputation cell estimates. Intuitively, we expected to 
see increased coverage rates when random draws are employed instead of direct application 
of the donor ratio. 
 
To evaluate the performance of the hot deck method on correlation, we categorized the 
non-zero Fishers-z transformed correlations ( = 0.05) by sign (positive or negative) and 
grouped the remaining pairs into the “not correlated” category, then repeated the same 
classification procedure on the multiply imputed Fishers-z transformed correlations for 
each imputation method. Table 3 provides summary counts of population correlations. 
Often, positive or negative correlations are very weak, albeit statistically significant.  
 
The Appendix provides scatterplot matrices for each pair of items within industry and 
imputation cell. Within industry, there are distinct differences in the paired item 
relationships between the imputation cells besides the obvious discrepancy in number of 
units. In imputation cell 1, total receipts is often a viable predictor of a product, and there 
are occasional linear relationship between a pair of products. In contrast, there is very little 
evidence of any linear relationship for the majority of paired items in imputation cell 2, 
regardless of industry – with the possible exception of total receipts and Product 1. None 
of the plots provide any evidence of a negative association between any two items. 
Consequently, we consider any change from positive or uncorrelated to negative to be 
extremely misleading. Given the small number of donor units in many of imputation cell 2 
(all industries), we expect a fair amount of “switching” of correlation status in these cells 
(from uncorrelated to positive); we are more concerned from a practical perspective about 
similar switching in imputation cell 1 (all industries). 
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Table 3 provides summary counts for the correlations in the population (total of 15 
correlations) by imputation cell.  
 
Table 3:  Summary Counts for the Population Correlations 

Population Imputation Cell Positive 
Correlation 

Negative 
Correlation Uncorrelated 

Industry 1 
 

1 14 0 1 
2 10 0 5 

Industry 2 
 

1 8 2 5 
2 2 0 13 

Industry 3 
 

1 10 0 5 
2 2 0 13 

 
To compare the imputed distributions to the population in terms of preserving linear 
relationship between items, we constructed the contingency table shown in Figure 2 by 
imputation method at the industry and imputation cell levels.  
 

 
Figure 2: Sample Contingency Table for Assessing Correlation Effects 

Occasionally multiply imputed correlations were not available because a non-zero value 
for one or more products was not present in any of the randomly resampled donor records 
in an ABB implicate. Replicates that contain at least one missing MI correlation are 
classified as “not applicable” in the contingency table. If the imputation pattern matched 
exactly for a particular replicate, the off diagonal cells and the entire Not Applicable row 
would be equal to zero.  
 
4.2 Results 
4.2.1. Totals 
 
Figures 3 through 5 present the relative biases obtained for each procedure for product 
response rates of 75%, 50%, and 25% respectively by imputation cell within industry. The 
effects of cell collapsing on relative bias depends on three factors:  (1) the number of  units 
in the larger (uncollapsed) imputation cell relative to the number of  units in the smaller 
imputation cell; (2) the proximity of the nearest neighbor in the collapsed cell; and (3) the 
product response rate. In the scenarios where there are at least as many donors as recipients 
(product response rates of 75% and 50%), cell collapsing occurs very infrequently -- if at 
all. Recall that imputation cell collapsing is rare in Industry 2, even with a product response 
rate of 25%, whereas it occurs frequently in the other industries.  
 
Our simulation is designed to mimic frequently encountered scenarios in economic 
programs, with one imputation cell containing more sample units than the other. In this 
simulation, all units have the same weight, so that the larger imputation cell measures are 
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almost identical to the overall population (industry) measures, which are consequently 
omitted. If the imputation cells contain approximately the same number of units or units 
are unequally weighted, then the aggregate results could differ from those of either 
imputation cell.  
 
In all Figures, black font indicates a deterministic imputation method and red indicates a 
draw from a multinomial distribution. Nearest neighbor hot deck imputation variations are 
indicated as follows: Square = Collapse; Circle = Unrestrict; Triangle = Draw Plus = 
Cluster-draw; Cross = Cluster-all. Product Response Rate is abbreviated to “PRR.” 
 
