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Abstract 
Knowledge of the geographic distributions of population socioeconomic and health 
outcomes is critical for public social and health policy deliberation, formulation, delivery 
and program planning and evaluation. More granular or local population socioeconomic 
and health data are often needed but usually do not exist. A variety of small area estimation 
techniques have been developed to address this significant data gap. Sociodemographic 
and health surveys have become routinely geocoded in federal statistical agencies, which 
means that we could have both individual characteristics of survey respondents from the 
survey itself but also their geographic context that might have great influence on their 
individual social, economic and health behaviors.  Thus, we are developing  and validating 
an innovative multilevel regression and poststratification (MRP) approach that applies 
multilevel regression models to geocoded surveys; takes account for both individual 
characteristics and area level factors at multiple geographic levels; predicts individual-level 
social, economic and health outcomes in a multilevel modeling framework; and estimates 
the geographic distributions of population socioeconomic and health outcomes. We applied 
this innovative multilevel approach for small area estimation using geocoded American 
Community Survey (ACS) data. We demonstrate that MRP provides a flexible statistical 
linkage and modeling platform that makes full use of geocoded ACS data and available 
geodemographic data to generate small area estimates of percentages of the population 
without health insurance coverage. We will also compare our model-based health insurance 
coverages with those based on the current SAHIE model and direct ACS survey estimates. 
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1. Introduction 
 

Model-based small area estimation techniques have been widely used to produce small area 
statistics to meet the local data needs for public policy or program planning, development 
and evaluation. The U.S. Census Bureau has two well established model-based small area 
data products: Model-based Small Area Income & Poverty Estimates (SAIPE) for school 
districts, counties, and states (https://www.census.gov/did/www/saipe/ ) and Model-based 
Small Area Health Insurance Estimates (SAHIE) for counties and states 
(https://www.census.gov/did/www/sahie/ ). 

SAIPE takes an empirical Bayesian approach and SAHIE employs a fully-Bayesian 
approach for model fitting and estimation. From a modeling perspective, both SAIPE and 
SAHIE are employing an area-level (also called Fay-Herriot (FH) Model) small area model 
framework. Specifically, current SAHIE implements an area-level model with errors-in-
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variables via a full-Bayesian approach to produce county-level health insurance coverage 
for detailed demographic domains. Like other area-level models for small area estimation, 
sampling variances of direct survey estimates have been assumed to be known but the small 
sample sizes make the typical estimators of sample variance estimation very problematic. 
In practice, this area-level modeling approach has limited flexibility in producing reliable 
estimates for potential smaller domains, such as sub-county (e.g. census tract) or sub-
demographic groups within a county (e.g. race-specific estimates). In order to create race-
specific small area estimates (SAEs), a separate state-level model has to be constructed and 
fitted for SAHIE. This modeling strategy would result in a potential inconsistency between 
direct state-level model-based estimates and those state-level estimates aggregated from 
county-level model-based estimates. When new demographic domain SAEs of SAHIE 
outcomes are requested, we have to repeat the entire modeling process and deal with the 
following inconsistency between SAEs from different small area model specifications. 
Furthermore, we could not make full use of all the survey data in hand for those domains 
with very small sample sizes, because direct estimates for these domains at the area level 
of interest make no sense at all.  

On the other hand, the unit-level modeling approach aims to predict the expected responses 
(or values) of the target population using observed survey data at the level of survey 
respondent unit. For SAHIE, we could predict each individual’s health insurance status 
based on who they are (i.e., by sex, age, race/ethnicity, education, and poverty status) and 
where they live (e.g. neighborhood (census tract), county, state).  With a fitted unit-level 
model, we could obtain the SAEs for any demographic domain at any geographic level of 
interest (Guadarrama, Molina, and Rao 2016). This is only limited by the availability of 
detailed geo-demographic population counts. In the United States, population counts by 
sex, age, race/ethnicity are available at census block level from the Decennial census and 
at the county-level from annual Census Vintage population estimates. Since census block 
is the basic (smallest) geographic unit for census geography in the United States, a census 
block measure could be conveniently aggregated to any geographic level of interest for any 
demographic domains by sex, age and race/ethnicity. 

