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Abstract
The recent tendency of growing cost and nonresponse of traditional randomized surveys and rapid

proliferation of web surveys and administrative data calls for developing a standard framework for
inferences from nonrandom data samples. Approaches relying either on a propensity score model or
on a predictive model of an outcome variable are overly sensitive to model assumptions. This paper
proposes to: (a) supplement an initial nonrandom sample with a reference random sample, having
missing detail target variables but containing core covariates shared with the nonrandom sample; (b)
define imputation classes using both propensity and prediction scores, and impute target variables
from the nonrandom to the random sample; and (c) use a delete-a-group version of the adjusted
jackknife variance estimator, proposed by Rao and Shao (1992) for imputed data. Since imputa-
tion classes are defined by both propensity and predictive models, the proposed framework exhibits
double-robust property against misspecification of either model. Reference samples, complete with
imputed data and jackknife replication weights, can be released to end-users as public use files, al-
lowing for any kind of inferences. The proposed paradigm for inferences from nonrandom samples
may legitimize their use in official statistics.

Key Words: nonrandom samples; propensity score; predictive model; imputation class; jackknife
with missing data.

Introduction

Rapid proliferation of surveys with opt-in online panels offers an expedient and relatively
inexpensive alternative to traditional surveys. The disadvantage is that opt-in samples are
not selected at random, and so, may not be representative of the general population. The dif-
ficulties of producing population estimates from web survey data were reported by Chmura
et al. (2013), DiSogra et al. (2011) and Dever et al. (2008).
The problem of bias correction of estimates from nonrandom samples has been previously
addressed in relation to estimation with missing data and in observational studies. Rosen-
baum and Rubin (1983) proposed to estimate the treatment effect in clinical trials condi-
tional on propensity scores derived for both treated and control patients from modeling
their probability to obtain a treatment. In the case of missing data, Kim and Kim (2007)
proved that propensity score adjustment (PSA) is asymptotically unbiased and consistent
if the response propensity model is correctly specified. This approach was discussed in
the application to web samples by Valliant and Dever (2011) and Lee and Valliant (2009).
Beresovsky (2016) gave a rigorous justification for using PSA in a context of nonrandom
and reference samples.
Imputation of missing data using a prediction model for a target variable, fitted on respon-
dents’ data, was proposed by Little and Rubin (1987) and has been widely used in survey
practice ever since. Rubin and Schenker (1986) demonstrated that proper accounting for
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additional variability of estimates associated with missing data requires multiple imputa-
tions by the means of the approximate Bayesian bootstrap.
Deville and Sarndal (1992) proposed a generalized calibration theory for the unified treat-
ment of post-stratification, raking, and a generalized regression estimator; see also Sarndal
(2007). Though it was initially proposed as a method to reduce the variance of the Horwitz-
Thomson estimator in the case of complete data, Sarndal and Lundstrom (2005) and Kott
(2006) demonstrated that it may be used to address missing data. Haziza and Lesage (2016)
demonstrated that compared with one-step calibration, in some cases the two-step proce-
dure, using PSA on the first step to model the nonresponse mechanism and generalized
calibration on the second step, is more flexible and effective at eliminating potential bias
due to model misspecification.
All the described methods use either a response or a prediction model for bias reduction.
Bethlehem (1988), who considered post-stratification nonresponse adjustment for bias cor-
rection, realized that nonresponse bias adjustment becomes more robust when both models
are employed. He concluded that “The stratification should be done in such a way that
strata are homogeneous with respect to the target variable (thus decreasing the variance
and bias) and with respect to the response probabilities (thus decreasing bias).” This idea
was reiterated in a review paper by Brick (2013) and used in simulations by Leacy and
Stuart (2014) to estimate treatment effect in observational studies.
This paper proposes the imputation classes framework, which allows to employ both re-
sponse and prediction models for making inferences from a nonrandom sample. Very
similar double robust imputation classes estimator was proposed for missing data prob-
lem by Haziza and Beaumont (2007), who used prediction and response models to justify
the proposed estimator. This paper is different because it explicitly assumes imputation
classes model, proposes estimator applicable for both missing data and nonrandom sample
problems and proves unbiasedness of the adopted variance estimator. In Section 1, the
inferential methodology, which is developed for the missing data problem, is systemati-
cally extended to any nonrandom sample problem, such as web samples. Expressions for
bias and variance of point estimator under hot-deck imputation within designated classes
explains its double robustness against either model misspecification and justifies appli-
cation of the delete-a-group extension of the adjusted jackknife of Rao and Shao (1992)
for variance estimation. In Section 2 these ideas are applied for estimating means, medi-
ans and their variances in simple simulations involving predetermined imputation classes.
Section 3 describes a more sophisticated simulation study where imputation classes are de-
fined using propensity and prediction models. Dramatic improvement in bias reduction is
demonstrated when imputation classes are formed as the intersection of imputation classes
defined by both models. In conclusion, this paper summarizes the benefits of employing
imputation classes for inferences from nonrandom samples and outlines subjects for future
research. Note: Due to limited size of a proceedings paper, some expressions are given
without proofs. The author will be happy to supply them via email.

