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Abstract 

 
Consider estimation of the population total 𝑇𝑦 for an outcome or study variable 𝑦 from a 
low-budget purposive sample 𝑠̃ with the aid of an ongoing high-budget reference 
probability sample 𝑠∗ with no data on 𝑦 but data on common auxiliary variables or 
covariates 𝑥. Using Royall’s model-based approach, a prediction estimator can be 
constructed from 𝑠̃  with known totals of 𝑥 or their estimates from 𝑠∗ under the postulated 
assumption of model holding for 𝑠̃ and its complementary part; i.e., nonselected units. 
Using Särndal’s design-based approach, GREG (generalized regression) can be 
constructed from 𝑠̃ after estimating the sample inclusion propensities using the calibration 
approach under the postulated assumption of model holding for 𝑠̃  and its complement. By 
treating the problem as a complete missing data problem for 𝑠∗, a new estimator iGREG (i 
for imputation) can be constructed from 𝑠∗after imputing 𝑦 for all units in 𝑠∗ by using 𝑠̃  
as the donor dataset under a model whose validity can be partially tested using 𝑥 observed 
in both samples. Analogous to the quasi-design based approach in probability samples with 
nonresponse, we start with a design-based approach using the reference sample 𝑠∗, but 
build over it by integrating 𝑦 −information from the purposive sample 𝑠̃ under an 
imputation model. This approach is termed model-over-design (MOD) integration 
following Singh (2015). The information on the differences between imputed and observed 
values of 𝑥 provide extra covariates with the constraints of zero control totals to reduce the 
imputation bias via weight calibration. Variance estimates for iGREG can be obtained by 
extending results under the reverse framework for nonresponse imputation in probability 
samples (where the respondent subsample serves as the donor dataset) to the case of 
complete missingness by design where an external dataset (𝑠̃) serves as the donor dataset. 
Limited simulation results are presented for illustration.   

Key Words: Prediction Estimator; GREG with Estimated Sample Inclusion Propensity; 
GREG with Imputed Outcome Variable; MAR-type Assumption for Non-selected Units in 
Purposive Samples 

 

1. Introduction 

Nonprobability samples are gaining momentum as an alternative to traditional probability 
samples due to their efficiencies in cost, time, and their ability to serve specific purposes 
such as targeting special domains (or subpopulations) of interest, or collecting more 
detailed information that may not be practical to collect in large scale probability surveys. 
The goal is to make valid inferences from such samples for a target population. However, 
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as was concluded in the AAPOR panel task report on nonprobability samples (Baker et al., 
2013), there might be ways to come up with seemingly reasonable point estimates, but 
without a suitable framework for measuring the margin of error (MOE or half-width of the 
confidence interval), it is difficult to build user confidence in any estimation methodology. 
The crux of the problem with nonprobability samples is providing reliable MOE for a given 
method which typically involves variance estimation. This problem is addressed in this 
paper using some key ideas of variance estimation in the presence of nonresponse for 
probability survey sampling.   

We consider the following formulation of the problem. There are two samples: 𝑠̃ (purposive 
or nonprobability) supplemented with 𝑠∗(reference or probability) from populations  𝑈̃ and 
𝑈∗ respectively where both have information about common auxiliary variables or 
covariates 𝑥’s but information about the study variable 𝑦 is only collected in 𝑠̃ and not in 
𝑠∗. Without loss of generality, we will assume that the two populations 𝑈̃ and 𝑈∗are 
identical although 𝑈̃, in general, would be a subset of 𝑈∗ in which case 𝑈∗ could be 
replaced by its subset 𝑈̃; i.e., the target parameter could be redefined. The sample 𝑠∗ is a 
man-made probability sample and so the selection probabilities under the design 𝜋∗ are 
known whereas the sample 𝑠̃ is a nonprobablity sample which can be termed purposive in 
that the selection of units satisfying eligibility criteria is based on considerations of 
convenience for cost and time efficiency rather than a rigorous protocol for sample 
representativeness. It is, however, assumed that the purposive sample and population 
distributions of the covariates have a common support; i.e., the 𝑥 −values in 𝑠̃ are well 
dispersed. Conceptually, the sample 𝑠̃ can also be deemed as a probability sample with 
unknown selection probabilities under the nature-made design 𝜋̃  although, for simplicity, 
it is referred to as a nonprobability sample to distinguish it from traditional probability 
samples.  Some examples of pairs of  𝑠∗ and 𝑠̃ respectively are surveys on Youth Risk 
Behavior Surveillance System paired with a purposive sample on other risk behavior, 
National Health Interview Survey paired with  an opt-in internet panel sample on detailed 
health characteristics, and National Household Education Survey paired with randomized 
trials on innovative education programs.   

It is of interest to estimate the population total 𝑇𝑦 of 𝑦 based on 𝑠∗ and 𝑠̃. There exist 
methods that rely on rather strong assumptions to make inference from 𝑠̃ about 𝑈∗such as 
the prediction method of Royall (1970, 1976) based on a model for the study variable 𝑦 as 
a function of 𝑥’s, or the propensity score model-based method considered by Valliant and 
Dever (2011) and Elliott (2009) for inference from 𝑠̃; see Elliott and Valliant (2017) for a 
good review. The latter method is also known as propensity score weighting in randomized 
trials; see Stuart et al. (2011).  Here, propensity refers to the probability 𝜋̃𝑘 of the event for 
a unit k from 𝑈∗ to be selected in the purposive sample 𝑠̃ , and is typically modeled as a 
logit function of 𝑥’s. For the above methods, the supplementary sample 𝑠∗ is not used 
directly but could be used indirectly to provide estimated totals 𝑇𝑧

∗ for other outcome 
variable z observed in both samples and deemed to be good predictors in the model for the 
outcome variable or the propensity score; see next section for details. Besides the first order 
(i.e., the regression mean function) assumptions needed to obtain point estimates, which 
although untestable may be deemed plausible, above methods also require second order 
assumptions for variance estimation which are much stronger and highly speculative in 
nature. Regardless of their plausibility, such assumptions are needed for computing MOE 
for point estimators.  

Clearly, it is best to minimize assumptions that are difficult to test, and therefore, it would 
be preferable to rely only on first order assumptions in models for the study or outcome 
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variable or the propensity score as they seem more plausible in any given application. In 
fact, in surveys with probability samples, either outcome variable model for imputation for 
missing data or propensity score model for nonresponse adjustment to sampling weights is 
commonly used under only first order assumptions in addition to the assumption of census 
nonresponse (i.e., the reverse framework in which for a given survey, observation units at 
the population level itself can be designated as respondent or nonrespondent regardless of 
whether they get selected in the sample or not) and small sampling fractions; see Shao and 
Steel (1999). The resulting estimates are quasi-design based and their properties are derived 
under the joint design and model random mechanism. The proposed method takes 
advantage of these key ideas in survey sampling, and generalizes them to the present 
problem by transforming it to a missing data problem for the supplementary probability 
sample 𝑠∗ which does not collect any information about 𝑦; i.e., there is complete 
nonresponse by design, and where the purposive sample 𝑠̃ is used as a donor dataset for 
imputation. However, it is different from the usual quasi-design based approach in the 
presence of item or unit nonresponse because there is no respondent subsample of 𝑠∗ to act 
as a donor dataset. Thus, for the proposed method, instead of making a long leap from 𝑠̃ to 
𝑈∗, we make a short leap from 𝑠̃ to 𝑠∗ to impute all 𝑦 −values under only first order model 
assumptions, and then 𝑠∗, being a probability sample, provides a solid design-based 
foundation to make inference about 𝑈∗using commonly used estimators such as 
generalized regression (GREG) of Särndal (1980). Following Singh (2015), this approach 
is termed model-over-design (MOD) integration signifying the use of design-based 
approach to minimize assumptions by using 𝑠∗and not 𝑠̃ as the base for inference, and then 
integrating in it the 𝑦 −information under an imputation model based on 𝑠̃. It may be 
remarked that there is a price paid in terms of loss of precision when inferring about 𝑈∗ 
from 𝑠̃ by way of 𝑠∗ as opposed to inferring directly from 𝑠̃ if models under strong 
assumptions were indeed true, but it is probably worth it in view of much weaker and 
plausible assumptions.  

Using a generalization of the reverse framework considered by Shao and Steel (1999), it is 
observed that variance estimates under the MOD integration approach can be obtained 
without any second order assumptions for the imputation model, and without any 
assumptions on the second order inclusion probabilities under 𝜋̃. In fact, reliance on the 
first order inclusion probabilities for 𝜋̃ estimated under a propensity score model can also 
be made weaker. Note that for variance estimation in the presence of imputed data for 
nonrespondents under probability samples using the usual quasi-design-based reverse 
framework, the total variance of the imputed estimator about the population total 𝑇𝑦 has 
two parts: first is the design-based variance of the imputed estimator about a census-
estimated population total with estimates of mean values for the nonrespondents; i.e., 
∑ 𝑦𝑘

′
𝑈  (= ∑ 𝑦𝑘𝑈𝑟

+ ∑ 𝜇𝑘𝑁𝑈𝑛𝑟
) where 𝑈 is the target population,  𝑈𝑟 is the subpopulation 

of respondents, 𝑈𝑛𝑟 is the subpopulation of nonrespondents, and where 𝜇𝑘𝑁’s are finite 
population quantities defined by the estimate for the  mean of 𝑦𝑘 given covariates under 
first order assumptions of the outcome regression model at the census level; i.e., if the 
sample itself were the census; while the second part is the model-based variance of ∑ 𝑦𝑘

′
𝑈  

about the target parameter 𝑇𝑦 (= ∑ 𝑦𝑘𝑈 ). For example, 𝜇𝑘𝑁 can be 𝑥𝑘+
′ 𝛾𝑁 under 𝜉 of (1) 

where 𝛾𝑁 is an estimate of 𝛾 based on the complete finite population 𝑈; see Section 2. The 
second part of the variance is negligible in general for small sampling fractions, while the 
first part can be estimated under quasi-design-based approaches for two phase samples 
where the first phase refers to data collection under the actual design of the probability 
sample which could be multi-stage, and the second phase refers to the use of additional 
information in estimation of 𝜇𝑘𝑁’s for nonrespondents via deterministic imputation which 
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might also entail a model 𝜓̃ for random imputation given the first phase respondent 
subsample information. Here, the estimated 𝜇𝑘𝑁’s are typically nonlinear and are linearized 
before applying Taylor variance estimation techniques for totals.  