However, the flexible unit-level small area model approach has its own challenges in 
practice. First, the unit-level model assumes that the survey design is ignorable after 
conditioning on the covariates included in the model (Hobza and Morales 2016, Gelman 
2007). Thus, survey weights are often excluded in the model fitting process, which may 
produce estimates with substantial bias; other complex survey design components, such as 
clustering or stratification, are rarely accounted for in the model fitting process. Second, 
for a generalized linear mixed model (GLMM), such as a logistic mixed model for binary 
data, the mean squared error estimation often involves complex numerical optimization of 
the maximum likelihood function without analytical closed forms and is computationally 
prohibitive in terms of time and resources in practice.  The computation of mean squared 
errors (MSEs) of SAEs is not as intuitive as those based on the linear or linear mixed 
models. The empirical best linear unbiased prediction (EBLUP) method proposed by 
Prasad and Rao is not appropriate for common non-continuous outcomes in practice 
(Prasad and Rao 1990). For unit-level linear mixed models, Molina and Rao applied an 
intuitive parametric bootstrapping approach for estimating MSEs (Molina and Ra 2010) 
and Molina et al. employed a full-Bayesian approach that obtains the MSEs for poverty 
indicators (Molina, Nandram, and Rao 2014) . For unit-level non-linear mixed models, 
parametric bootstrapping was introduced to obtain the MSEs for SAEs (Gonzalez-
Manteiga et al. 2007, Hobza and Morales 2016, Molina, Saei, and Lombardia 2007); their 
parametric bootstrapping makes a prediction for each individual in the target population 
and then takes random samples from the population with predicted outcomes and refits the 
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bootstrapped samples. The entire bootstrapping computation process is very time 
consuming. For a very large population like our case, the entire population in the United 
States, the parametric bootstrapping of this kind is so time-consuming that it becomes 
infeasible in practice.   

This study aims to deal with the two practical challenges for unit-level non-linear models 
for small area estimation: incorporating survey weights and survey design effects and 
obtaining the appropriate MSEs via appropriate parametric bootstrapping.  This paper is 
organized as follows. Section 2 briefly summarizes basic ideas of unit-level Multilevel 
Regression and Poststratification (MRP) for small area estimation, and introduces the 
logistic mixed model for binary data in American Community Survey (ACS). Three 
specific models are constructed to account for survey design: a model without individual 
ACS respondent weights, a model with individual ACS respondent weights, and a model 
with individual ACS respondent weights while incorporating survey design effects. We 
also provided more details for the modified parametric bootstrapping for estimating MSEs 
of final SAEs and the basic strategy to reduce computational time for parametric 
bootstrapping.  Section 3 presents the model-based small area estimation results based on 
2015 ACS for the proportions of population without health insurance coverage for 
population under 65 years old in the United States. The MRP SAEs are compared with 
direct ACS estimates and SAHIE estimates at the national, state and county levels. Section 
4 gives a brief discussion and concludes with future work to further improve the developed 
methodology.  

 
 
2. Multilevel Regression and Poststratification (MRP) for Small Area Estimation 

 
2.1 Basic Ideas of MRP 

The unit level MRP approach takes the basic unit-level small area model assumptions: The 
main assumption for the unit-level model is that estimates for a model fitted to the sample 
should be close to the estimates that would be obtained if that model were fitted to the 
entire population (Little 2012). In other words, the model constructed for survey data is 
also applicable to the target population for the survey. Overall, we use a multilevel 
regression model to quantify the relationships between the modeling outcome and its 
related individual characteristics and contexts that hold for all the units in the survey and 
apply this quantitative relationship for all the units in the population of interest. 
Specifically, the MRP takes two basic steps:  

1) Construct and fit a survey sampling unit-level multilevel model to a survey 

• 𝑌(𝐶) = 𝑌(𝐶௢ + 𝐶௨) 

• 𝑌|𝐶௢ = 𝑋𝛽 + 𝐺 + 𝑅 

For a population outcome of interest 𝑌(𝐶), it has two exclusive components: the observed 
in the sampled population (survey) 𝑌(𝐶௢) and the unknown in the non-sampled population 
𝑌(𝐶௨). A generalized linear mixed model can be fitted to the outcome of interest 𝑌|𝐶௢ =
𝑋𝛽 + 𝐺 + 𝑅 for the sample population in a survey, where 𝑋 is the known characteristics 
matrix for each individual in the survey sample; 𝛽 is the estimable regression coefficients 
vector associated with 𝑋; 𝐺 is the G side (also called structured ) random effects matrix; 
and  𝑅 is the residual random effects matrix.  