1. Inferences from nonrandom samples within imputation classes framework

1.1 From point estimation with missing data to estimation with nonrandom web
samples. Bias and double robustness.

Consider estimation of a population mean from a simple random sample sr of size nr
with some of the observations missing due to unit nonresponse. The proposed imputation
classes estimator is based on the idea of dividing the sample by imputation classes Aν and
imputing missing values within each class as
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ȳI =
1

nr

∑
ν

∑
i∈Aν

(δνiyrνi + (1− δνi) y∗mνi) (1.1)

where yrvi, y∗mvi are responding and imputed units in class Aν and δνi are response indica-
tors. In principle, imputation classes may be defined by prediction and propensity models
utilizing covariates X , with the goal to have residuals of both models to be randomly dis-
tributed with minimal variances within these classes

yrνi = µrν + εrνi, εrνi ∼
(
0, σ2rν

)
(1.2a)

y∗νmi = µ∗mν + εmνi, εmνi ∼
(
0, σ2mν

)
(1.2b)

δi ∼ Bernoulli (pνi) , pνi = pν + εpνi, ενi ∼
(
0, σ2pν

)
(1.2c)

Under the imputation class model (1.2a-c) the bias of the estimator (1.1) conditional on the
responders data yrvi can be found as

Bias [ȳI |yr] =
1

nr

∑
ν

∑
i∈ν

E ((1− δνi)y∗mνi)− (1− pv)µ∗mν =

− 1

nr

∑
ν
nrν cov (pνi, y

∗
mi) (1.3)

where nrν is the size of an imputation class ν.
Bias due to correlation between stochastic residuals of the imputation and response models
within imputation classes is similar to biases of post-stratification and calibration estima-
tors obtained byBethlehem (1988), Sarndal and Lundstrom (2005) and Haziza and Lesage
(2016). It can be eliminated, in principle, by optimal utilization of covariates X for proper
selection of imputation classes, for which either one (or both) of the residuals εmνi , εpνi
in expressions (1.2b-c) are independent random variables. This is another way to say that
estimator (1.1) is double robust against misspecification of either one of these models.
However, expression for bias (1.3) replaces exact requirements of (1.2b-c) with less strin-
gent quantifiable condition.
To extend the concept of the imputation classes estimator (1.1) to estimation from non-
random samples such as those collected from web surveys, this paper follows Beresovsky
(2016) and considers two samples: reference simple random sample sr of size nr with com-
plete nonresponse and nonrandom sample sw with all units responding. In the context of
the combined sample s = sw ∪ sr, units of sw and sr samples are treated as “respondents”
and “nonrespondents”. Using the same notation as above, the imputation classes estimator
of the population mean is

ȳwI =
1

nr

∑
ν

∑
i∈Aν

(1− δνi) y∗mνi (1.4)

This estimator is very similar to expression (1.1), except that it includes only contributions
from the “nonresponding” units of the reference sample sr, which must be imputed within
designated imputation classes from the “responding” nonrandom sample sw. Since it has
the same bias (1.3), everything said in case of nonresponse about double robustness and
proper selection of imputation classes is applicable for estimator (1.4). Details of fitting a
response propensity model using combined sample s are discussed by Beresovsky (2016).
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1.2 Variance of point estimator under hot deck imputation within imputation classes

Following the approach of Rao and Shao (1992), the estimators of population mean with
imputed data, either from random samples with missing data or from nonrandom samples
are

ȳI =
1

n

∑
ν

(rν ȳrν +mν ȳ
∗
mν) =

1

n

∑
ν

nν ȳIν (1.5a)

ȳwI =
1

nr

∑
ν

mν ȳ
∗
mν (1.5b)

Here ȳrν and ȳ∗mν are the means of target variable for responding and imputed values for an
imputation class ν. For nonresponse, nν , rν andmν = nν−rν are the size, and numbers of
respondents and missing units for a class. In case of estimation from nonrandom samples,
mν = nν and rν are the numbers of units in the reference random and nonrandom samples.
To proceed with variance estimation, let’s assume that imputed data is either drawn from
respondents using hot deck imputation or generated with parametric model (1.2b) within
imputation classes. In both cases, expectation and variance of ȳ∗mν estimated conditionally
on responding data Arν are

E (ȳ∗mν |Arν) = µrν , V (ȳ∗mν |Arν) =
σ2rν
mν

(1.6)