For the present problem with purposive samples, 𝑈𝑟 is empty and 𝜇𝑘𝑁’s are estimated from 
an independent sample 𝑠̃ and not the respondent subsample. Now, as discussed in Sections 
2 and 3, the usual reverse framework under the quasi-design-based approach can be 
generalized to make it applicable to our problem under the MOD-integration approach if 
we treat 𝑠̃ as collecting extra information in a second phase to provide estimates or imputed 
values for 𝜇𝑘𝑁’s which in the case of random imputation will require additional information 
under a model 𝜓̃.  The above generalization, depending on the imputation method and 
assumptions made, might require estimation of first order inclusion probabilities under 
unknown 𝜋̃. These probabilities are, in general, difficult to estimate reliably but can be 
done somewhat robustly using calibration equations with good covariates as described in 
Section 2. Also, need for second order inclusion probabilities under 𝜋̃ for the second phase 
variance estimation could be avoided which are known to be even more difficult to 
estimate. To this end, as explained in Sections 2 and 3, besides the usual assumption of 
WRPSU (with replacement primary sampling unit) selection in the first phase sample 
(i.e., 𝑠∗), if additional assumptions of conditional unbiasedness and conditional 
independence of imputed values about 𝜇𝑘𝑁’s can be made given 𝑠∗, then standard variance 
estimates for single phase designs become applicable which do not require explicitly the 
second phase variance estimate; see Singh (2008). The above additional assumptions can 
be approximately satisfied by using non-parametric imputation methods (such as nearest 
neighborhood means for imputing 𝜇𝑘𝑁’s under an unspecified model 𝜉∗) which are also 
expected to be robust to model mis-specification for estimating inclusion probabilities 𝜋̃ 
for units in 𝑠̃. Thus, the proposed variance estimators do not require strong assumptions 
about the propensity score model for 𝜋̃ and the nonparametric imputation model 𝜉∗.  

In any model for imputation, there is great concern about model misspecifications. The 
proposed method further alleviates this problem by including extra covariates in the GREG 
estimator from 𝑠∗ as follows. Observe that with the imputed y-values (𝑦𝐼) from 𝑠̃, the usual 
GREG with key auxiliary control totals for 𝑥’s can be applied on 𝑠∗ to obtain point 
estimates, to be termed iGREG where i denotes imputation. However, if covariates 𝑥’s (as 
well as other outcome variables 𝑧’s known to be correlated with 𝑦) with known values in 
𝑠∗ are also imputed alongside 𝑦, then additional covariates based on differences  𝑥𝐼 − 𝑥 
and 𝑧𝐼 − 𝑧 with corresponding constraints of zero control totals can be used to improve 
GREG with regard to possible imputation bias due to model mispecifications; see Singh, 
Iannacchione, and Dever (2003) on the use of zero controls for reducing mode effects. This 
way, the GREG-calibrated weights will yield estimates for 𝑇𝑥 based on imputed values 𝑥𝐼 
that match exactly with known 𝑥 -control totals 𝑇𝑥 or estimated controls 𝑇𝑧

∗ in the case of 
𝑧 −variables obtained from 𝑠∗. This is a form of benchmarking and the resulting estimate 
denoted ixGREG (x for extra covariates with zero controls) is expected to reduce 
imputation bias and be robust to imputation model misspecification. In addition to such 
robustification of iGREG with respect to the imputation model, doubly robust imputation 
methods involving imputation class based on propensity score model and outcome 
regression model (parametric or nonparametric) for imputation within the imputation class 
(see, e.g., Haziza and Beaumont, 2007) can be used to obtain 𝑦𝐼 for 𝑠∗. 

The organization of this paper is as follows. Section 2 contains background review of 
prediction method and propensity score weighting method based primarily on 𝑠̃ while 𝑠∗ 
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provides supplementary controls 𝑇𝑧
∗, and motivation for the proposed method iGREG 

under the MOD-integration approach based primarily on 𝑠∗ while 𝑠̃ provides imputed y-
values. In Section 3, the proposed class of estimators iGREG is described. For imputation, 
both random imputation (hot deck) and deterministic imputation (neighborhood mean) 
using nearest neighbors defined by the distance metric under predictive mean matching 
(PMM, Little, 1988) are used. In the interest of double robustness, alternative versions of 
iGREG are defined where PMM is used within imputation classes defined by quantiles of 
the propensity score for all units in the combined sample 𝑠̃ ∪ 𝑠∗. Here, assuming that 𝑠̃ and 
𝑠∗ do not overlap, propensity refers to the probability of the event for a unit from 𝑠̃ ∪ 𝑠∗ to 
be selected in 𝑠̃; i.e., conditional on 𝑠̃ ∪ 𝑠∗. Note that 𝑠̃ plays the role of the respondent 
subsample while 𝑠∗ as the nonrespondent subsample for which y-values are missing. The 
above propensity is different from the propensity used in propensity score weighting 
mentioned earlier. Variance estimates are provided in Section 4, and empirical results 
based on a limited simulation study in Section 5. Finally, Section 6 contains concluding 
remarks. 

 

2. Background Review and Motivation for the Proposed Class of Methods 

We first consider methods based primarily on 𝑠̃. There are two methods as mentioned in 
the introduction. 

2.1 PRED (𝒔̃)—Prediction Estimator based on 𝒔̃  

It is the prediction estimation method of Royall (1970, 1976) where y is modeled given 
covariates observed in 𝑠̃. Let 𝑥𝑖+ denote the vector of two types of covariates  𝑥𝑖  and 𝑧𝑖 for 
the ith unit in 𝑠̃ deemed to be well correlated with the outcome variable 𝑦𝑖 where 𝑥𝑖 are 
usual covariates (including the constant covariate of 1 corresponding to the intercept ) with 
known totals 𝑇𝑥   and 𝑧𝑖 are other outcome variables with unknown totals 𝑇𝑧 whose 
estimates 𝑇𝑧

∗ can be obtained from s∗ after weight calibration to control totals  𝑇𝑥; i.e., 𝑇𝑧
∗ =

∑ 𝑧𝑘𝑤𝑘(1)
∗

𝑘∈𝑠∗ . Here, 𝑤𝑘(1)
∗  are GREG-calibrated weights obtained from the initial weights 

𝑤𝑘
∗ and control totals 𝑇𝑥 which include the population count N corresponding to the 

constant covariate of 1.  Now, invoke a super-population model 𝜉  with an intercept: 

    𝜉:  𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖 = 𝑥𝑖+
′ 𝛾 +  𝜀𝑖 , 𝜀𝑖~𝑖𝑛𝑑(0,  𝜎𝜀

2)  (1) 

where the first order parameters are 𝛾-- the fixed regression coefficients, and the second 
order parameters refer to the error variance  𝜎𝜀

2 and zero covariances of model errors. The 
postulated model 𝜉 is at best a plausible model which may be misspecified. However, the 
unbiasedness property of estimators requires that at least the mean function is correctly 
specified. Let 𝛾̃𝑢 denote the ordinary least squares estimator of 𝛾 where the symbol ~ 
signifies that it is based on the purposive sample 𝑠̃ and the subscript u signifies that it is 
unweighted; i.e., the sampling weights are not used which, in fact, are not known. The 
estimator is given by 

𝑡𝑦,𝑃𝑅𝐸𝐷(𝑠̃) = 𝑇𝑥+
′ 𝛾̃𝑢 +  ∑ (𝑦𝑖 − 𝑥𝑖+

′ 𝛾̃𝑢)𝑖∈𝑠̃    (2) 

                    = 𝑇𝑥+
′ 𝛾̃𝑢 + 0 

The total residual term on the right hand side of (2) is zero due to the presence of the 
intercept in the model. Variance of 𝑡𝑦,𝑃𝑅𝐸𝐷(𝑠̃) can be estimated under the model (1) and 
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requires estimating 𝜎𝜀
2 for which the usual estimate based on residuals can be plugged in.  

The main limitation of 𝑃𝑅𝐸𝐷(𝑠̃) is that the model for the mean of y given xi+ under  ξ is 
assumed to hold for s̃ and its complement. This may not be true due to potential selection 
bias in 𝑠̃. Besides the mean function may itself be misspecified which is clearly untestable 
due to unknown y-values precisely for units that are nonobserved in the sample and for 
whom we wish to predict. The above limitation is for point estimation. The second 
limitation is that even if the mean function is correctly specified and there is no selection 
bias, the variance estimate is obtained under the assumed covariance structure of 𝜉 which 
is rather tenuous. The problem of variance estimation gets worse in the presence of 
selection bias.  

2.2 cPROP (𝒔̃)—Calibration Propensity Estimator based on 𝒔̃ 

This is the propensity score weighting method. Consider a logit linear model for the 
propensity 𝜋̃𝑖 of unit i being in 𝑠̃: 

logit 𝜋̃𝑖 =  𝑥𝑖+
′ 𝜆    (3) 

The propensity 𝜋̃𝑖 of unit i represents the probability of the compound phenomenon 
comprising observation unit recruitment, cooperation, and completion. The model 
parameters 𝜆 can be estimated by using a calibration method (Folsom and Singh, 2000) 
such that the control totals 𝑇𝑥+ are satisfied by new weights 𝑤̃𝑖(= 𝜋̃𝑖

−1) obtained by 
adjusting the initial weights of 1. That is, the estimated parameters 𝜆̃ satisfy the estimating 
equations 

∑ 𝑥𝑖+𝑤̃𝑖 = 𝑖∈𝑠̃ 𝑇𝑥+    (4) 

and     𝑤̃𝑖 = 𝜋̃𝑖
−1 = (1 + exp(−𝑥𝑖+

′ 𝜆̃))   (5) 

The propensity score weighting estimator is now given by an expansion estimator like 
Horvitz-Thompson, 

𝑡𝑦,cPROP(𝑠̃) = ∑ 𝑦𝑖𝑤̃𝑖𝑖∈𝑠̃  = 𝑦̃′𝑤̃   (6) 

The main limitation of cPROP(𝑠̃) is the use of the untestable Missing-at-Random (MAR)-
type assumption for nonselected units; i.e., given the covariates, the selection probability 
𝜋̃𝑖 does not depend on the outcome variable y. This is similar to MAR for bias adjustment 
for nonresponse in probability surveys except that it is compounded by the fact that it also 
includes the event of selection of units besides the event of response. However, some 
robustification to model misspecification is provided by weight calibration constraints. The 
other main limitation is that the variance estimation requires the WRPSU-type assumption 
in the absence of second order selection probabilities where PSU refers to the ultimate 
cluster in the sampling design. This assumption is also purely speculative because the 
sampling design underlying 𝑠̃ is unknown and so the concept of ultimate cluster is 
hypothetical.  