2) Make predictions for each individual in the target population from the fitted 
model based on the survey (𝑌෠(𝐶|𝐶௢) = 𝑋𝛽መ + 𝐺෠).  
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Usually, the finite population estimator 𝑌෠(𝐶) combines both the observed 𝑌(𝐶௢) from the 
survey (sampled population) and the out-of-sample predictions 𝑌෠(𝐶௨|𝐶௢) for the unknown 
population (𝑌෠(𝐶) = 𝑌(𝐶௢) + 𝑌෠(𝐶௨|𝐶௢)).  When the sampling fraction for a domain is not 
small, then the finite population estimator is robust under model misspecification. More 
often, the sampling fraction for a domain is small for most surveys, and the finite 
population estimator could be approximated by the full model-based prediction for the 
entire finite population (𝑌෠(𝐶) ≈ 𝑌෠(𝐶|𝐶௢)). We could aggregate individual-level 
predictions of the target population to produce final SAEs of interest.  

The original idea of MRP was introduced by Little from a Bayesian modeling perspective 
(Little 1993). Gelman and Little further developed this idea and demonstrated its great 
statistical power and flexibility in model-based predictions for the outcomes of interest for 
detailed geo-demographic groups (Gelman and Little 1997).  Gelman and his colleagues 
have applied MRP for a variety of social and political outcomes, such as voter turnout and 
vote choice (Ghitza and Gelman 2013, Park, Gelman, and Bafumi 2004) and public opinion 
on the death penalty (Shirley and Gelman 2015). The MRP or similar approach has been 
adopted for various applications for population health outcomes (Congdon 2009, Malec et 
al. 1997, Twigg, Moon, and Jones 2000, Wang et al. 2015, Yu et al. 2007, Zhang et al. 
2014) and socioeconomic outcomes, such as poverty indicators (Elbers, Lanjouw, and 
Lanjouw 2003, Haslett and Jones 2005, Molina, Nandram, and Rao 2014, Molina and Ra 
2010) and unemployment (Molina, Saei, and Lombardia 2007).  

 
2.2 ACS Data 

ACS is the largest demographic survey in the United States and has become the main 
database to provide the annual updates of population and housing characteristics, including 
the health insurance coverage status of interest in this study. The ACS independent housing 
unit address samples are randomly selected for each of the 3,142 counties and county 
equivalents in the U.S., including the District of Columbia. In 2015 ACS, 5,404,658 
sampled individuals with a valid health insurance status. Our target population is the under 
65 year-old population; thus, 4,399,937 individuals under 65 years old with a valid health 
insurance status were included in this study. 2015 ACS was sampled from all 50 states and 
all 3,142 counties. The state-level sample size has a mean of 86,273 and ranges from 8,467 
to 488,453 with a median of 62,566, and the county-level sample size has a mean of 1,400 
and range from 4 to 135,288 with a median of 449.  

 

Table 1. 2015 ACS sample size distribution for the population under 65 years old 

Geography N Min Q1 Median Q3 Max Mean 

State 51 8,467 23,385 62,566 111,869 488,453 86,273 

County 3,142 4 218 449 1,119 135,288 1,400 

 

2.3 Unit-level logistic mixed model for health insurance status   

In ACS, the binary variable of interest for health insurance coverage status in the ACS 
sample takes the values of one (an individual without health insurance coverage) and zero 
(an individual with health insurance coverage). Thus, logistic mixed models are 
constructed to generate county-level sub-demographic domain estimates of interest: 
percentages of uninsured population for children 0-17 years old, adults 18-64 years old as 
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well as population under 65 years old. Let 𝑦ௗ௜௝ denote an individual (j) response to health 
insurance coverage status from an age-sex-race/ethnicity specific population group (d) in 
county (i), i=1, …, 3,142, and j=1, .., 𝑛ௗ௜, the sampled population with county (i) from 
population group (d). Thus, conditionally on 𝑝ௗ௜, the probability of an individual without 
health insurance coverage from an age-sex-race/ethnicity specific demographic group (d) 
in county (i), 𝑦ௗ௜௝’s are independent Bernoulli random variables with 𝑃൫𝑦ௗ௜௝ = 1ห𝑝ௗ௜൯ =

𝑝ௗ௜. 