The variance of the estimators (1.5a-b), calculated using variance decomposition formula,
ultimately depends on the variance of respondents σ2rν = E

[
s2rν
]

and the numbers of
respondents rν and nonrespondents mν within imputation classes

V (ȳI) = V [E (ȳI |Ar)] + E [Vr (ȳI |Ar)] ≈
1

n2

∑
ν

nνσ
2
rν

(
nν
rν

+
mν

nν

)
(1.7a)

V (ȳwI ) ≈ 1

n2r

∑
ν

mνσ
2
rν

(
mν

rν
+ 1

)
(1.7b)

Expressions in brackets in (1.7a-b) are greater than 1 and indicate variance increase due to
imputation, compared with naive variances, treating all data as responders.

1.3 Adjusted jackknife variance estimation for simple random samples under hot
deck imputation

Expression for the naive jackknife variance estimator of the imputation classes estimator
(1.5a), ignoring the imputation of missing data, is given by

vj (ȳI) =
1

n2

∑
ν

nν − 1

nν

∑
j∈ν

(yIν (−j)− yIν)2 (1.8)

where yIν (−j) are estimates resulting from removing one responding or missing unit from
either Arν or Amν

yIν (−j) =

{
(nν − 1)−1 {nν ȳIν − yj} , (j ∈ Arν)

(nν − 1)−1
{
nν ȳIν − y∗j

}
, (j ∈ Amν)

(1.9)
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In the case of imputation from nonrandom samples, only missing units need to be deleted
from the imputation classes Amν of the reference random sample (correspondingly, nν
must be replaced with mν in (1.8) )

yIν (−j) = (mν − 1)−1
{
mν ȳ

∗
mν − y∗j

}
, (j ∈ Amν) (1.10)

Burns (1990) and Rao and Shao (1992) have noted previuosly that this estimator underes-
timates the variance (1.7a-b) because it does not properly account for variability associated
with imputation. Rao and Shao (1992) proposed an adjustment to compensate for this de-
ficiency. In case of the imputation classes estimator with missing data, their adjustment
results in adding an extra term to expression (1.9)

yaIν (−j) =

{
(nν − 1)−1 {nν ȳIν − yj −mν(yj − ȳrν)/(rν − 1)} , (j ∈ Arν)

(nν − 1)−1
{
nν ȳIν − y∗j

}
, (j ∈ Amν)

(1.11)

Similar adjustment in case of imputation from nonrandom samples implies, that, in contrast
to expression (1.10), sampled units must be deleted from both Amν and Arν

yαIν (−j) =

{
(mν − 1)−1 {−mv(yνj − ȳrν)/(rν − 1) } , (j ∈ Arν)

(mν − 1)−1
{
mν ȳ

∗
mν − y∗νj

}
, (j ∈ Amν)

(1.12)

In expression (1.12), yαIν (−j) fluctuates around 0 when j ∈ Arν . Consequently, it must be
assumed that yIν = 0 for the terms of expression (1.8) corresponding to the deleted units
from the donor nonrandom sample. However, the normalizing constant must still use the
sizes of imputation classes mν of the recipient reference random sample.
It can be proved that expectations over the model (1.2a-b) of the adjusted jackknife vari-
ance estimators for both missing data and nonrandom sample problems, are equal to the
variances (1.7a-b) of the imputation class estimators (1.5a-b). The proof requires equality
of variances of responding and imputed data σ2mν = σ2rν within imputation classes and
large numbers of responding and imputed units (rν � 1, mν � 1).

1.4 Delete-a-group modification to Rao-Shao adjusted jackknife variance estimator
for weighted samples

Application of the adjusted jackknife variance estimator is not limited to simple random
samples and delete-a-unit scenarios. Rao and Shao (1992) proved consistency of such an
estimator in case of stratified multistage sampling when missing individual units were im-
puted to first-stage units (or clusters) using weighted hot deck imputation. In this case
first-stage units were removed from the strata from which they were sampled. Rao and
Shao (1992) extended their analysis to hot deck imputation within designated imputation
classes. Following their example, this paper will show that a delete-a-group version of
their estimator may be easily applied for variance estimation of the imputation class es-
timators of population mean when sampled units are selected with different probabilities.
The weighted imputation classes estimator of the population mean with imputed data is

ȳI =
1

N

∑
ν

( ∑
i∈Arν

wiyri +
∑
i∈Amν

wiy
∗
mi

)
=

1

N

∑
ν

(
Ŝrν + Ŝ∗mν

)
=

1

N

∑
ν
yIν

(1.13)
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When all units of a reference random sample are imputed from a nonrandom sample, this
expression requires only summation over the imputed units Amν . Population size N is
assumed known.
Allowing that both respondents and imputed units are randomly split by G groups within
each imputation class, the adjusted jackknife formula for variance estimation becomes

vj (ȳI) =
1

N2

G∑
g=1

G− 1

G

(∑
ν
yaIν (−g)− yIν

)2
(1.14)