The calibration method for fitting the propensity model has the advantage that it does not 
require any unit level information about nonselected units as is needed in the alternative 
quasi-likelihood method commonly used for fitting response propensity models in 
probability surveys. Valliant and Dever (2011) used the quasi-likelihood method for fitting 
the propensity model for a unit in 𝑈∗ to be selected in 𝑠̃ and took advantage of s∗ with 
information about 𝑥𝑘+ and weights 𝑤𝑘

∗ for units 𝑘 ∈ s∗ to estimate the population quantities 
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in the quasi-likelihood estimating function for 𝜆 based on 𝑈∗.  Here, it is assumed that there 
is no overlap between s∗ and 𝑠̃ but sampling weights of s∗ are not adjusted to reflect the 
subpopulation  𝑈∗ \  𝑠̃ because its effect is expected to be negligible.  Elliott (2009) and 
Robbins et al. (2017) used a different approach using Bayes theorem for estimating the 
propensity 𝜋̃𝑖 for which we describe an alternative simplified derivation as follows.  

First a logit model for a different propensity 𝜑𝑗 for a unit 𝑗 in the combined sample 𝑠̃ ∪

𝑠∗to be selected in 𝑠̃ is fit using the quasi-likelihood approach. It is assumed that the two 
samples 𝑠̃ and 𝑠∗ do not overlap or they can be made so by dropping common units from 
𝑠̃. This model is fit conditional on 𝑠̃ ∪ 𝑠∗ and so there is no need for sampling weights and, 
in fact, they are not even known for 𝑠̃. Now for a unit 𝑖 ∈ 𝑠̃, if we knew the selection 
probability 𝜋𝑖

∗ for it to be in 𝑠∗, then the required propensity 𝜋̃𝑖 can be obtained as 
𝜋𝑖

∗(𝜑𝑖/(1 − 𝜑𝑖)). To see this, note that  

  Pr(𝑗 ∈ 𝑠̃) = Pr(𝑗 ∈ 𝑠̃ 𝑎𝑛𝑑 𝑗 ∈ 𝑠̃ ∪ 𝑠∗) 

     = Pr (𝑗 ∈ 𝑠̃ ∪ 𝑠∗) × Pr (𝑗 ∈ 𝑠̃|𝑗 ∈ 𝑠̃ ∪ 𝑠∗)   (7) 

and similarly for Pr(𝑗 ∈ 𝑠∗). The desired result follows from the observation that the ratio 
Pr(𝑗 ∈ 𝑠̃) / Pr(𝑗 ∈ 𝑠∗) can be expressed as 𝜑𝑗/(1 − 𝜑𝑗) since Pr(𝑗 ∈ 𝑠̃| 𝑗 ∈ 𝑠̃ ∪ 𝑠∗) = 𝜑𝑗, 
and Pr(𝑗 ∈ 𝑠∗| 𝑗 ∈ 𝑠̃ ∪ 𝑠∗) = 1 − 𝜑𝑗. It may be remarked that all the above probabilities are 
conditional on the covariates 𝑥𝑗+. In practice, 𝜋𝑖

∗ for units 𝑖 ∈ 𝑠̃ are not known and another 
logit model can be fit to observed 𝜋𝑘

∗  in 𝑠∗ to approximate it as a function of covariates. 
This model can then be used to estimate 𝜋𝑖

∗. Note that the additional model for 𝜋𝑘
∗  is not 

for the same purpose as the propensity score modeling, and will not be needed if the sample 
design 𝜋∗ is based on covariates known for 𝑠̃ although this is unlikely in practice. The 
proposed calibration method based on (4) above offers a simpler alternative to above 
methods based on quasi-likelihood.  

2.3 Motivation for the Proposed Class of Estimators 

With the estimated sampling weights 𝑤̃𝑖 for 𝑖 ∈ 𝑠̃ using propensity modeling, an alternative 
estimator GREG (𝑠̃) of Särndal (1980) based on 𝑠̃ can be easily defined as  

𝑡𝑦,𝐺𝑅𝐸𝐺(𝑠̃) = 𝑇𝑥+
′ 𝛾̃𝑤 +  ∑ (𝑦𝑖 − 𝑥𝑖+

′ 𝛾̃𝑤)𝑖∈𝑠̃ 𝑤̃𝑖  (8) 

        = 𝑇𝑥+
′ 𝛾̃𝑤 + 0 

which in contrast to PRED (𝑠̃) of (2) uses a weighted estimate 𝛾̃𝑤 of regression parameters 
𝛾 based on estimated weights 𝑤̃𝑖, and the second term on the right hand side of (8) is the 
sum of weighted residuals which reduces to zero due to presence of the intercept in the 
model. There is an interesting and desirable property of cPROP(𝑠̃) in that it is equal to 
GREG (𝑠̃) whenever the unit vector (denote by 1) is in the column space of covariates 𝑥+; 
i.e., 1 = 𝑋̃+𝛼 for some real vector 𝛼 and where 𝑋̃+denotes the matrix of covariate values 
with rows given by 𝑥𝑖+

′ , which, in fact, is the case for models with an intercept. This 
suggests a robustness property for cPROP(𝑠̃) in that two completely different models 
(propensity score and outcome regression) give rise to the same estimator. To see this, note 
that  

𝑡𝑦,cPROP(𝑠̃)= 𝑦̃′𝑤̃ = 𝑦̃′𝑊̃1 = 𝑦̃′𝑊̃𝑋̃+𝛼 

             = (𝑦̃′𝑊̃𝑋̃+)(𝑋̃+
′ 𝑊̃𝑋̃+)

−1
(𝑋̃+

′ 𝑊̃𝑋̃+)𝛼     
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          = 𝛾̃𝑤
′ (𝑋̃+

′ 𝑊̃𝑋̃+)𝛼 = 𝛾̃𝑤
′ 𝑋̃+

′ 𝑤̃ 

          = 𝛾̃𝑤
′ 𝑇𝑥+ + 0 = 𝑡𝑦,𝐺𝑅𝐸𝐺(𝑠̃)    (9) 

because the weighted sum of residuals in GREG (𝑠̃) defined by (8) is zero due to presence 
of the intercept term in the model. The above property is not shared by PRED (𝑠̃) because 
it uses the unweighted regression parameter estimates 𝛾̃𝑢 instead of the weighted estimates 
𝛾̃𝑤. Thus, PRED (𝑠̃) is subject to design bias if the model 𝜉 does not hold for 𝑠̃ and its 
complement; i.e., if the unknown design 𝜋̃ is nonignorable for the model given covariates 
𝑥𝑖+.  

Now, suppose the imputed values 𝑦𝑘
𝐼  are given by the weighted predictive means (PM), 

𝑥𝑘+
′ 𝛾̃𝑤 for all 𝑘 ∈ s∗, and then a GREG estimator is computed. Denote it by iGREG (PM). 

Somewhat surprisingly, it is observed that the two GREG point estimates iGREG (PM) and 
GREG (s̃) based respectively on different samples s∗ and s̃ do, in fact, coincide. This can 
be explained as follows. First note that the GREG calibration for 𝑤𝑘

∗ −weights in s∗ does 
not change whether 𝑇𝑥+ with the extra control 𝑇𝑧

∗ is used or only  𝑇𝑥 (including the control 
N but without the extra control 𝑇𝑧

∗) because 𝑇𝑧
∗ does not add any new information. It is so 

because 𝑇𝑧
∗ is itself obtained as a calibration estimator using calibrated weights 𝑤𝑘(1)

∗  
computed from the initial 𝑤𝑘

∗ −weights under controls  𝑇𝑥. However, the corresponding 
regression coefficients 𝛽𝑤

∗  and 𝛾𝑤
∗  (corresponding to the case of extra control) are different 

as they have different dimensions. Now the prediction or the first part of GREG is identical 
for both estimators because with imputed values 𝑦𝑘

𝐼  as 𝑥𝑘+
′ 𝛾̃𝑤, the weighted regression 

coefficient estimator 𝛾𝑤
∗  from s∗ coincides with the weighted regression coefficient 

estimator 𝛾̃𝑤 obtained from s̃. That is, 

𝛾𝑤
∗ = (𝑋+

∗′𝑊∗𝑋+
∗ )−1(𝑋+

∗′𝑊∗𝑦𝐼) 

    = (𝑋+
∗′𝑊∗𝑋+

∗ )−1(𝑋+
∗′𝑊∗𝑋+

∗ )𝛾̃𝑤= 𝛾̃𝑤.  (10) 

For the second part in GREG; i.e., the weighted sum of residuals, it is already shown to be 
zero for GREG (s̃), and is also zero for iGREG (PM) as ∑ (𝑘∈s∗ 𝑦𝑘

𝐼 − 𝑥𝑘+
′ 𝛾𝑤

∗ )𝑤𝑘
∗ reduces to 

zero because 𝑦𝑘
𝐼  defined by 𝑥𝑘+

′ 𝛾̃𝑤 equals 𝑥𝑘+
′ 𝛾𝑤

∗  in view of (10). However, the two 
estimators iGREG (PM) and GREG (𝑠̃) can have different variances depending upon the 
choice of the underlying random mechanism. In our case, iGREG (PM) is driven jointly by 
the design 𝜋∗for s∗, π̃ for s̃  and the outcome regression model 𝜉, and GREG (𝑠̃) is driven 
by the design π̃ based on the propensity score model.  