𝑙𝑜𝑔𝑖𝑡(𝑝ௗ௜) = 𝑥𝛽 + 𝑢 = 𝛽଴ + 𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝑟𝑎𝑐𝑒 + 𝑢௜     (1) 

where 𝛽଴ is the regression intercept; 𝑎𝑔𝑒 is the age group variable with 16 categories, 𝑠𝑒𝑥 
is the sex variable with two categories,  𝑟𝑎𝑐𝑒 is the race/ethnicity group variable with six 
categories; county specific random effects are normally distributed with zero means and 
variances 𝜎ଶ : 𝑢௜~𝑖𝑖𝑑𝑁(0, 𝜎ଶ). The detailed 16 age groups (years) include 0-4, 5-9, 10-14, 
15-17, 18, 19, 20, 21-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, and 60-64; the 
six race/ethnicity groups include non-Hispanic white alone, black alone, American Indian 
and Alaska Native alone, Asian and Pacific Islander alone, other races and Hispanic. Thus, 
there are possible 192 (16 x 2 x 6) demographic groups within a county.  

The likelihood for our logistic mixed model (equation 1) is given by  

𝐿(𝛽, 𝜎ଶ|𝑦) = ∏ ∫ ∏
௘௫௣൛௬೔ೕ(௫ఉା௨)ൟ

ଵା௘௫௣{ ௫ఉା௨}

௡೔
௝ୀଵ

ஶ

ିஶ
ଷଵସଶ
௜ୀଵ ×

௘
ష

ೠ೔
మ

మ഑మ

√ଶగఙమ
𝑑𝑢௜        (2) 

where 𝑛௜ is the number of sampled individuals by ACS in county (i). We take a 
frequentistic approach to fit the above logistic mixed model using SAS proc GLIMMIX. 
The above likelihood function (equation 2) cannot be evaluated in closed form. Numerical 
methods must be used to estimate the model parameters that maximize the likelihood 
function above. SAS proc GLIMMIX applies a pseudo-likelihood approach to fit the above 
logistic mixed model. The likelihood formulation of equation 2 ignores sample selection 
probabilities and sample dependencies other than within-county correlations, such as 
unequal sampling probabilities, within household clustering effects, and other 
dependencies introduced by all other weight adjustment procedures. We will address both 
selection probability and dependency via incorporating survey weights and design effects 
into model fitting (see details in Section 2.4).  

The predicted probability (�̂�ௗ௜) of an individual without health insurance coverage from 
demographic group (d) in county (i) is: 

�̂�ௗ௜ =
௘ആෝ

ଵା௘ആෝ =
௘೉෡ഁశೠෝ೔

ଵା௘೉෡ഁ శೠෝ೔
         (3) 

where the estimated linear predictor �̂� = 𝑋𝛽መ + 𝑢ො௜,  X is the covariate matrix, including 
intercept ones, age, sex and race/ethnicity.  

In order to generate the final small area estimates, we need to sum the population weighted 
probabilities for all or some of demographic groups (d) within a county.  The predicted 
proportion of individuals without health insurance coverage in county (i) under an 
empirical Bayesian predictor is 

𝑃෠௜ = 𝑁௜
ିଵ(∑ 𝑦ௗ௜௝

௡೏೔
௝ୀଵ + ∑ (𝑁ௗ௜ − 𝑛ௗ௜)ௗ

௜ୀଵ ∗ �̂�ௗ௜)  (4) 

where 𝑛ௗ௜ is the number of sampled individuals in ACS from demographic group (d) in 
county (i) , d is the number of demographic groups in county (i), and 𝑁௜ = ∑ 𝑁ௗ௜

ௗ
௜ୀଵ . We 

obtain the population count 𝑁ௗ௜ demographic group (d) in county (i) from the U.S. Census 
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Bureau’s postcensal population estimates data. In practice, we often assume that the 
population counts by age, sex and race/ethnicity at the county level are known without 
error, and this a strong assumption.   