According to the standard jackknife theory, yaIν (−g) is an estimator of total if a group g is
removed. Additional variability due to imputation is accounted by a term, proportional to
the difference of means of responders within imputation classes, having the group g either
included or excluded

yαIν (−g) = Ŝrν(g) + Ŝ∗mν(g) +

(
Ŝrν(g)

T̂rν(g)
− Ŝrν

T̂rν

)
T̂mν(g) (1.15)

The terms of this expression are obtained by deleting the group g from summations over
the sampled units

Ŝrν(g) =
G

G− 1

∑
i∈Arν ,i/∈g

wgiygi =
G

G− 1

(
Ŝrν − Ŝrνg

)
;

T̂rν(g) =
G

G− 1

∑
i∈Arν ,i/∈g

wgi =
G

G− 1

(
T̂rν − T̂rνg

)
;

T̂mν(g) =
G

G− 1

∑
i∈Amν ,i/∈g

wgi =
G

G− 1

(
T̂mν − T̂mg

)
;

Ŝ∗mν(g) =
G

G− 1

∑
i∈Amν ,i/∈g

wgiy
∗
gi =

G

G− 1

(
Ŝ∗mν − Ŝ∗mνg

)
; (1.16)

It can be proved that the expectation of the variance estimator ( 1.14- 1.16) over the impu-
tation class model (1.2a-b) results in the following variances of the estimates of the popu-
lation mean with imputed data for random samples with unit nonresponse and nonrandom
samples

E [vj ] = 1
N2

∑
ν

{
σ2rν

T̂ 2
ν

T̂rν
+ T̂mνσ

2
mν

}
(1.17a)

E
[
vwj

]
= 1

N2

∑
ν

{
σ2rν

T̂ 2
mν

T̂rν
+ T̂mνσ

2
mν

}
(1.17b)

Here T̂ν = T̂rν + T̂mν =
∑

i∈ν wi are the weighted population sizes of imputation classes.
The proof of (1.17a-b) assumes that population sizes of the deleted groups of the responding
and imputed units are approximately equal to mean group sizes within imputation classes:
T̂rνg ≈ T̂rν/G, T̂mνg ≈ T̂mν/G. The approximation holds if group sizes are not too small
and if deleted groups are randomly selected, so sampling weights are uncorrelated with
group assignment.
The expressions (1.17a-b) are exactly equal to variances (1.7a-b) in case of simple random
sample if estimated population counts are substituted with the corresponding sample sizes:
N → n, T̂ν → nν , T̂rν → rν , T̂mν → mν
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2. Bias reduction and adjusted jackknife variance estimation in case of deterministic
imputation classes

A simulations study was conducted to demonstrate application of the imputation classes
estimator for inferences of population mean and median from nonrandom samples. The re-
sults presented here highlight reduction of bias depending on choice of imputation classes
and application of adjusted jackknife for variance estimation.
Each unit of the simulated population of sizeN = 10, 000 is characterized by random vari-
ables (U,X, Y ). U ∼ Unif (0, 1) is uniform random variable, which is considered unob-
served. Observed categorical variableX ∈ (1, 2, 3, 4) corresponds to quartiles of the distri-
bution ofU . Target variable Y is normally distributed Y (x) ∼ N