In Industry 1, there is no overlap in the value of total receipts between imputation cells. 
Consequently, the donor nearest neighbor in the collapsed cells will be selected from the 
recipient units’ original imputation cell, theoretically correctly preserving the imputation 
cell product distributions. In this scenario, the Collapse and Unrestrict procedures are 
essentially the same. Of course, it is not generally true that these two procedures would be 
this similar. Usually, when donor pools are collapsed, the donor could be drawn from the 
other imputation cell (e.g., random hot deck, nearest neighbor with a different distance 
function). In our Industry 1 scenario, the Draw and Cluster-draw procedures are also 
essentially equivalent as there is a very low probability of any zero-valued reported 
product. Accordingly, the comparable performance of the five considered methods when 
there are at least as many donors as recipient is reassuring. The Collapse-all procedure 
tends to reduce the bias over the other methods when there are fewer donors than recipients. 
This is an expected artifact of the simulation design, as the draws are made from unbiased 
estimators and averaging increases their precision.  In Industries 2 and 3, the values of total 
receipts overlap between imputation cells. Collapsing the imputation cells is expected to 
increase magnitude of the relative bias especially for the rarely reported products because 
the donor nearest neighbor might not be selected from the recipient’s imputation cell. Of 
course, the probability of this increases as the product response rate decreases. 

 

 
Figure 3: Relative Bias Results for All Products by Industry and Imputation Cell with PRR = 75% 
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Figure 4: Relative Bias Results for All Products by Industry and Imputation Cell with PRR = 50% 

 
Figure 5:  Relative Bias Results for All Products by Industry and Imputation Cell with PRR = 25% 

Given the cell proportions in Table 2, we expected unbiased estimates of Products 1, 2, and 
5 in imputation cell 1 in Industry 2 along with unbiased estimates of Product 1 in imputation 
cell 2. This was not the case in imputation cell 2, even with a 75% PRR, probably due to 
the very small sample size and the skewness of the units’ product distributions in this 
imputation cell. Recall that cell-collapsing occurs very rarely in this industry, even when 
there are fewer donors than recipients (expected number of respondents = (22) × (0.25) = 
5.5 > cell minimum of 5 respondents). When there are as many donors as recipients, the 
Collapse procedure is usually but not always the same as the Unrestrict and Draw 
procedures. However, when there are fewer donors than recipients and the realized number 
of donors in imputation cell 2 is less than five, the Collapse procedure increases the relative 
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bias of the majority of products in imputation cell 1. In this case, nearest neighbor donors 
are obtained from the other imputation cell, contaminating the product distributions. Since 
the range of total receipts is much smaller in imputation cell 2, the nearest neighbor is 
usually obtained from the same imputation cell, so that cell collapsing has little effect on 
the bias. We note that the effects on bias of cell collapsing could be quite different with 
another distance function.  

In this industry, the majority of the units in imputation cell 2 report zero values for Products 
1 through 4. However, a small proportion of the units report very large values of selected 
products. As a result, the cell average is a poor estimate of the underlying multinomial 
distribution, and the Cluster-draw procedure is not improving the bias over the Collapse 

procedure. The Cluster-all procedure, which uses an averaged distribution for imputation, 
produces substantially different results from the other four procedures. Since it always uses 
an averaged distribution, bias is reduced for some products in imputation cell 2 (e.g, 
product 2) and inflated for other products (e.g., products 3, 4, 5). In contrast, this pattern is 
not seen in imputation cell 1, and in fact bias is somewhat reduced for most products. Here 
the average is a better representation of the underlying multinomial distribution. 
 
Industry 3 illustrates the combined effect of all three factors on relative bias. Even with a 
high product response rate, the products estimates in imputation cell 2 are highly biased, 
likely due to the very small sample size combined with the very low frequency of non-zero 
reported values. Collapsing imputation cells greatly increases the bias, even for the well-
reported Product 1. There are improvements with the Collapse-draw or Collapse-all 
procedures over the other procedures for the rarely reported products when the donor to 
recipient ratio decreases, especially in imputation cell 2. The improvements are not “across 
the board,” especially for the well-reported Products 1 and 2 in imputation cell 2. Again 
the Cluster-all procedure yields decreased bias for some products and increased bias for 
other products within an imputation cell, since it uses an averaged distribution which is not 
a good representation of the true underlying distribution. 
 
Figures 6 through 8 present the 95% confidence interval coverage rates with product 
response rates of 75%, 50%, and 25% respectively.  
 
When the donor to recipient ratio is high (75%), none of the proposed methods have a 
substantial advantage over the others, though there does appear to be higher coverage for 
some imputation cells using the Cluster-All procedure. All these procedures yield severe 
overcoverage for all products in Industry 1, regardless of imputation cell, as well as in 
Industries 2 and 3 overall and in imputation cell 1, with exceptions for the rarely reported 
products in imputation cell 2 (Industries 2 and 3). The Draw procedure was designed to 
improve the coverage over the Unrestrict by adding variability to the imputation 
procedure; when there are very few donors in an imputation cell and no cell collapsing, the 
Unrestrict procedure is very similar to mean imputation. However, the coverage 
improvement obtained using the draw is fairly trivial compared to the unrestricted use of a 
donor record. By and large, the Collapse-all procedure often improves the coverage over 
the other methods when there are fewer donors than recipients, even though nominal 
coverage is almost never achieved. 
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Figure 6: Coverage Results for All Products by Industry and Imputation Cell with PRR = 75% 