Since the number of sampled individuals are much smaller than the population size of the 
corresponding demographic group, we have an empirical Bayesian estimator (equation 3) 
reduced to a multilevel regression estimator (equation 5): 

𝑃෠௜ = 𝑁௜
ିଵ(∑ 𝑦ௗ௜௝

௡೏೔
௝ୀଵ + ∑ (𝑁ௗ௜ − 𝑛ௗ௜)ௗ

௜ୀଵ ∗ �̂�ௗ௜) ≈ 𝑁௜
ିଵ(∑ 𝑁ௗ௜௦

ௗ
௜ୀଵ ∗ �̂�ௗ௜)   (5) 

The variance of  𝑃෠௖௦ is  

𝑉𝑎𝑟൫𝑃෠௜൯ = 𝑁௜
ିଶ ቀ𝑉𝑎𝑟൫∑ 𝑁ௗ௜

ௗ
௜ୀଵ ∗ �̂�ௗ௜൯ቁ   (6) 

𝑉𝑎𝑟(𝑃෠௜) has a non-linear non-closed form expression, thus we apply a parametric 
bootstrapping to approximately estimate it.  The predicted MSEs is the square root of its 
estimated variance (𝑉𝑎𝑟(𝑃෠௜)).  Unit-level logistic mixed model could be conveniently 
specified and fitted using SAS proc GLIMMIX, a SAS statistical procedure for generalized 
linear mixed models. By default, the GLIMMIX procedure estimates the parameters of 
logistic mixed models by applying pseudo-likelihood techniques (Breslow and Clayton 
1993, Wolfinger and Oconnell 1993). 

 

2.4 Model fitting with survey weights 

The best way to incorporate survey weights in unit-level small area models is an open 
research question. Unit-level small area models often ignore the survey weights in 
modeling fitting, since they assume survey design is ignorable after conditioning the 
covariates in the unit-level models. Actually, this is a general controversial issue: should 
we implement regression modeling for survey data with or without survey weights? 
(Gelman 2007). In practice, adding weight should cause additional model fitting 
complexity for generalized linear models. The SAS proc GLIMMIX procedure has a 
weight statement to account for individual weights into its pseudo-likelihood optimization. 
Since the proc GLIMMIX procedure WEIGHT statement treats weight variables as 
frequency weights, direct use of survey weights in the WEIGHT statement will 
substantially underestimate standard errors associated with model parameters. Thus, we 
should rescale the original ACS survey weights to actual ACS sample size. We compared 
different rescaling schemes for small area estimation using ACS and compared their 
performance (see details in Blandine et al. report 2017). We selected a within-state 
rescaling weighing scheme, and it defined the new weight for a ACS respondent as follows 
(equation 7): 

𝑊_𝑛𝑒𝑤(𝑖) =
ௐೌ೎ೞ(೔)

∑ ௐೌ೎ೞ(೔)
𝑆_𝑎𝑐𝑠     (7) 

where 𝑊௔௖௦(௜) is the individual ACS survey weight, ∑ 𝑊௔௖௦(௜) is the sum of all individual 
ACS survey weights within a state, and 𝑆_𝑎𝑐𝑠 is the ACS sample size within a state. In 
model fitting with the proc GLIMMIX prodedure, we could add the WEIGHT statement 
with the rescaled weights 𝑊_𝑛𝑒𝑤(𝑖) and account for the ACS weighting impact into 
logistic mixed model fitting.  

Survey design effects for survey data should not be ignorable in a regression model. For 
ACS, within household correlations are common and strong for many socioeconomic 
outcomes of interest, such as poverty and health insurance overage status. We take 
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advantage of the property of frequency weights in proc GLIMMIX procedure WEIGHT 
statement, and we could rescale the original ACS weights into an effective sample size 
within a state to address the ACS survey design effects. State effective sample size is the 
state actual ACS sample divided by the state-level design effects. Thus, the new weight 
that accounts for both survey weight and survey design effects is defined as follows 
(equation 8): 

𝑊_௡௘௪(௜)
∗ =

ௐೌ೎ೞ(೔)

∑ ௐೌ೎ೞ(೔)
(

ௌೌ೎ೞ

஽ாೌ೎ೞ
)      (8) 

Here 𝐷𝐸௔௖௦ is state-level design effect for the outcome of interest. Designs varies by 
outcome as well as geography. For 2015 ACS, its state-level design effects for health 
insurance coverage ranges from 1.96 to 6.01 and has a mean of 3.28 with a median of 3.22; 
its state-level design effects for poverty status ranges from 3.65 to 6.59 and has a mean of 
4.78 with a median of 4.73. The larger design effect for poverty status is expected, since 
poverty status is defined for the entire household unit, while persons within a household 
may have different health insurance status based on whether they are an adult or child.   