Cleary, iGREG (PM) is a candidate for the proposed class of estimators under MOD-
Integration. However, the main question is whether a reliable estimate of its variance can 
be obtained without making strong second order assumptions for the imputation model 𝜉 
or the propensity score model 𝜋̃. The answer is no in general but it might work well for 
very large 𝑠̃ relative to 𝑠∗. To see this, consider the analogy with imputation for 
nonrespondents in probability surveys where respondent subsamples serve as the donor 
dataset. In such surveys with nonresponse, imputed values can be viewed as providing the 
second phase information and variance can be estimated using standard single phase 
formulas (i.e, WRPSU-type) under the reverse framework as mentioned in the introduction 
if imputed values are conditionally unbiased and conditionally independent across units 
with missing values where conditional refers to the first phase sample. It is shown in Singh 
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(2008) that the usual requirements of invariance and independence (Särndal, Swensson, 
and Wretman, 1992, pp. 134) for variance estimation in (single phase) two stage sampling 
can be simplified and replaced by weaker conditions of conditional unbiasedness and 
conditional independence given the first phase sample, and thus can be used to obtain two 
phase variance estimates via single phase methods; see Appendix A.5 for more details.  

Now, in the case of our problem, there is complete nonresponse in 𝑠∗ and a separate 
independent sample 𝑠̃ serves as the donor dataset. Despite this difference, the simplified 
variance estimation under the reverse framework can be generalized for our purposes if 
imputation methods are chosen appropriately. Observe that the regression coefficients 𝛾̃𝑤 
are common in PM imputation for all units in 𝑠∗, and therefore, the imputed values do not 
satisfy the conditional independence assumption given 𝑠∗. However, they may satisfy it 
approximately if 𝑠̃ is much larger than 𝑠∗ in which case, under general regularity 
conditions, 𝛾̃𝑤 is consistent for 𝛾𝑁 under the distribution 𝜋̃|𝜉 and can be treated 
asymptotically as fixed; i.e., 𝛾̃𝑤 is very close to 𝛾𝑁 with high probability. Then the 
covariances between 𝑦𝑘

𝐼 ’s about their mean values 𝜇𝑘𝑁 (= 𝑥𝑘+
′ 𝛾𝑁)  would be negligible 

under 𝜋̃|𝜉 . As a consequence, standard variance estimation methods in survey sampling 
adjusted for imputation would be applicable to iGREG (PM) under the joint distribution 
𝜋∗𝜋̃𝜉. However, the assumption of negligible covariances for applicability of standard 
methods is not likely to be tenable in practice and some adjustments are required; see 
Subsection A.5. Moreover, the imputed values in iGREG (PM) do depend strongly on the 
model 𝜉 and are not robust to model mispecifications. These considerations lead to 
semiparametric imputation methods such as predictive mean matching (PMM) imputation 
by random hot deck within PM neighborhood (PMN) or deterministic using PMN means 
as proposed in the next section. They are semiparametric in nature because although a 
parametric model ξ is used for PMM for computing the distance metric, a nonparametric 
model ξ∗ with an unspecified functional form of the outcome mean given the covariates is 
used for imputation via nearest neighbors. 

 

3. Proposed Class of Estimators under MOD-Integration: iGREG 

Based on the motivation in the previous section, the proposed estimators begin with a 
design-based approach using the reference sample 𝑠∗, and then build over it by integrating 
information about 𝑦 −values from the purposive sample 𝑠̃ using an imputation model. That 
is, under the model ξ, impute 𝑦𝑘 for each unit 𝑘 ∈  𝑠∗ from 𝑠̃ (treated as a donor dataset), 
and then define 

    𝑡𝑦,𝑖𝐺𝑅𝐸𝐺(𝑠∗) =(𝑦𝐼)′𝑤(1)
∗     (11) 

where 𝑤(1)
∗  are the calibrated weights for s∗ satisfying the controls 𝑇𝑥.  

To define various members of the class iGREG (𝑠∗) based on PMM for different 𝑦𝐼, first 
fit the imputation model 𝜉 using 𝑠̃ and the estimated weights 𝑤̃ obtained under the 
propensity score model and denote the estimated predictive means 𝑥𝑖+

′ 𝛾̃𝑤 as 𝑃𝑀𝑖 for 𝑖 ∈ 𝑠̃ 
and 𝑥𝑘+

′ 𝛾̃𝑤 as 𝑃𝑀𝑘 for 𝑘 ∈  𝑠∗. For each unit 𝑘 ∈  𝑠∗, use the above predictive means in a 
distance metric to find 𝐾0 (10 to 20, for example) nearest neighbors from 𝑠̃ where the 
distance metric between units i and k is defined by |𝑃𝑀𝑖 − 𝑃𝑀𝑘|.  
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For predictive mean neighborhood (PMN) random hot deck imputation, draw a unit at 
random from 𝐾0 neighbors using weighted hot deck; i.e., with estimated 𝑤̃𝑖 as size 
measures for the probability proportional to size (PPS) sampling. This random draw 
mechanism is denoted by 𝜓̃. Also denote the resulting random imputation by 𝑦𝑘,𝑃𝑀𝑁−𝑟

𝐼  
where 𝑟 signifies random. Similarly, obtain 𝑥𝑘,𝑃𝑀𝑁−𝑟

𝐼  and 𝑧𝑘,𝑃𝑀𝑁−𝑟
𝐼  for known covariate 

values from the same donor for imputation model diagnostics and bias correction. Observe 
that for the above PMN-r method, unlike the PM imputation method described in the 
previous section, the resulting imputed values across units in 𝑠∗ are only weakly dependent 
on the common regression coefficient estimator  𝛾̃𝑤 because it is used only in the distance 
metric to find neighbors. This semiparametric method is useful for making PMN-r robust 
to misspecifications of the imputation model. To see that the PMN-r imputations 𝑦𝑘

𝐼  satisfy 
approximately the assumptions of conditional unbiasedness for 𝜇𝑘𝑁 (only conceptual under 
ξ∗ for the census data) and independence given 𝑠∗, suppose for each unit 𝑘 ∈  𝑠∗, the 
random draw from the neighborhood 𝑃𝑀𝑁𝑘 gives rise to the imputed value 𝑦𝑖

∗ 
corresponding to a unit 𝑖 ∈ 𝑃𝑀𝑁𝑘. We have the identity,  

𝑦𝑘
𝐼 − 𝜇𝑘𝑁 = 𝑦𝑖

∗ − 𝜇𝑘𝑁 = (𝑦𝑖
∗ − 𝑦̅𝑘

∗) + (𝑦̅𝑘
∗ − 𝜇𝑘𝑁)  (12) 

where 𝑦̅𝑘
∗ is the weighted average of the donors in the neighborhood 𝑃𝑀𝑁𝑘. Since the 

random draws are independent from different PMNs, the first terms (𝑦𝑖
∗ − 𝑦̅𝑘

∗) across units 
𝑘 ∈  𝑠∗ on the right hand side of (12) are conditionally independent under 𝜓̃ given 𝜋∗𝜋̃ξ∗ . 
The second terms (𝑦̅𝑘

∗ − 𝜇𝑘𝑁) across units 𝑘 ∈  𝑠∗ can be deemed to be approximately 
conditionally independent under 𝜋̃ given 𝜋∗ξ∗ assuming that the neighborhood size is much 
smaller than the size of 𝑠̃, and 𝛾̃𝑤 used in the distance metric is a consistent estimate of  𝛾𝑁 
for large 𝑠̃. Moreover, the approximate conditional unbiasedness of 𝑦𝑘

𝐼  about 𝜇𝑘𝑁 also holds 
because the mean of (𝑦𝑖

∗ − 𝑦̅𝑘
∗) is zero due to random draws, and the mean of  𝑦̅𝑘

∗ can be 
assumed to be asymptotically unbiased for 𝜇𝑘𝑁 by construction of the neighborhood based 
on nearest neighbors. The resulting estimator is denoted by iGREG(PMN-r) for which the 
standard variance estimators adjusted for nonresponse in survey sampling become 
approximately valid. That is, the contribution to the total variance due to imputation in the 
second phase is embedded in the first phase variance between PSU estimates under the 
WRPSU-type assumption; see Subsection A.5. Here, PSU denotes the generic ultimate 
cluster which could be elementary units if there is no clustering in the first phase sampling 
design for 𝑠∗. In practice, however, unless 𝑠̃ is very large relative to 𝑠∗, PMNs are likely to 
have some donor units common for different units 𝑘 ∈  𝑠∗, which would lead to 
nonnegligible covariances between PMN means. In such cases, a standard but conservative 
variance estimate can be obtained; see Subsection 4.3. 

The PMN-deterministic imputation denoted by 𝑦𝑘,𝑃𝑀𝑁−𝑑
𝐼  where d signifies deterministic, 

is obtained by the weighted average of the 𝑦 −values in the neighborhood 𝑃𝑀𝑁𝑘. 
Similarly, for the covariates, we can obtain 𝑥𝑘,𝑃𝑀𝑁−𝑑

𝐼  and 𝑧𝑘,𝑃𝑀𝑁−𝑑
𝐼  for all 𝑘 ∈  𝑠∗.  

Following the argument above for 𝑃𝑀𝑁-r, standard variance estimation formulas can be 
used for 𝑃𝑀𝑁-d methods. The resulting estimator is denoted by iGREG (PMN-d). 

In light of the desirable double robustness property for imputation mentioned in the 
introduction when both outcome regression and propensity score models are used, we can 
easily define both random hot deck and deterministic imputations for PMN within class 
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(PMNC); see e.g., Haziza and Beaumont (2007). To this end, we first fit the propensity 
model for a unit 𝑗 ∈ (𝑠̃ ∪ 𝑠∗) to be in 𝑠̃ using the usual quasi-likelihood as described in 
Subsection 2.2, and then partition the combined sample 𝑠̃ ∪ 𝑠∗into five or so equal parts 
using quantiles of the propensity score distribution. Now, depending on which of the five 
classes each 𝑘 ∈  𝑠∗ belongs based on its propensity score, 𝑃𝑀𝑁-r and 𝑃𝑀𝑁-d imputations 
are performed within each class. Here, the random hot deck and the PMN means are 
unweighted within the neighborhood because the donors belong to the same propensity 
class with approximately equal propensity scores. This feature of being able to use 
unweighted imputation is conducive for efficiency of estimators as they are not subject to 
instability in estimation of propensity scores. Moreover, the resulting estimators, to be 
denoted by 𝑖𝐺𝑅𝐸𝐺(𝑃𝑀𝑁𝐶-r) and 𝑖𝐺𝑅𝐸𝐺(𝑃𝑀𝑁𝐶-d), become more robust. 