(
µx, σ

2
x

)
within strata de-

fined by X . Means and variances of normal distributions were set to µx = (10, 12, 20, 22)
and σ2x = (4, 9, 16, 25). The target variable mean averaged over the simulated populations
is Ȳ = 15.7 and the median is Y m = 14.8.
For each of the conducted 2, 000 simulations, two samples of size n = 1, 000 were drawn
from the population. One is a simple random sample sr, representing reference sample with
known sampling weights and unknown target variable, as discussed in Section 1.1. The sec-
ond is a stratified random sample sw with sample counts nwx = (100, 400, 100, 400) within
X strata. This sample is referred as nonrandom, because the correspondence between sam-
pled and population units by strata is considered unavailable for a sampler, while the target
variable Y is observed.
Imputation class estimation described in Section 1 may be applied in the following steps:
(1) determine how to designate imputation classes spanning the recipient random sr and
donor nonrandom sw samples; (2) within each class impute the target variable y from
the donor to the recipient sample by either deterministic imputation, or random hot deck
or parametric imputation; (3) calculate population characteristics using available weights
for the reference sample and the imputed values of y; and (4) if delete-a-group adjusted
jackknife is used for variance estimation, randomly designate G delete groups within im-
putation classes of both samples and estimate variance using formula (1.14).
Success of inference from nonrandom samples ultimately depends on assignment of the
imputation classes, which is usually based on a prediction model for Y and/or a propensity
model for the nonrandom sample inclusion indicator. The bias of estimates can be elimi-
nated or reduced if either one of the models is correct (or approximately correct). This is
demonstrated by comparing two estimators based on different sets of imputation classes.
The first set of imputation classes is constructed by considering only the prediction model
for Y conditional on X . Since µx is clustered for X = 1, 2 and X = 3, 4, suppose that
the prediction model was unable to differentiate between all four population strata. Instead,
it came up with just two imputation classes νy|x = (ν1y, ν2y), where ν1y = X (1, 2) and
ν2y = X (3, 4). This set of imputation classes is referred as ClassY.
Another set of classes takes into account both prediction and propensity models, which
reflects stratification of nonrandom sample nwx . Propensity-based imputation classes are
νp|x = (ν1p, ν2p), where ν1p = X (1, 3) and ν2p = X (2, 4). Cross-classification νy|x×νp|x
results in imputation classes matching stratification by the observed covariate X and will
be referred to as ClassYP.
Inferences were conducted for deterministic imputation of the predicted mean µ̂ν for all
units of an imputation class, hot deck imputation Y hd∗

ν and parametric random imputation
Y p∗
ν assuming normality and using estimated means µ̂ν and variances σ̂2ν within imputation

classes.
Variances of the estimates of means and medians were calculated directly over the sim-
ulations and estimated using delete-a-group adjusted jackknife variance estimation (1.14)
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and (1.15) with G = 10 delete groups. They were compared with hypothetical variances
of trivial SRS estimates from the random sample sr, if the target variable Y would be
observed. These results, as well as coverage of the finite population parameters by the
estimated confidence intervals are presented in Table 1 for imputation classes ClassY and
ClassYP.

Table 1: Inferences of the population mean ̂̄Y and median Ŷ m using imputation classes ClassY
and ClassYP. Presented results include relative bias; ratio of variances of estimates from nonrandom
and random samples sw and sr over the simulations, if Y would be known for sr; ratio of the
estimated variance to the variance of estimates; and coverage of the population parameter by the
calculated confidence intervals.

Estimate Mean ̂̄Y Median Ŷ m

Imputation µ̂ν Y hd∗
ν Y p∗

ν µ̂ν Y hd∗
ν Y p∗

ν

ClassY

Relative bias 0.036 0.036 0.036 0.086 0.038 0.034
Var (sw) /Var (sr) 1.05 1.40 1.50 224 1.33 1.16
V̂ar (sw) /Var (sw) 1.09 1.13 1.05 4.72 1.20 1.12

Coverage 0.15 0.26 0.27 0.37 0.67 0.67

ClassYP

Relative bias 0.0 0.0 0.0 0.088 0.0 0.0
Var (sw) /Var (sr) 1.12 1.46 1.46 127 1.42 1.35
V̂ar (sw) /Var (sw) 1.09 1.42 1.42 4.9 1.29 1.17

Coverage 0.93 0.93 0.93 0.37 0.92 0.90

Biases of estimates of both means and medians are ≈ 0.035 for ClassY and negligible for
ClassYP. Because variances of the estimates are also small for the discussed simulations,
even small bias results in incorrect inferences about the population parameters by ClassY
estimators.
Unbiased estimates with imputation classes ClassYP may be attributed to both prediction
and propensity models being exactly correct, see expression (1.3), which is an artifact of the
setup of these simulations. Relevance of the obtained results for more general settings was
demonstrated by modifying simulated final population, so even for the imputation classes
ClassYP both models remain incorrectly specified. This is achieved by introducing explicit
dependence on the unobserved variable U of both Y (x, u) ∼ N

(
µx + 3u, σ2x

)
and non-

random sample selection probability logit (p (u)) = −5 + 5u within the original strata nwx .
Nonzero bias of the estimates with imputation classes ClassY for the new population leads
to insufficient coverage of≈ 0.2 for the means and≈ 0.45 for the medians. Estimates with
imputation classes ClassYP were more robust to models misspecification, acquiring only
small relative bias RB ≈ 0.01 with relatively minor coverage reduction of ≈ 0.9 compared
with nominal value 0.95.
Imputation of the predicted mean µ̂ν within imputation classes provides for more efficient
estimation of the population mean ̂̄Y compared with hot deck Y hd∗

ν or parametric Y p∗
ν

imputations, leading to variance reduction of 35-40%. However, the estimates of the pop-
ulation median Ŷ m become unstable when an identical value of µ̂ν is imputed for all units
of an imputation class. Hot deck and parametric imputations perform equally well for both
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estimates of means and medians.
Though the sizes of the random recipient and nonrandom donor samples sr and sw are
both equal to n = 1, 000, variances of the imputation classes estimates are 16-50% larger
than presumptive estimates from sr, if the target variable Y would be directly observed
rather than imputed. This agrees with the general expressions (1.7a-b) for the variance of
estimates with imputed data. Average estimated variances of the estimators of means and
medians with delete-a-group adjusted jackknife variance estimator were sufficiently close
to variances of estimates over the simulations. Regarding imputation classes ClassYP,
when the point estimator was also unbiased, the coverage of the population parameters by
the estimated confidence intervals was sufficiently close to nominal.