With consideration of survey weights and design effects, we fit three unit-level logistic 
mixed models for small area estimation:  

 Logistic mixed model without ACS survey weights (UNW) 
 Logistic mixed model with ACS survey weights (𝑊_௡௘௪(௜)) that are rescaled to 

within state ACS sample size (WGT) 
 Logistic mixed model with ACS survey weights (𝑊_௡௘௪(௜)

∗ ) that are rescaled to 
within state ACS effective sample size (WTD) 
 

2.5 Mean square error (MSE) estimation via parametric bootstrapping 

For small area estimation, a Bayesian approach would be very intuitive to produce final 
valid predicted MSEs (Molina, Nandram, and Rao 2014). But the Bayesian approach for 
model fitting via MCMC could be computationally very intensive and make it almost 
infeasible in practice for large datasets like ACS. In addition, it is also very difficult to fit 
unit-level logistic models with individual survey respondent weights in a Bayesian setting. 
Thus, we fit our logistic mixed models under a fequentistic approach using SAS proc 
GLMMIX procedure. This approach is pretty efficient and could conveniently incorporate 
survey weights and survey design effects as we described in section 2.4. It takes about two 
hours to fit the logistic mixed model using the entire ACS dataset on our current hardware. 
But this efficiency and convenience comes with a price that proc GLIMMIX could not 
directly produce the predicted MSEs for the final SAEs of interest. Actually, it is always 
challenging to obtain valid MSE estimates for small area estimators under a frequentistic 
modeling framework, especially for the logistic mixed model estimator because of its non-
linearity nature.  

With the breakthroughs in computer simulation in the 1990s and cheaper and easier 
accessibility to supercomputing power in 2000s, computationally intensive resampling 
methods, including bootstrapping, and Bayesian computation, it has become more and 
more popular for quantifying the statistical properties of non-linear statistics in practice. 
Parametric Bootstrapping has been used in small area estimation to obtain the predicted 
MSEs (Gonzalez-Manteiga et al. 2007, Hall and Maiti 2006, Hobza and Morales 2016, 
Pfeffermann and Correa 2012, Pfeffermann and Tiller 2005, Molina and Ra 2010). None 
of these parametric bootstrapping algorithms have considered accounting for individual 
survey weights in model fitting as well as survey design effects. These common parametric 
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Bootstrapping algorithms in small area estimation involve generating the virtual original 
sample and refitting the small area models to estimate the statistical uncertainties in final 
SAEs. Since the virtual sample comes from the predicted target population, it could have 
a very different demographic composition from the original sample for a small area. The 
parametric bootstrapping has to ignore the original survey weights and ignore survey 
weighting in model fitting. If survey weighting has to be considered in model fitting, new 
survey weights must be recomputed for the virtual bootstrap sample, but this could become 
extremely complicated. This, actually, is one main reason that bootstrapping methods has 
limited use in complex survey data.  

In order to keep flexibility of incorporating the ACS survey weights and survey design 
effects, we revised the current parametric bootstrapping algorithm as follows: 

Step 1. Fit the logistic mixed model to the original ACS sample and calculate the 
predicted linear predictor (�̂�௜௝ = 𝑥௜௝

ᇱ 𝛽መ + 𝑧௜
ᇱ𝑢ො) and predicted standard error (𝜎ො௜௝) using 

SAS proc GLIMMIX procedure.  

Step 2. Take a random sample for (�̂�௜௝
∗ ) from N(�̂�௜௝ , 𝜎ො௜௝

ଶ )  and calculate predicted 

probability �̂�௜௝
∗ =

௘
ആෝ೔ೕ

∗

ଵା௘
ആෝ೔ೕ

∗ .  

Step 3. Generate the bootstrap binary outcome 𝑦ො௜௝
∗ |�̂�௜௝

∗ = (1,0) for each original ACS 
respondents.  