Finally, imputation model diagnostics can be developed using observed differences 𝑥𝑘+
𝐼 −

𝑥𝑘+ where  𝑥𝑘+, although known in 𝑠∗, is also imputed from the same donor for diagnostic 
purposes. Moreover, the estimator iGREG can be corrected for bias by using extra 
covariates 𝑥𝑘+

𝐼 − 𝑥𝑘+ with zero control totals. It is also possible to control the total 
observed differences over subsets of 𝑥+ defined, for example, by quartiles. The bias 
corrected iGREG estimators are denoted by ixGREG(PMN-r) and ixGREG(PMNC-r) 
where ‘x’ signifies the extension of covariates with zero controls. Similarly, ixGREG 
estimators with deterministic imputations can be defined as before.  

 

4. Variance Estimation 

For variance estimation, it is convenient to express all estimators as calibrated expansion 
estimators based on 𝑠∗ using weights 𝑤𝑘(1)

∗  where 𝑦 −values are replaced by corresponding 
imputed values. Interestingly, PRED(𝑠̃) can also be expressed as a calibration estimator. 
Note that the calibrated weights 𝑤𝑘(1)

∗  can be obtained from the initial weights 𝑤𝑘
∗ after 

multiplying them by the GREG-calibration adjustment factors (denote by 𝑔𝑘’s) such that 
the calibration controls 𝑇𝑥 (including the population count N but not 𝑇𝑧

∗) are satisfied. By 
expressing all estimators as calibrated expansion estimators, it makes it possible for a 
meaningful comparison of all variance estimates under the common joint randomization of 
𝜋∗𝜋̃𝜉. 

4.1 PRED(𝒔̃) 

It can be expressed as ∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗ = ∑ 𝑦𝑘

𝐼
𝑠∗ 𝑤𝑘(1)

∗  where  𝑦𝑘
𝐼 = 𝑥𝑘+

′ 𝛾̃𝑢, and 𝑤𝑘(1)
∗ = 𝑔𝑘𝑤𝑘

∗. 
That is, PRED(𝑠̃) has the form of iGREG(PM) but here PM is obtained without using 
weights 𝑤̃ in estimating 𝛾 which might lead to design bias as the weighted residuals for 𝑠∗ 
do not sum to zero. Now, if 𝑦 −values were known, and treating individual units k as PSUs, 
the standard variance estimate of 𝑡𝑦,𝐺𝑅𝐸𝐺(𝑠∗), under the WRPSU-assumption after Taylor 
linearization for calibration estimation, would have been obtained as (see (A19) in the 
appendix) 

𝑣(𝑡𝑦,𝐺𝑅𝐸𝐺(𝑠∗))= (𝑛∗ (𝑛∗ − 1⁄ ) ∑ (𝑒𝑘𝑔𝑘𝑤𝑘
∗ − 𝑒𝑔𝑤̅̅ ̅̅ ̅̅ )2

𝑠∗   (13) 

where  𝑒𝑔𝑤̅̅ ̅̅ ̅̅  denotes the simple average of 𝑒𝑘𝑔𝑘𝑤𝑘
∗ over the size 𝑛∗ of 𝑠∗, and 𝑒𝑘’s denote 

the GREG residuals 𝑦𝑘 − 𝑥𝑘
′ 𝛽𝑤

∗  . Note that it is 𝑥𝑘
′ 𝛽𝑤

∗  and not 𝑥𝑘+
′ 𝛾𝑤

∗  of (10) used here in 
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the residual GREG on 𝑠∗ because for this calibration, there is no extra covariate. Use of 𝑔𝑘 
in (13) is known for improved finite sample properties. The formula (13) is valid when the 
design is single stage; else, PSUs or the ultimate clusters corresponding to multi-stage 
design are used under the WRPSU assumption where 𝑛∗ is replaced by the number of 
PSUs. For imputed 𝑦𝑘 −values (here, 𝑦𝑘

𝐼 = 𝑥𝑘+
′ 𝛾̃𝑢) based essentially on the same 

covariates used for calibration, it seems natural to replace 𝑒𝑘 by 𝑒𝑘
𝐼  defined as (𝑦𝑘

𝐼 − 𝑥𝑘
′ 𝛽𝑤

∗ ) 
in the variance estimate (13). However, the residual definition is not quite meaningful 
because 𝑦𝑘

𝐼  is not a realized y- value and is itself a function of the covariates. The resulting 
variance estimate might be too low and in practice, in the interest of a conservative 
estimate, it might be better to use 𝑦𝑘

𝐼  in place 𝑒𝑘 in the formula (13) without any Taylor 
linearization. With this substitution in (13), it follows from the appendix that under certain 
conditions, we can capture most of the second phase variance where the second phase refers 
to integrating information about 𝑦 −values from 𝑠̃ via imputation under the random 
mechanism 𝜋̃ given 𝜋∗𝜉. To see this, first assume  𝑦𝑘

𝐼  is approximately unbiased for 𝜇𝑘𝑁 
(this may not be true for PRED(𝑠̃)) and then write the variance of ∑ 𝑦𝑘

𝐼
𝑠∗ 𝑤𝑘

∗ about 𝑇𝑦 as  

 𝑉𝜋∗𝜋̃𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗) =  𝐸𝜉𝑉𝜋∗𝜋̃|𝜉(∑ 𝑦𝑘

𝐼
𝑠∗ 𝑤𝑘

∗) +  𝑉𝜉𝐸𝜋∗𝜋̃|𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗) (14) 

where the second term on the right hand side is negligible relative to the first term for small 
sampling fractions under 𝜋∗. Moreover, 

 𝑉𝜋∗𝜋̃|𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗) =  𝐸𝜋∗|𝜉𝑉𝜋̃|𝜋∗𝜉(∑ 𝑦𝑘

𝐼
𝑠∗ 𝑤𝑘

∗) + 𝑉𝜋∗|𝜉𝐸𝜋̃|𝜋∗𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗)  (15) 

where  

 𝑉𝜋̃|𝜋∗𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗) =  𝐸𝜋̃|𝜋∗𝜉(∑ 𝑥𝑘+

′ 𝛾̃𝑢𝑠∗ 𝑤𝑘
∗ − ∑ 𝜇𝑘𝑁  𝑠∗ 𝑤𝑘

∗)2 

     = 𝐸𝜋̃|𝜋∗𝜉(∑ 𝑥𝑘+
′ (𝛾̃𝑢 − 𝛾𝑁)𝑠∗ 𝑤𝑘

∗)2   (16) 

𝑉𝜋∗|𝜉𝐸𝜋̃|𝜋∗𝜉(∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘
∗) =  𝐸𝜋∗|𝜉(∑ 𝜇𝑘𝑁  𝑠∗ 𝑤𝑘

∗ − ∑ 𝜇𝑘𝑁 𝑈∗ )2   (17) 

For very large sample 𝑠̃ relative to 𝑠∗, 𝛾̃𝑢 could be regarded as asymptotically fixed and 
very close to 𝛾𝑁 with high probability, and therefore, 𝑉𝜋̃|𝜋∗𝜉(∑ 𝑦𝑘

𝐼
𝑠∗ 𝑤𝑘

∗)  would be 
negligible. It follows from the subsection A.5 in the appendix that the condition of 
conditional independence is approximately satisfied by treating 𝛾̃𝑢 as asymptotically fixed, 
and in addition, assuming approximate unbiasedness of 𝑦𝑘

𝐼 , a simple variance estimate 
similar to (13)  for 𝑡𝑦,𝑃𝑅𝐸𝐷(𝑠̃)  is obtained where 𝑒𝑘 is replaced by 𝑦𝑘

𝐼 . Thus, standard 
methods of survey sampling could be applicable under suitable conditions. It is remarked, 
however, that it is probably not realistic to assume that 𝛾̃𝑢 can be treated as asymptotically 
fixed in the above simplified variance estimate calculation for the usual 𝑠̃ sizes available 
in practice. In such cases, the resulting variance estimate would be an underestimate, and 
assuming approximate unbiasedness of 𝛾̃𝑢, second order assumptions for the propensity 
score model for 𝜋̃ would be required to obtain suitable variance estimates; see A.5. 

4.2 cPROP(𝒔̃) 

Writing it as a calibrated expansion estimator using imputed values; i.e., as ∑ 𝑦𝑘
𝐼

𝑠∗ 𝑤𝑘(1)
∗ , 

where 𝑦𝑘
𝐼  is now defined as 𝑥𝑘+

′ 𝛾̃𝑤, it has the form of iGREG(PM) where PM now uses 
weights 𝑤̃ in estimating 𝛾. The main difference between PRED(𝑠̃) and cPROP(𝑠̃) is the 
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use of weighted 𝛾̃𝑤 which is expected to alleviate the problem of selection bias in 𝑠̃ and 
thus supports approximate unbiasedness of 𝛾̃𝑤. Again neglecting the asymptotic variance 
of the second phase term due to 𝛾̃𝑤 when 𝑠̃ is large, standard variance estimate formulas as 
given by (13) with 𝑒𝑘 replaced by 𝑦𝑘

𝐼  can be used for the estimator 𝑡𝑦,𝑐𝑃𝑅𝑂𝑃(𝑠̃) . If 𝑠̃ were 
not large, additional assumptions for 𝜋̃ would be needed as mentioned earlier. 