3. Bias reduction with estimates using model-defined imputation classes

Another set of simulations was designed to investigate how effective imputation classes
estimators could be for reducing bias of estimates from nonrandom samples, when imputa-
tion classes are inferred dynamically from results of prediction and propensity models.
The idea for the simulated population comes from the simulations of Kang and Schafer
(2007). General finite population Ur of size N = 15, 000 was generated with four ran-
dom variables (U1, U2, U3, U4), which are identically normally distributed N (0, 1) and
considered unobserved. For each population unit these covariates define the mean of the
target variable Y and the probability pw to belong to the subpopulation Uw, from which the
nonrandom sample sw with observed target variable can be drawn

Y ∼ N
(
50 + 27.4U1 + 13.7U2 + 13.7U3 + 13.7U4, σ

2
Y

)
(3.1a)

logit (pw) = −1 + U1 − 0.5U2 + 0.25U3 + 0.1U4 (3.1b)

For these simulations the variance associated with the target variable was σ2Y = 100.
As Kang and Schafer (2007) discussed, this paper presumes that the observed population
covariates (X1, X2, X3, X4) are intractable nonlinear functions of the unobserved covari-
ates. However, for these simulations we introduced additional variability associated with
covariate measurement error εu

Ũ1,..,4 = U1,..,4 + εu, εu ∼ N
(
0, σ2u

)
(3.2a)

X1 = exp(Ũ1/2) (3.2b)

X2 =
Ũ2

1 + exp(Ũ1)
+ 10 (3.2c)

X3 =
(
Ũ1Ũ3/25 + 0.6

)3
(3.2d)

X4 =
(
Ũ2 + Ũ4 + 20

)2
(3.2e)

For each of the conducted 500 simulations, reference random sample sr of size nr = 2, 000
was drawn without replacement from the general population Ur with probability pr propor-
tional to the measure of size, equal to the observed covariate X1i. Design based estimates
of population parameters with weights wri = 1/pri would be unbiased, however the target
variable Y is considered unavailable for the units of sr.
A simple random sample sw of size nw = 600 is drawn from the subpopulation Uw. The
target variable Y is considered available for sw, but its distribution is expected to differ
between the general population Ur and subpopulation Uw due to mutual dependence of the
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probability pw (3.1b) and the target variable Y (3.1a) on the unobserved covariates U1..4.
Consequently, estimation of parameters of the general population Ur requires model-based
methods utilizing data of both random and nonrandom samples. Any model using the
observed covariates X1..4 will always be misspecified, since the true population models
(3.1a-b) depend on the unobserved covariates U1..4. The utility of the observed covariates
X1..4 for bias reduction is strongly affected by a single parameter- the random noise vari-
ance σ2u.
Parameters of the linear model LM.Y E (Y w

i ) = Xw
ijβ

w
j , j = 1, ..4 were estimated with

the nonrandom sample sw data and used to predict the target variable Y LM.pred
i = Xr

ij β̂
w
j for

the units of the random sample sr. These predictions were used in the Horwitz-Tompson

estimator of the population mean ̂̄Y pred
LM.y =

∑
i∈sr Y

LM.pred
i wri/N utilizing available ran-

domization weights wri.
Predicted scores Y LM.pred

i for both sr and sw were used to define imputation classes of
the estimators (1.13). The target variable Y LM.imp5

i was imputed by unweighted hot deck
from the nonrandom sample sw to the random sample sr within quintiles of these distribu-
tions. The regular Horwitz-Thompson estimator using the imputed values and randomiza-

tion weights can be defined as ̂̄Y imp5
LM.y =

∑
i∈sr Y

LM.imp5
i wri/N .