 
Figure 7: Coverage Results for All Products by Industry and Imputation Cell with PRR = 50% 
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Figure 8:  Coverage Results for all Products by Industry and Imputation Cell with PRR = 25% 

To summarize, 
 If the nearest neighbor is drawn from a different imputation cell, then the bias in the 

imputed multinomial distribution induced by cell collapsing can be unacceptably 
severe.  

 If there is a high incidence of zero-reported values, then averaging a cluster of nearest 
neighbor donor records for the random draw can reduce the bias. This procedure 
implicitly assumes that the imputation cells perfectly delineate the disjoint multinomial 
distributions. If there is a missing latent variable in the imputation cell definition – as 
may be the case in Industries 2 and 3 – then the averaging can be detrimental, especially 
for rarely reported products. 

 When there are fewer donor records than recipients and sample sizes are small, using 
a random draw can improve coverage. 

 
4.2.2 Correlations 
 
Figures 9 through 11 compare the realized (transformed) sample correlations to the 
population statistics for each industry when there are more donors than recipients (product 
response rate = 75%) and when there are fewer donors than recipients (product response 
rate = 0.25%). Similar comparisons when number of donors equals the number of recipients 
are available upon demand, but are omitted to conserve space. 
 
In Industry 1, the first two products are frequently reported in imputation cell 1, and 
Product 1 is frequently reported in imputation cell 2. The studied population correlations 
are generally positive (14 of 15 in imputation cell 1; 10 of 15 in imputation cell two), with 
the remaining pairs of items uncorrelated. When there more donors than recipients, the 
Cluster-all procedure best preserves the direction of the correlation in both imputation 
cells. As the ratio of donors to recipients decreases, the Cluster-all procedure outperforms 
the other methods in terms of preserving positive correlation, at a slight cost of creating 
correlated item pairs that should be uncorrelated. Although cell collapsing occurs 
frequently in this industry, there is no overlap between the distance measure, so that the 
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Collapse and Unrestrict procedures are essentially equivalent. In this scenario, both 
procedures do a very poor job of preserving the actual linear relationships in the imputed 
microdata, especially when there are fewer donors than recipients. However, these 
procedures are less likely to induce correlation in the imputed microdata than the others. 
 

 
Figure 9:  Summary of Industry 1 Correlation Comparisons by Imputation Cell 

In Industry 2, a high percentage of the establishments report values for several products in 
imputation cell 1. However, the scatter plots in the Appendix indicate that units tend to 
either report most of the value for a single product or allocate the majority of their total 
receipts to products 1 and 2. In imputation cell 2, there are no strong linear relationships 
with the exception of total receipts and product 1, and there is likely a missing latent 
variable in the imputation cell definition, as the majority of units either report product 1 or 
from the completely different set of less-frequently reported products contained in product 
5. In Industry 2, most of the significant correlations in imputation cell 1 are positive (8), 
with 2 negative correlations and the remainder uncorrelated, whereas most of the item pairs 
in imputation cell 2 are uncorrelated with very weak positive correlation for two pairs of 
items. When there are more donors than recipients, the Cluster-all procedure tends to 
preserve the correlation, with a slight exception for the negative correlations that represent 
a small fraction of the studied statistics. There is no clear advantage of any procedure in 
imputation cell 2 in this scenario, although the Cluster-all procedure is slightly worse in 
terms of creating positive correlations in the imputed data. As the donor to recipient ratio 
decreases, the Cluster-all procedure continues to best preserve the correlations in 
imputation cell 1. However, the performance is less consistent in imputation cell 2.  
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Figure 10: Summary of Industry 2 Correlation Comparisons by Imputation Cell 

In Industry 3, there are no strong linear relationships in the population, regardless of 
imputation cell. Again, the Cluster-all procedure does the best job of preserving the 
correlation structure in imputation cell 1, although it does tend to induce a positive 
correlation when none exists more frequently than with the other procedures. There is some 
evidence that the Cluster-all procedure outperforms the other methods in imputation cell 
2, with the caveats that (1) there are very few strongly correlated pairs of items in the 
imputation cell and (2) the correlation often cannot be estimated. Certainly, there is no 
overwhelming compelling evidence of improvements from the Cluster-All procedure over 
the others, especially as the donor-to-recipient ratio decreases. 
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Figure 11: Summary of Industry 3 Correlation Comparisons by Imputation Cell 

Of the five considered procedures, the Cluster-all procedure is the most promising in terms 
of preserving linear relationships between items, even when the donor to recipient ratio is 
low. There is a microdata preserving cost in that this method can induce correlation 
between variables in the imputed data when there is none. However, this shortcoming is 
confounded with imputation cell size, the number of donors, and the high incidence of 
missing MI-imputed correlations.  
 