4.3 iGREG Estimators 

The variance estimate formula (13) remains applicable, in general, to all iGREG and 
ixGREG estimators under much weaker assumptions after substituting 𝑒𝑘 by suitably 
defined 𝑒𝑘

𝐼 . In particular, for iGREG, 𝑒𝑘
𝐼  is defined as (𝑦𝑘

𝐼 − 𝑥𝑘
′ 𝛽𝑤

∗ ) but for ixGREG , it is 
defined as (𝑦𝑘

𝐼 − 𝑥𝑘0
′ 𝛽𝑤0

∗ ) where 𝑥𝑘0 denotes the original covariates 𝑥𝑘’s extended by the 
new covariates 𝑥𝑘+

𝐼 − 𝑥𝑘+ with zero controls, and the GREG regression coefficient 𝛽𝑤0
∗  is 

defined accordingly.  Observe that in the case of PMN-d, the term 𝑥𝑘+
′ (𝛾̃𝑢 − 𝛾𝑁) on the 

right hand side of (16) is replaced by 𝑦̅𝑘
∗ − 𝜇𝑘𝑁 where  𝑦̅𝑘

∗ is defined as in (12) and 𝜇𝑘𝑁 is 
the conceptual conditional mean given covariates under a nonparametric model ξ∗. 
Therefore, in order to be able to use formula (13) which captures the second phase 
variances but not covariances, it is, therefore, sufficient to ensure that 𝑦̅𝑘

∗ − 𝜇𝑘𝑁 are 
approximately uncorrelated over units 𝑘 ∈  𝑠∗ given 𝜋∗ξ∗; see Subsection A.5. As 
mentioned earlier in Section 3, this is approximately satisfied as PMNs are formed 
independently across different units, and any covariances between PMN means due to 
common 𝛾̃𝑤 used in forming PMNs are expected to be negligible as the PMN size 𝐾0 is 
much smaller than the size of 𝑠̃. Moreover, since 𝛾̃𝑤 is not directly used for imputation, but 
only indirectly in the distance metric for computing PMs, the assumption of conditional 
independence (or lack of correlation) is likely to hold even when 𝑠̃ is not too large relative 
to 𝑠∗.  

However, there might be considerable overlap of donors between PMNs for different units 
in 𝑠∗ which could lead to non-negligible covariances. Ignoring these covariances is 
expected to lead to a liberal (i.e., biased downward) variance estimate because the 
covariances 𝜎𝑖𝑗’s are likely to be positive. This problem could be overcome by collapsing 
similar PSUs (within similar strata of 𝑠∗ if 𝜋∗ is a stratified design) to define variance-
PSUs (varPSUs) such that their number is not too small such as 30. For each varPSU, 
donors could come from corresponding bootstrap replicates of 𝑠̃ by drawing subsamples of 
𝑠̃ with replacement. This way the assumption of conditional independence of estimates 
from different varPSUs given 𝑠∗ could be satisfied, and a conservative (i.e., biased upward) 
variance estimate given by the between varPSU estimate variability could be obtained. For 
the case of PMN-r, there is the additional randomization under 𝜓̃ in the second phase for 
random imputation so that the variance estimate is now obtained under the joint mechanism 
𝜋∗𝜋̃𝜓̃ξ∗ which would be larger than the deterministic imputation PMN-d case.  

 

5. Empirical Results 

A limited simulation study was conducted to evaluate and compare various estimators. 
Variance estimators were not included in the study due to time constraints but will be 
included in further empirical work. Also, the PMNC estimators were not included. We 
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generated a population of 14000 retail stores somewhat similar to Hansen et al. (1983) but 
we introduced more study (or outcome) and related variables to avoid oversimplification. 
Consider study variables 𝑦𝑘 and 𝑧𝑘 representing total annual sales for commodities A and 
B for the kth store. Also, let 𝑥𝑘 denote the store employee size and 𝑢𝑘 the store 
advertisement expense. The units of measurement for various variables are appropriately 
transformed for the purpose of data generation.  

First generate store size x-population using Gamma (2,5). Also generate 𝑢𝑘 as Unif (1,7).  
Given 𝑥 and u, generate the total annual sales ( y) using Gamma such that under ξ0 
 
   𝐸𝜉0

(𝑦𝑘|𝑥𝑘, 𝑢𝑘) = 50 + 0.6𝑥𝑘 + 𝑥𝑘
2 + 10(𝑢𝑘 − 4) ,   (18) 

and similarly, 

𝐸𝜉0
(𝑧𝑘|𝑥𝑘, 𝑢𝑘) = 25 + 0.4𝑥𝑘 + 5(𝑢𝑘 − 4),  (19) 

where ξ0 denotes the true but unknown outcome model. For each replicate 𝜈, generate the 
population 𝑈(𝜈) and draw the reference probability sample 𝑠∗(𝜈) of size 𝑛∗ = 400 using 
PPS with the size measure 𝑥𝑘

0 = 𝑥𝑘𝑢𝑘. Next, generate a purposive sample s̃(𝜈) of size ñ =

800 from U(ν) using a linear model for inclusion probabilities under Poisson sampling:  

        𝜋̃𝑘 = 𝑙 + (𝑢 − 𝑙)(𝑦𝑘 (𝑎 + 𝑦𝑘⁄ )); 𝑙 = .01,  𝑢 = .90,  𝑎 = 500 (20) 

The purposive sample is also a probability sample s̃(𝜈) from the same population 𝑈(𝜈) but 
its selection probabilities are presumed unknown for construction of estimators. From the 
Poisson sample which has a random sample size but expected to be large, take a simple 
random sample (SRS) of size 800. The variable 𝑢𝑘 is treated as unobserved. Both designs 
are nonignorable for the postulated model 𝜉 (y|x, z) for prediction or imputation as given 
in (1). Note that to reflect reality, the true model ξ0 is chosen to be more complex on 
purpose than the postulated model, but it is the assumed model under which all the 
estimators and their properties are studied. It is precisely for this reason that it is important 
to have robust estimators which are expected to give reasonable estimators even in the case 
of misspecified models.  

Results from the above simulation study with R = 1000 replicated populations are shown 
in Table 1. The true parameter is taken as the population mean 𝐴𝑦 which was obtained as 
205.8. Note that the population varied for each replication but the covariates were held at 
the initially selected values as well as the population and sample sizes. Therefore, the 
parameter 𝐴𝑦 represents the average over all population means. The weighted sample 
estimator of 𝐴𝑦 from the probability sample 𝑠∗averaged over replications was observed as 
205.97 which is very close to the true value as expected. For this purpose, the y-values for 
𝑠∗were assumed known but were regarded as unavailable when considering proposed 
estimators. The unweighted estimator from the purposive sample 𝑠̃ averaged over 
replications was obtained as 326.63 which is considerably biased upwards due to much 
higher selection probabilities for large values. Table 1 shows four estimators PRED (𝑠̃), 
cPROP (𝑠̃), and ixGREG(PMN-r) along with GREG (𝑠̃) provided as a benchmark. The 
estimator GREG (𝑠̃) uses true sampling weights under 𝜋̃ although in practice they will be 
unknown. The columns of Table 1 show three performance characteristics, average point 
estimate, relative bias, and relative root mean square error. It is seen that PRED (𝑠̃) is very 
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vulnerable to model misspecification and shows considerable downward bias. The two 
estimators cPROP (𝑠̃) and ixGREG(PMN-r) perform somewhat similarly although having 
biases in opposite directions, but with somewhat lower absolute bias for ixGREG(PMN-r). 

However, cPROP(𝑠̃) (which is equivalent to iGREG(PM)) outperforms ixGREG (PMN-r) 
in terms of RRMSE. Preference of one over the other in the iGREG class of estimators in 
practice will depend on the performance of their variance estimators which will be 
investigated in future.  

 

6. Concluding Remarks 

Based on the discussion in the paper, it follows that it is generally difficult to construct a 
good estimator from the purposive sample 𝑠̃ alone due to problems of bias and invalidity 
of the model for the sample, and lack of any practically defensible margin of error. It might 
be considerably beneficial if extra information in the form of an extant reference survey 
data s∗ were available where  y is not collected but can be used to obtain extra control totals 
for auxiliaries. It was observed in the limited simulation study that the model-based 
prediction method (PRED) may be quite vulnerable to bias than MOD-integration methods 
provided by the iGREG class. An interesting but somewhat surprising finding was that the 
calibration propensity method (cPROP) also belongs to the iGREG class as it is equivalent 
to iGREG(PM) and exhibits good performance for point estimation relative to the 
iGREG(PMN-r) estimator. However, its performance with respect to variance estimation 
based on standard WRPSU-type formulas might not be at par due to possible 
underestimation based on theoretical considerations. It is planned to check for empirical 
evidence in this regard. It was observed that for various estimators, by viewing imputation 
of 𝑦 in s∗ as information collected in a second phase sample, standard sampling methods 
under the reverse framework could be used to obtain variance estimates provided they 
satisfy the conditions of conditional independence and unbiasedness given the first phase 
sample s∗.  

Finally, we remark that the proposed MOD-Integration approach could also be applied to 
the problem of generalization of causal inference from randomized trials (Stuart et al., 
2011). This problem is different from the problem considered in this paper in that there are 
two outcome variables of interest for each unit of the target population having a condition 
to be treated; i.e., two outcome measures for each unit if it were conceptually assigned 
separately to treatment and control groups. The randomized trial data provides two 
purposive samples—one for the treatment outcome and other for the control outcome. 
Using a suitable reference probability sample representing the target population with the 
condition, it is then possible to estimate population means for treatment and control 
outcome variables and hence the average treatment effect, for example. 

 

Acknowledgments 

The first author would like to thank Michael Kirsch and Harrison Greene of AIR and Peter 
Meyer, Nat Schenker, and Jennifer Parker of NCHS for the opportunity to visit NCHS on 
a regular part-time basis under an IPA arrangement during 2016-17. This led to several 
useful discussions in meetings on a related project with participants from the Division of 

3338



 
 

Research and Methodology at NCHS. An earlier version of this paper was presented in an 
invited session at AAPOR, 2016.  

Disclaimer 

The findings and conclusions in this paper are those of the authors and do not necessarily 
represent the views of the National Center for Health Statistics, Centers for Disease Control 
and Prevention. 