Another group of estimates utilizes the propensity (3.1b) to belong to the subpopulation
Uw. Estimating pw is problematic because subpopulation Uw is unavailable. (Beresovsky
(2016)) described the details of estimating propensity using random and nonrandom sam-
ples sr and sw instead of populations Ur and Uw. However, a propensity model utilizing
the observed covariates X1..4 is expected to be misspecified.
Propensity score p̂wi estimated for the units of the nonrandom sample can be used for esti-
mating the target variable mean by the traditional propensity score adjusted (PSA) expan-

sion estimator ̂̄Y PSA
LM.p =

∑
i∈sw (Yi/p̂wi)/

∑
i∈sw (1/p̂wi)/nw. Since response propensity

is expected to be relatively homogeneous within quintiles of the distribution of the pre-
dicted propensity score, they may be used to define imputation classes of the estimator̂̄Y imp5

LM.p. It uses the Horwitz-Thompson estimator with hot deck-imputed target variable Y

similarly to the estimator ̂̄Y imp5
LM.y.

Randomization weights wr played dual role for the propensity model-based estimators.
First, they were used by the logistic regression model to estimate p̂wi. Second, imputation
classes for the random sample sr were defined by weighted quantiles of the distribution
of p̂wi, with weights equal to the inverse sampling weights 1/wr. Within these quantiles
unweighted hot deck was used for imputation because units of the nonrandom sample sw
are not associated with sampling weights. Rao and Shao (1992) proposed to account for
randomization weights by using weighted hot deck, under which probability of selecting
a donor is proportional to its sample weight, however this leaves open the question of ad-
dressing the weights of recipients. Platek and Gray (1983) proposed to account for donor
and recipient weights by using unweighted hot deck but imputing target variable modified
by weights yimpi = ydj

(
wdj /w

imp
i

)
.

Though the author of this paper doesn’t have a rigorous justification for accounting for the
recipients’ sampling weights in the implemented imputation procedure, simulation results
indicated that imputation within classes defined by the weighted quantiles of the propensity
score p̂wi were optimal for bias reduction for this simulation.
Imputation classes based on the quintiles and deciles of the predicted score Y LM.pred

i and
weighted propensity score p̂wi were crossed to produce a new set of imputation classes.
Some of the resulting classes had small, or even zero, number of donor units. To ensure
stability of hot deck imputation, neighboring classes were collapsed until their aggregated
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size exceeded 10 donor units using a procedure based on a distance between classes. The
distance was defined as a dimensionless measure aggregating prediction and propensity
scores averaged within each class.
Hot deck was used to impute the target variable from the nonrandom sample sw to the
random sample sr within the combined and aggregated classes. Horwitz-Thompson esti-

mators ̂̄Y imp5
LM.yp and ̂̄Y imp10

LM.yp used the imputed values and the randomization weights wr for
estimating the general population mean.
Linear models may not be the optimal choice for estimation in this case because the ob-
served covariates X1..4 are highly nonlinear functions of the unobserved covariates Ũ1,..,4

(3.2a-e) associated with the true population characteristics. Therefore, this study used non-
parametric recursive partitioning for classification and regression trees, implemented by the
R package rpart. Recursive tree methods use covariates to partition sample data by nodes
of relative homogeneity of a target variable. In this case, the terminal nodes of the trees
resulting from modeling the target variable Y and response propensity pw are ready-made
for defining imputation classes for both the nonrandom and random samples. The Horwitz-
Thompson estimator is then used to compute population mean with imputed Y and known

sampling weights wri. Estimators ̂̄Y pred
rpart.y and ̂̄Y pred

rpart.p used predicted mean within classes

defined by models of the target variable Y and response propensity pw. Estimator ̂̄Y imp
rpart.yp

used hot deck imputation within classes defined by intersection of the terminal nodes pro-
duced by both prediction and propensity models.
Relative bias (RB), standard deviation (SD) and root mean square error (RMSE) of the es-
timates of mean of the general population Ur by different estimation methods are shown in
Table 2. The variance of the covariate measurement error σ2u (3.2a) indicates the degree of
misspecification of a model using the observed covariates X1..4.

Table 2: Relative bias, standard deviation and root mean square error of the estimates of mean
of the general population Ur by linear and logistic models, and recursive tree R package rpart.
Estimates are using predicted target variable Y , PSA and hot deck imputation within imputation
classes. σ2

u is the variance of the covariate measurement error (3.2a-e).

Estimator ̂̄Y pred
LM.y

̂̄Y imp5
LM.y

̂̄Y PSA
LM.p

̂̄Y imp5
LM.p

̂̄Y imp5
LM.yp

̂̄Y imp10
LM.yp

̂̄Y pred
rpart.y

̂̄Y pred
rpart.p

̂̄Y imp
rpart.yp

σ2u = 0.04

RB 0.132 0.103 0.087 0.052 0.046 0.015 0.086 0.061 0.049
SD 1.31 1.63 1.33 1.99 1.70 1.60 1.66 2.51 2.21

RMSE 6.72 5.36 4.50 3.24 2.84 2.51 4.59 3.93 3.27

σ2u = 0.64

RB 0.204 0.127 0.172 0.101 0.051 0.029 0.188 0.146 0.138
SD 1.46 1.92 1.43 2.61 2.28 2.78 1.76 2.02 1.87

RMSE 10.28 6.61 8.66 5.66 3.41 3.13 9.56 7.56 7.15

σ2u = 4

RB 0.261 0.172 0.245 0.190 0.061 0.037 0.419 0.233 0.228
SD 1.56 2.39 1.54 4.83 4.19 4.45 2.65 1.88 2.31

RMSE 13.15 8.92 12.34 10.65 5.16 4.81 21.08 11.80 11.62

Analysis of estimates by different methods suggests the following conclusions.