5. Conclusion 

 
Many different factors contribute to the performance of the five imputation methods 
considered, and thus it is difficult to draw an overall conclusion as to the “best” method. 
However, a few results are clear. Firstly, when there is overlap between imputation cells 
such that collapsing could lead to a donor being selected from a different cell, the Collapse 
procedure can lead to very biased estimates. The other methods, which avoid collapsing, 
in general produce less biased estimates across all products. The exception is the Cluster-

all procedure, which, due to the use of an averaged distribution, can cause increased bias 
for some products and decreased bias for others, depending on whether there really is a 
single underlying multinomial distribution that well-represents the entire imputation cell. 
A second observation is that using a draw from a distribution can improve coverage 
compared to imputing directly from a donor record, though improvements are small in most 
cases. And a third observation is that the Cluster-all procedure performs better than the 
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other four methods in preserving linear correlations among items, even when there are 
fewer donors than recipients. This method will occasionally induce correlations where 
there are none, since an averaged distribution is used for imputation, and for a set of 
recipients in a cell, the averaged distributions used for imputation will tend to be more 
similar than if a single donor were selected for each recipient.  
 
Overall, the Collapse-all method is a promising option for the case where there are very 
low response rates, and survey analysts are both resistant to using the same donor 
repeatedly and resistant to collapsing cells. When an averaged distribution is used, this 
avoids overuse of a donor, thus improving microdata quality and alleviating subject matter 
concerns. The version of Collapse-all that we implemented was relatively basic, as we 
took a simple unweighted average of the five closest donors. One could envision modifying 
the procedure to improve its performance, for example using a weighted average of donors 
so that “closer” donors are given higher weight. 
 
There are many future directions suggested by our results. Firstly, our simulation 
considered only the relatively simple case of a census, and future work should consider 
sampling effects. In addition, we used a small set of fixed cell sizes with a limited number 
of distributions for product data. While these were chosen to reflect “typical” product data 
from the Economic Census, we only considered a very small subset of industries, and it 
would be worthwhile to consider other cell sizes and distributions. We also fixed the 
minimum number of donors at five; future work could evaluate whether differences 
between the methods arise if this minimum is set lower or higher. Similarly, in the methods 
that averaged over sets of donors, we only considered the case of averaging five donors; 
the optimal number of donors may be higher or lower, and probably depends on 
characteristics of the imputation cells. Future work could also consider alternative distance 
functions, or ways to pick donors. Unfortunately, in the motivating application there is 
limited auxiliary data on which to “match” donors to recipients (e.g., total receipts is the 
only variable) and it is a weak predictor of the multinomial distribution in many 
populations. Thus, the ability to find “good” matches will be limited, regardless of the 
distance function. 
 
There are several other directions for future work that may lead to differing conclusions 
about the relative performance of the methods. Firstly, we only considered MCAR 
mechanisms. However, MAR mechanisms may be likely in practice, and should be 
considered. In general, we do not have a strong rationale for believing data are MNAR in 
the motivating data, though this could be considered in future simulations. A second point 
to consider is that we generated data in each imputation cell from a single multinomial 
distribution. This may not be the case in the real data, as there may be dependence between 
the auxiliary variable (receipts) and the multinomial distribution, even within a cell. For 
example, units with smaller receipts might have more imbalanced multinomial 
distributions. If we were to incorporate this dependence in the data generation, then the 
Cluster-all procedure might not perform as well in certain scenarios, as a naïve average 
distribution would not necessarily be the “best” distribution from which to impute. 
 
Regardless of where the future work takes us in terms of ultimate recommendations, this 
study demonstrates that it is possible to obtain hot deck imputed data sets that share many 
of the underlying properties of the generating population, even when the number of donors 
is much smaller than the number of recipients. This is reassuring, as our study provides 
strong examples of the disadvantages of allowing cell collapsing when imputing a complete 

3391



 

 

set of proportions – and the best performing methods here rely on some form of the sample 
data from the recipients’ imputation cell. 
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Histogram Scatterplots of By Industry and Imputation Cell 
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Histogram Scatterplots of By Industry and Imputation Cell 
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Appendix  
Histogram Scatterplots of By Industry and Imputation Cell 
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