 

Appendix 

For the sake of completeness and convenience, we will briefly review the theory of 
variance estimation in survey sampling using notation common to the theory presented in 
this paper; for more details, see Raj (1968, Chapter 6) and Särndal, Swensson, and 
Wretman (1992, Chapters 4 and 9). For a probability sample 𝑠 of fixed size 𝑛 under the 
sampling design 𝜋 with first order and second order inclusion probabilities 𝜋𝑖, 𝜋𝑖𝑗 for units 
𝑖, 𝑗 ∈ 𝑈 where 𝑈 is the finite population of size 𝑁, we have  

∑ 𝜋𝑖𝑖∈𝑈 = 𝑛, ∑ 𝜋𝑖𝑗𝑗∈𝑈,𝑗≠𝑖 = (𝑛 − 1)𝜋𝑖   (A1) 

Let 𝛿𝑖∈𝑠 denotes the indicator of the event for a unit 𝑖 ∈ 𝑈 to be included in 𝑠, then 
∑ 𝛿𝑖∈𝑠𝑖∈𝑈 = 𝑛 , and therefore, 𝐸𝜋 (∑ 𝛿𝑖∈𝑠𝑖∈𝑈 ) =  ∑ 𝐸(𝛿𝑖∈𝑠)𝑖∈𝑈 = ∑ 𝜋𝑖𝑖∈𝑈  obtains the first 
part in (A1). For the second part, write 𝜋𝑖𝑗 as 𝜋𝑖 times the conditional probability 𝜋𝑗|𝑖. 
Now, it follows from the first part of (A1) that ∑ 𝜋𝑗𝑗∈𝑈∖{𝑖} = 𝑛 − 1. In the following we 
will assume that there is no nonresponse. 

 

A.1 Single Stage designs (without replacement) 

For a single stage probability sampling design without replacement, variance of the usual 
expansion (Horvitz-Thompson) estimator 𝑡𝑦(𝜋)(≡ ∑ 𝑦𝑖/𝑠 𝜋𝑖) of the population total 𝑇𝑦 
under 𝜋 is given by 

𝑉𝜋(𝑡𝑦(𝜋)) =  ∑ (1 − 𝜋𝑖)
𝑦𝑖

2

𝜋𝑖
𝑖∈𝑈 + ∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈  𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗)

𝑦𝑖𝑦𝑗

𝜋𝑖𝜋𝑗
 (A2) 

which can also be expressed in the Sen-Yates-Grundy form for fixed 𝑛 as 

𝑉𝜋(𝑡𝑦(𝜋)) =
1

2
∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗) (

𝑦𝑖

𝜋𝑖
−

𝑦𝑗

𝜋𝑗
)

2

  (A3) 

Above follows from the observation that 

1

2
∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗) (

𝑦𝑖
2

𝜋𝑖
2 +

𝑦𝑗
2

𝜋𝑗
2) = ∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗) 

𝑦𝑖
2

𝜋𝑖
2 

= ∑
𝑦𝑖

2

𝜋𝑖
(𝑛 − 𝜋𝑖)𝑖∈𝑈 −  ∑

𝑦𝑖
2

𝜋𝑖
2𝑖∈𝑈 ∑ 𝜋𝑖𝑗𝑗∈𝑈,𝑗≠𝑖   = ∑ 𝑦𝑖

2

𝜋𝑖
(1 − 𝜋𝑖)𝑖∈𝑈     (A4) 

An unbiased variance estimator is obtained from (A3) as 
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𝑣𝜋(𝑡𝑦(𝜋)) =
1

2
∑ ∑ (𝑗∈𝑠,𝑗≠𝑖𝑖∈𝑠 𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗)

1

𝜋𝑖𝑗
(

𝑦𝑖

𝜋𝑖
−

𝑦𝑗

𝜋𝑗
)

2

  (A5) 

In the case of simple random sampling (SRS) without replacement, 𝜋𝑖, 𝜋𝑖𝑗 are respectively 
given by 𝑛 𝑁⁄  and 𝑛(𝑛 − 1) 𝑁(𝑁 − 1)⁄ , which from (A5) yield the familiar estimator 

𝑣𝜋(𝑡𝑦(𝜋)) = 𝑁2 𝑁−𝑛

𝑁𝑛(𝑛−1)

1

2𝑛
∑ ∑ (𝑦𝑖 − 𝑦𝑗)2

𝑗∈𝑠,𝑗≠𝑖𝑖∈𝑠 = 𝑁2 𝑁−𝑛

𝑁𝑛(𝑛−1)
∑ (𝑦𝑖 − 𝑦̅)2

𝑖∈𝑠     (A6) 

in view of the wellknown identity ∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 =

1

2𝑛
∑ ∑ (𝑥𝑖 − 𝑥𝑗)2𝑛

 𝑗≠𝑖
𝑛
𝑖=1 . 

 

A.2 Single Stage designs (with replacement) 

If the design were with replacement with selection probability 𝑝𝑖 for a unit 𝑖 ∈ 𝑈 in any 
given draw, then the variance of the unbiased Hansen-Hurwitz estimator 𝑡𝑦(𝑝) 
(≡ (1 𝑛⁄ ) ∑ 𝑦𝑖 𝑝𝑖⁄𝑖∈𝑠 ) of  𝑇𝑦 has a much simpler formula and is given by  

𝑉𝑝(𝑡𝑦(𝑝)) =  
1

𝑛
∑ 𝑝𝑖  (

𝑦𝑖

𝑝𝑖
− 𝑇𝑦)

2

𝑖∈𝑈   (A7) 

which has an unbiased estimator given by  

𝑣𝑝(𝑡𝑦(𝑝)) =
1

𝑛(𝑛−1)
∑ (

𝑦𝑖

𝑝𝑖
− 𝑡𝑦(𝑝))

2

𝑖∈𝑠   (A8) 

Denoting 𝑛𝑝𝑖 as 𝜋𝑖, the estimator 𝑡𝑦(𝑝) has the same form as 𝑡𝑦(𝜋) which in terms of 
sampling weights is given by ∑ 𝑦𝑖𝑤𝑖𝑠  where 𝑤𝑖 =  𝜋𝑖

−1. An alternative convenient 
expression of its variance estimate (compare with (A5)) is given by  

𝑣𝑝(𝑡𝑦(𝑝)) =  
𝑛

(𝑛−1)
∑ (𝑦𝑖𝑤𝑖 − 𝑦𝑤̅̅ ̅̅ )2

𝑖∈𝑠   (A9) 

where 𝑦𝑤̅̅ ̅̅  denotes the simple sample average of 𝑦𝑖𝑤𝑖. For SRS with replacement, 𝑝𝑖 =

1/𝑁; and the formula (A9) reduces to the familiar formula 𝑁2 1

𝑛(𝑛−1)
∑ (𝑦𝑖 − 𝑦̅)2

𝑖∈𝑠  which 

is equal to (A6) without the finite population correction (𝑁 − 𝑛)/N.  

 

A.3 Two Stage Designs (without replacement of PSUs) 

Consider a two stage probability sampling design with 𝜋1 as the first stage design for 
selecting a sample 𝑠1 of 𝑛1 primary sampling units (PSUs), and 𝜋2 as the second stage 
design for selecting a sample of 𝑛2 elementary units. Suppose the properties of invariance 
and independence hold for the design. Invariance means that the design 𝜋2 is specified in 
advance at the design stage and does not depend on which PSUs get selected in the first 
stage sample 𝑠1, and, thus, is invariant to realized samples 𝑠1. Independence means that the 
selection of second stage units within PSUs is independent from PSU to PSU. Further 
suppose that given 𝜋1, we have unbiased estimates 𝑡𝑖 of totals 𝑇𝑖 for each selected PSU i 
with variance 𝜎𝑖

2. Now, an unbiased estimate 𝑡𝑦(𝜋1𝜋2) of the population total 𝑇𝑦 is easily 
obtained as 
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𝑡𝑦(𝜋1𝜋2) =  ∑
𝑡𝑖

𝜋1𝑖
𝑠1

    (A10) 

where 𝜋1𝑖 denote the first stage selection probabilities. Next, if the first stage design is 
without replacement of PSUs, a natural step to obtain an unbiased estimate of variance of 
𝑡𝑦(𝜋1𝜋2) is to consider expectation of the expression (A5) for the variance estimate 
𝑣𝜋1𝜋2

(𝑡𝑦(𝜋1𝜋2)) when 𝑦𝑖 is replaced by 𝑡𝑖 under the joint randomization 𝜋1𝜋2. Let 𝜋1𝑖𝑗 
denote the joint inclusion probabilities under 𝜋1 and observe that the variance of 𝑡𝑦(𝜋1𝜋2) 
of (A10) is given by 

𝑉𝜋1𝜋2
(∑

𝑡𝑖

𝜋1𝑖
𝑠1

) =  𝐸𝜋1
𝑉𝜋2

(∑
𝑡𝑖

𝜋1𝑖
𝑠1

) + 𝑉𝜋1
𝐸𝜋2

(∑
𝑡𝑖

𝜋1𝑖
𝑠1

)   (A11) 

where    𝐸𝜋1
𝑉𝜋2

(∑
𝑡𝑖

𝜋1𝑖
𝑠1

) =  𝐸𝜋1
(∑

𝜎𝑖
2

𝜋1𝑖
2𝑠1

) = ∑
𝜎𝑖

2

𝜋1𝑖
𝑈    (A12) 

and  from (A3), 

𝑉𝜋1
𝐸𝜋2

(∑
𝑡𝑖

𝜋1𝑖
𝑠1

) =  𝑉𝜋1
(∑

𝑇𝑖

𝜋1𝑖
𝑠1

) =  
1

2
∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 𝜋1𝑖𝜋1𝑗 − 𝜋1𝑖𝑗) (

𝑇𝑖

𝜋𝑖
−

𝑇𝑗

𝜋𝑗
)

2

  (A13) 

To estimate 𝑉𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)) unbiasedly, first consider a provisional estimator defined as  

𝑣́𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)) = 1

2
∑ ∑ (𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1

𝜋1𝑖𝜋1𝑗 − 𝜋1𝑖𝑗)
1

𝜋1𝑖𝑗
(

𝑡𝑖

𝜋1𝑖
−

𝑡𝑗

𝜋1𝑗
)

2

 (A14) 

We have, 𝐸𝜋1
𝐸𝜋2

(𝑣́𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2))) 

=𝐸𝜋1

1

2
∑ ∑ (𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1

𝜋1𝑖𝜋1𝑗 − 𝜋1𝑖𝑗)
1

𝜋1𝑖𝑗
{(

𝑇𝑖

𝜋1𝑖
−

𝑇𝑗

𝜋1𝑗
)

2

+ (
𝜎𝑖

2

𝜋1𝑖
2 +

𝜎𝑗
2

𝜋1𝑗
2 )}  

=𝑉𝜋1
(∑

𝑇𝑖

𝜋1𝑖
𝑠1

) +  
1

2
∑ ∑ (𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 𝜋1𝑖𝜋1𝑗 − 𝜋1𝑖𝑗) (

𝜎𝑖
2

𝜋1𝑖
2 +

𝜎𝑗
2

𝜋1𝑗
2 )  

=𝑉𝜋1
(∑

𝑇𝑖

𝜋1𝑖
𝑠1

) + ∑
𝜎𝑖

2

𝜋1𝑖
2𝑖∈𝑈 ∑ (𝑗∈𝑈,𝑗≠𝑖 𝜋1𝑖𝜋1𝑗 − 𝜋1𝑖𝑗).  