Step 4. Refit the logistic mixed model with (𝑦ො௜௝
∗ ) and calculate predicted probability 

(�̂�௜௝
௕∗).  

Step 5. Calculate the predicted target outcome 𝑃෠୧
ୠ = (∑ n୧୨

୩
୧ୀଵ �̂�୧୨

௕∗)/N୧  

Step 6. Repeat step 2 to step 5 many times (b=1, 2, …, B) and the number of 
bootstrapping B=1,000 in this study. The final point estimate variance: 𝑣𝑎𝑟(𝑃෠௜) =
ଵ

஻
∑ (𝑃෠௜

௕ − 𝑃෠ప
௕തതതത)ଶ஻

௕ୀଵ  and 𝑃෠ప
௕തതതത =

ଵ

஻
∑ 𝑃෠௜

௕஻
௕ୀଵ . 

Parametric bootstrapping still involves a model refitting which still could be very time-
consuming for ACS data. Thus, we split the entire ACS data by Census Division and run 
the same logistic mixed model for each division’s ACS sub-dataset. This modeling strategy 
reduced the computation time from more than 2,000 hours to less than 100 hours for a 
1,000 replicate bootstrapping.   
 
 

3. Results 
 

This study presents three final outcomes of interest: the percentages of uninsured estimates 
for populations 1) 0-64 years, 2) 0-17 years old children, and 3) 18-64 years old adults. All 
the results are based on the parametric bootstrapping with B=1,000 samples. First, we 
compare the model-based point estimates with reliable direct ACS estimates at national, 
state and county levels, then we compare their county-level standard error estimates.   
Table 2 presents the estimates from different methods at the national level. Logistic mixed 
models with survey weights produced almost the same point estimates as ACS direct 
survey estimates. The logistic mixed model without survey weights has produced similar 
estimates as current SAHIE models.  
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Table 2. 2015 ACS sample sizes and ACS model-based uninsured population 
estimates (%) 

 Age Groups 

  0-64 years 0-17 years 18-64 years 

ACS Sample Size 4,399,937 1,122,680 3,277,257 

ACS 11.26 4.82 13.63 
SAHIE 10.92 4.78 13.21 
MRP(UNW) 10.58 4.86 12.69 
MRP(WGT) 11.23 4.84 13.59 
MRP(WTD) 11.25 4.83 13.62 

 
 

Table 3. Mean absolute differences between model-based and 2015 ACS direct 
estimates for state-level uninsured estimates (%) 

  Age Groups 

Method N 0-64 years 0-17 years 18-64 years 

SAHIE 51 0.32 0.12 0.41 
MRP(UNW) 51 1.09 0.98 1.37 
MRP(WGT) 51 0.81 0.90 0.99 
MRP(WTD) 51 1.21 1.04 1.46 

 
 

Table 4. Mean absolute differences between model-based and 2015 ACS direct 
estimates for county-level uninsured estimates (%) 

  Age Groups 

Method N 0-64 years 0-17 years 18-64 years 

SAHIE 811 1.17 1.40 1.36 
MRP(UNW) 811 1.33 1.90 1.66 
MRP(WGT) 811 1.02 1.77 1.36 
MRP(WTD) 811 1.68 1.88 2.08 

 
Table 3 shows that logistic mixed model estimators have produced larger mean absolute 
differences than current SAHIE models at state level. At the county level (Table 4), logistic 
mixed model with survey weights (MRP(WGT)) and current SAHIE model have similar 
mean absolute differences for those 811 larger counties (county population >=65,000 in 
2015).  
 
Table 5 presents the distributions of predicted MSEs of the county-level uninsured 
population estimates. Model-based estimates have much smaller standard errors than direct 
ACS estimates as expected. Logistic mixed model without survey weights (MRP(UNW) 
and with survey weights (MRP(WGT)) have similar standard errors as current SAHIE 
model for large age groups ( 0-64 years and 18-64 years), but they have much smaller 
predicted standard errors than SAHIE model for small age group (0-17 years old). Logistic 
mixed model with survey weight and adjusting ACS design effects has produced consistent 
smaller standard errors than current SAHIE model.  
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Table 5. Standard errors for county-level uninsured estimates (%) 