• Estimators ̂̄Y imp10
LM.yp and ̂̄Y imp5

LM.yp, using hot deck imputation within imputation classes
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produced by both prediction and propensity linear models, have much smaller bias
and RMSE compared with other estimates. Their robustness is particularly impres-
sive for strongly misspecified models (large σ2u).

• Conventional estimator ̂̄Y pred
LM.y, using predicted Y LM.pred

i , has a larger bias and RMSE,

but smaller SD than ̂̄Y imp5
LM.y, which uses hot deck imputation within quintiles defined

by the same prediction model. The same could be observed for the conventional

PSA estimator ̂̄Y PSA
LM.p and ̂̄Y imp5

LM.p, using hot deck imputation within quintiles based
on the same propensity model. It seems that estimates using hot deck imputation
within model-defined classes are more robust to model misspecification than esti-
mates based on model predictions. This added robustness comes at the expense of
larger variance.

• Hot deck estimator ̂̄Y imp5
LM.yp within quintiles of both models is more robust (smaller

bias and RMSE) than hot deck estimators ̂̄Y imp5
LM.p and ̂̄Y imp5

LM.y within quintiles of either
one of the models. This leads to the conclusion that combining imputation classes
improves robustness of estimates, but may introduce larger variance.

• Estimators based on recursive tree models outperform those based on linear models
when observed covariates are strongly correlated with studied population character-
istic and response propensity (small σ2u). The opposite is true for weak observed

covariates, when estimator ̂̄Y pred
rpart.y becomes completely unstable.

4. Two is better than one: - Robustness of estimators using hot deck within
combined imputation classes defined by linear models

The imputation classes estimator provides a simple way to account simultaneously for pre-
dictive and propensity models by using imputation classes defined by both models. This
can reduce bias of the imputation classes estimator (1.3) by making residuals of both mod-
els more homogeneous and less correlated within the combined classes.
Percent bias reduction by a given model-based estimator Ŷmod measures how much of the
original bias of the direct estimator from a nonrandom sample Ŷdir is eliminated by using
model adjustment

BR
(
Ŷmod

)
=
Ŷdir − Ŷmod

Ŷdir − Ypop
100% (4.1)

Figure 1 shows dependence of BR on the covariate measurement error ( 3.2a) for two con-
ventional estimators of the mean and two proposed imputation classes estimators utilizing
quintiles and deciles of both prediction and propensity linear models. The covariate er-
ror quantifies a degree of a model misspecification. Imputation classes estimators utilizing
both models are more robust than conventional estimators to model misspecification based
on any one model. Their advantage becomes particularly clear for strongly misspecified
models. Table 2 shows that enhanced robustness comes with a price of larger variability of
estimates, but this tradeoff may be worthwhile, if large nonrandom samples will be readily
available from web surveys or administrative data and bias of estimates will become of
greater concern.
Demonstrated remarkable robustness of imputation classes estimators motivates more re-
search of using double robust imputation estimators from nonrandom samples data. Two
issues require further exploration. First, clarity is needed for accounting for donors and
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Figure 1: Percent bias reduction (BR) as a function of the standard deviation of the co-
variates measurement error

√
σ2u for selected conventional and double robust estimators:

◦ − ̂̄Y pred
LM.y ,• − ̂̄Y PSA

LM.p, �− ̂̄Y imp5
LM.yp, �− ̂̄Y imp10

LM.yp .

recipients weights in hot deck imputation between weighted samples. Results of these
simulations show that using imputation classes defined by properly weighted quantiles on
a recipient side made a big difference for bias reduction comparing to using unweighted
quantiles. Weighted hot deck discussed by Rao and Shao (1992) does not take a recipient’s
weight into consideration. Platek and Gray (1983) accounted for these weights by imputing
modified values proportional to a donor weight and inverse of a recipient weight. This may
be acceptable for imputation of continuous variables, but not for binary variables.
The second issue, is how to account for correlation between a target variable and propen-
sity to belong to a nonrandom sample within unified optimization approach, instead of
modeling them separately and then crossing both models’ quantiles? This method may
be more efficient compared with combining imputation classes without losing much of its
robustness.
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