=𝑉𝜋1
(∑

𝑇𝑖

𝜋1𝑖
𝑠1

) + ∑
𝜎𝑖

2

𝜋1𝑖
2𝑖∈𝑈 {𝜋1𝑖(𝑛 − 𝜋1𝑖) − (𝑛 − 1)𝜋1𝑖}  

=𝑉𝜋1𝜋2
(∑

𝑡𝑖

𝜋1𝑖
𝑠1

) − ∑ 𝜎𝑖
2

𝑖∈𝑈 ,       (A15) 

which shows that the variance estimator 𝑣́𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)) underestimates 𝑣𝜋1𝜋2

(𝑡𝑦(𝜋1𝜋2)) 
by ∑ 𝜎𝑖

2
𝑖∈𝑈 . So with an unbiased estimator 𝜎̂𝑖

2 of 𝜎𝑖
2 under the second stage design, bias 

can be corrected by adding ∑
𝜎̂𝑖

2

𝜋1𝑖
𝑠1

  to 𝑣́𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)) to obtain an unbiased variance 

estimate as 

𝑣𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)) =  𝑣́𝜋1𝜋2

(𝑡𝑦(𝜋1𝜋2)) + ∑
𝜎̂𝑖

2

𝜋1𝑖
𝑠1

    .  (A16) 

 

A.4 Two Stage Designs (with replacement of PSUs) 
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Analogous to A.2, suppose the first stage sample of size 𝑛1 is with replacement of PSUs 
with draw by draw selection probability 𝑝1𝑖 (denote 𝑛1𝑝1𝑖 by 𝜋1𝑖), and the second stage is 
as in A.3 under design 𝜋2 satisfying invariance and independence. The point estimator has 
a form similar to (A10) given by 

𝑡𝑦(𝑝1𝜋2) =
1

𝑛1
 ∑

𝑡𝑖

𝑝1𝑖
𝑠1

= ∑
𝑡𝑖

𝜋1𝑖
𝑠1

  .  (A17) 

In this case,  𝐸𝑝1
𝑉𝜋2

(𝑡𝑦(𝑝1𝜋2)) = 𝐸𝑝1
(

1

𝑛1
2  ∑ ∑ 𝑝1𝑖

𝜎𝑖
2

𝑝1𝑖
2𝑈𝑠1

) = 1

𝑛1
∑

𝜎𝑖
2

𝑝1𝑖
𝑈  , 

and 𝑉𝑝1
𝐸𝜋2

(𝑡𝑦(𝑝1𝜋2)) =  𝑉𝑝1
(

1

𝑛1
 ∑

𝑇𝑖

𝑝1𝑖
𝑠1

) = 1

𝑛1
∑ 𝑝1𝑖  (

𝑇𝑖

𝑝1𝑖
− 𝑇𝑦)

2

𝑈 . 

Therefore,  

𝑉𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2)) =  

1

𝑛1
∑ 𝑝1𝑖  (

𝑇𝑖

𝑝1𝑖
− 𝑇𝑦)

2

𝑈 +  
1

𝑛1
∑

𝜎𝑖
2

𝑝1𝑖
𝑈    (A18) 

For variance estimation, denote 𝑤1𝑖 =  𝜋1𝑖
−1 , and similar to (A9), consider  

𝑣́𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2)) =  

𝑛1

(𝑛1−1)
∑ (𝑡𝑖𝑤1𝑖 − 𝑡𝑤1̅̅ ̅̅ ̅)2

𝑠1
 =  

1

𝑛1(𝑛1−1)
∑ (

𝑡𝑖

𝑝1𝑖
− 𝑡𝑦(𝑝1𝜋2))

2

𝑠1
 = 1

𝑛1(𝑛1−1)

1

2𝑛1
∑ ∑ (

𝑡𝑖

𝑝1𝑖
−

𝑡𝑗

𝑝1𝑗
)

2

𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1
 (A19) 

Now,  

𝐸𝑝1
𝐸𝜋2

(𝑣́𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2)))= 1

𝑛1(𝑛1−1)

1

2𝑛1
𝐸𝑝1

[∑ ∑ 𝐸𝜋2
(

𝑡𝑖

𝑝1𝑖
−

𝑡𝑗

𝑝1𝑗
)

2

𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1
] = 

1

𝑛1(𝑛1−1)

1

2𝑛1
𝐸𝑝1

[∑ ∑ {(
𝑇𝑖

𝑝1𝑖
−

𝑇𝑗

𝑝1𝑗
)

2

+ (
𝜎𝑖

2

𝑝1𝑖
2 +

𝜎𝑗
2

𝑝1𝑗
2 )}𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1

] =  

1

𝑛1(𝑛1−1)

1

2𝑛1
∑ ∑ 𝐸𝑝1

{(
𝑇𝑖

𝑝1𝑖
−

𝑇𝑗

𝑝1𝑗
)

2

+ (
𝜎𝑖

2

𝑝1𝑖
2 +

𝜎𝑗
2

𝑝1𝑗
2 )}𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1

 =  

1

𝑛1(𝑛1−1)

1

2𝑛1
∑ ∑ {2𝑉𝑝1

(
𝑇𝑖

𝑝1𝑖
) + 2 ∑

𝜎𝑖
2

𝑝1𝑖
𝑈 }𝑗∈𝑠1,𝑗≠𝑖𝑖∈𝑠1

 = 𝑉𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2))         (A20) 

It follows that 𝑣́𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2)) is unbiased for 𝑉𝑝1𝜋2

(𝑡𝑦(𝑝1𝜋2)) unlike the case of without 
replacement. In other words, the second stage variability in PSU estimates gets 
automatically embedded in the between PSU estimate variability. This is an amazing result 
in survey sampling that is commonly used in practice to obtain a convenient and 
conservative variance estimator. It is approximately valid whenever 𝑛1 ≪  𝑁1; i.e., the first 
stage sampling fraction is small, and in contrast to the without replacement case, does not 
require knowledge of second order inclusion probabilities 𝜋1𝑖𝑗 for the first stage (which 
are often unknown or tedious to compute), and also does not require estimates of second 
stage variances 𝜎𝑖

2 which may be difficult to estimate. Thus, for both first and second stage 
designs, only first order selection probabilities are needed for unbiased point estimation 
and for a simplified variance estimation. 
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A.5 Single and Two Phase Designs 

The designs considered so far were single phase in that the data collection on sampled units 
was performed only once at the final stage when there are two or more stages of selection. 
However, if data other than what are on the sampling frame are collected at both stages, 
then the design becomes two phase. Such designs are useful in practice when first phase 
information is used for second phase selection; e.g., first phase sample 𝑠1 is stratified before 
selection in the second phase. In such situations, the condition of invariance is of course 
not satisfied because the second phase sample 𝑠2 depends on what is observed in the first 
phase. However, if 𝑠2 is selected independently across PSUs given 𝑠1, then the condition 
of conditional independence is satisfied where conditional refers to given 𝑠1. As introduced 
by Singh (2008), it is sufficient to have conditional independence and unbiasedness of PSU 
total estimates from the second phase sample for the applicability of the simplified variance 
estimate 𝑣𝑝1𝜋2

(𝑡𝑦(𝑝1𝜋2)) as an approximation to 𝑣𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2)). In fact, the weaker 

condition of lack of correlation than the condition of independence is sufficient in practice 
for variance estimation. In other words, under suitable conditions, simplified single phase 
variance estimation can be used for two phase designs. However, if the second phase 
estimates 𝑡𝑖’s are conditionally unbiased but not conditionally independent, then it is easily 
shown that for the without replacement case in the first phase, 

𝐸𝜋1
𝐸𝜋2

(𝑣́𝜋1𝜋2
(𝑡𝑦(𝜋1𝜋2))) =  𝑉𝜋1𝜋2

(∑
𝑡𝑖

𝜋1𝑖
𝑠1

) − ∑ 𝜎𝑖
2

𝑖∈𝑈 −  ∑ ∑ 𝜎𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈   (A21) 

where 𝜎𝑖𝑗 is the conditional covariance between 𝑡𝑖 and 𝑡𝑗, and 𝑉𝜋1𝜋2
(∑

𝑡𝑖

𝜋1𝑖
𝑠1

) has an extra 

term ∑ ∑ 𝜋𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈
𝜎𝑖𝑗

𝜋1𝑖𝜋1𝑗
. However, the bias correction now has the additional term 

(− ∑ ∑ 𝜎𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 ). In the with replacement case for the first phase, we have 

𝐸𝑝1
𝐸𝜋2

(𝑣́𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2))) =  𝑉𝑝1𝜋2

(𝑡𝑦(𝑝1𝜋2)) −  ∑ ∑ 𝜎𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈  (A22) 

where  𝑉𝑝1𝜋2
(𝑡𝑦(𝑝1𝜋2)) now has an additional term (1 −

1

𝑛1
) ∑ ∑ 𝜎𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 . However, 

there was no bias before, but now it is (− ∑ ∑ 𝜎𝑖𝑗𝑗∈𝑈,𝑗≠𝑖𝑖∈𝑈 ).  
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Table I: Comparison of Prediction, Calibration Propensity, and iGREG 

Estimators  
 

( 𝐴𝑦 = 205.98, 𝑁̂𝑤∗
−1𝑡𝑦𝑤∗  = 205.97, 𝑛̃−1𝑡𝑦𝑢̃ =326.63, 𝑅 = 1000) 

 
 

Estimator Avg PE RB RRMSE 

GREG(𝒔̃) 

(Benchmark) 
205.81 -.0008 .016 

PRED (𝒔̃) 181.05 -.121 .124 

cPROP(𝒔̃) 𝒐𝒓 

iGREG (PM)-s∗ 
201.34 -.022 .026 

ixGREG 

(PMN-r)- s∗ 
209.93 .019 .04 
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