Age Group Methods N Min Q1 Median Q3 Max Mean 

0-64 years 

ACS 3131 0.14 1.37 2.27 3.74 32.82 2.91 
SAHIE 3141 0.14 0.53 0.74 0.93 1.89 0.74 
MRP(UNW) 3142 0.09 0.42 0.68 0.98 5.27 0.79 
MRP(WGT) 3142 0.10 0.42 0.76 1.13 3.86 0.84 
MRP(WTD) 3142 0.09 0.25 0.42 0.65 2.51 0.49 

0-17 years 

ACS 2713 0.06 1.19 2.33 4.41 34.38 3.48 
SAHIE 3141 0.11 0.62 0.85 1.22 3.35 0.96 
MRP(UNW) 3141 0.05 0.22 0.33 0.50 3.33 0.42 
MRP(WGT) 3141 0.06 0.22 0.37 0.56 2.28 0.43 
MRP(WTD) 3141 0.06 0.14 0.21 0.32 1.47 0.25 

18-64 years  

ACS 3131 0.17 1.58 2.68 4.38 32.05 3.36 
SAHIE 3141 0.18 0.67 0.94 1.20 2.21 0.95 
MRP(UNW) 3142 0.11 0.49 0.81 1.17 6.48 0.93 
MRP(WGT) 3142 0.13 0.50 0.91 1.34 4.97 1.00 
MRP(WTD) 3142 0.10 0.29 0.50 0.79 2.98 0.58 

 
 
 

4. Discussion and conclusions 
 

The unit-level logistic mixed model small area estimator proposed in this study has great 
flexibility in incorporating survey weights and design effects. These logistic mixed models 
has only three individual covariates (age, sex and race/ethnicity) and a county-level random 
effect. Despite their simple format, these unit-level logistic mixed model estimators take a 
bottom-top approach in geo-demographic domain aggregation and could produce accurate 
and consistent point estimates across all demographic domains at all geographic levels. 
Logistic mixed models with survey weights produce more consistent small area estimates 
while compared to direct ACS estimates. If necessary, the logistic mixed models could 
include county-level covariates such as those in current SAHIE area-level models.   

We fit these logistic mixed models via parametric bootstrapping that could be conveniently 
and efficiently implemented in SAS using the GLIMMIX procedure and routine data and 
random number simulation steps. This is important for routine data production in small 
area estimation practice. The unit-level logistic mixed model estimators has consistently 
produced small predicted standard errors than current SAHIE area-level models. The unit-
level logistic mixed model with survey weights while adjusting ACS survey design effects 
has the smallest prediction standard errors. The modified parametric bootstrapping could 
incorporate survey weights and design effects, and it does not bootstrap model regression 
coefficients and county-random effects directly and avoids the ignorance of potential 
correlation between model parameters of fixed and random effects. The parametric 
bootstrapping approach in this study assumes each random sample for specific 
demographic group for a county are independently drawn from other random samples for 
other demographic groups within the same county. Further research is greatly needed to 
compare different parametric bootstrapping methods for logistic mixed model-based small 
area estimators.  
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Our proposed logistic mixed models with normally distributed county random effects are 
commonly used in small area estimation for binary outcome data. The county random 
effects take a flexible and simple normality assumption, and it might become a 
controversial aspect of the methodology (Diallo and Rao 2014). Some research shows that 
the non-normality assumption for random effects does not make much difference in real 
applications (McCulloch and Neuhaus 2011). In a small area estimation context, random 
effects play a critical role in introducing local variation into the model outcomes of interest; 
therefore the choice of distribution for random effects may be crucial.  Diallo and Rao show 
that that the normality assumption for unit-level small area model is relatively robust 
(Diallo and Rao 2014). In the United States, the children’s health insurance program 
(CHIP) has increased health insurance coverage for certain children populations, thus child 
and adult specific county random effects might be needed to better catch these program 
impacts.   

We take a frequentistic approach to develop and fit the unit-level logistic mixed models 
and to obtain the model parameters for both fixed and random effects. We adopt a 
“Bayesian” simulation approach (bootstrapping) for final statistical inference on small area 
estimates under these fitted models. This approach could make full use of the efficiency of 
model development and fitting in a freqentistic framework and the flexibility of inference 
in a Bayesian framework. The combination of freqentistic and Bayesian methods in our 
model make our MRP approach more practical while keep statistical inference accuracy 
and flexibility. 
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