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Economic data are often constrained by additivity conditions, where a set of item 
values (detail items) are required to sum to an associated total value. The set of 
detail items and their respective total is referred to as a balance complex. When 
these additivity constraints are not met, changes must be made to either the total 
or the set of details. Raking proportionally adjusts each detail item by the same 
amount. If each item’s reporting error is random and has variance proportional to 
its value, then raking minimizes a chi-squared statistic. However, raking was 
developed for strictly positive data and can produce erroneous values when 
negative data are included. Modifications have been developed to address this 
situation, but implementation is not straightforward and does not always yield a 
feasible solution. In this paper, we develop separate linear and nonlinear programs 
that minimize loss functions under specified additivity constraints that work with 
negative data and include item costs. We apply the proposed methods to examples 
from the Quarterly Financial Report conducted by the U.S. Census Bureau, 
examining statistical properties of the resultant solutions.  
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Programming 

 
 

1. Background 
 
A balance complex is an additivity condition specifying the requirement that two or more 
item variables balance to a reported item total, i.e.  ∑  where D  is the number of 
details, ’s are known as the details and  is known as the total. If there are errors in the 
detail values then the balance complex fails, i.e. 	 ∑ . The Economic Directorate 
at the Census Bureau ensures that data in records with failing balance complexes are 
adjusted before publishing relevant statistics. Sigman and Wagner (1987) and Luery and 
Sigman (2000) developed and implemented raking algorithms for resolving these 
discrepancies within the Plain Vanilla (PV) and the Standard Economic Processing System 
(StEPS) generalized editing and imputation systems respectively; the PV subsystem is used 
primarily to edit and impute Economic Census Data and StEPS is employed by many 
ongoing economic surveys.  
 

                                                 
1 Any views expressed are those of the authors and not necessarily those of the U.S. Census 
Bureau. 
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StEPS implements a raking algorithm for adjusting balance complexes in order to satisfy 
the requirement that the sum of items (details) in a balance complex balances to reported 
total. Raking proportionally adjusts detail values by calculating the ratio of the total to the 
reported details and multiplying each detail by this ratio so that the sum of these adjusted 
details balances to the corresponding total value. Under the assumption that the errors in 
the detail items are random with variance proportional to the value of the detail,  raking 
minimizes a loss function in which the objective function is the chi-square “statistic”  
derived under these assumptions with the constraints as the additivity conditions (balance 
complex); see Deming (1943, Ch. 5).  
 
The raking method was developed for positive data only. This method implicitly assumes 
that the reported distribution of details is accurate and should be preserved and that the 
ratio of the total to the summed details is “small.” Consequently, raking can lead to 
erroneous values when data items are permitted to be negative or if there is subtraction in 
the balance complex. First, the assumption that the variance is proportional to the details 
may no longer hold. Second, the reported proportions will no longer be preserved, as raking 
changes all details in a balance complex in the same direction by the same amount. The 
Quarterly Financial Report (QFR), conducted in the Economic Directorate at the U.S. 
Census Bureau, is an example of a survey that consists of balance complexes that contain 
negative detail items and/or subtraction of details (see Section 2).  
 
Luery and Sigman (2000) modified the raking algorithm described above to handle cases 
in which the detail items can have negative values. They proposed a more restrictive 
assumption by requiring that the variance be proportional to the absolute value of the 
reported detail (Luery and Sigman, 2000; Eltinge, 2003). Implementation of this modified 
raking method has not been straightforward, and we have found several situations where 
the solutions may be inconsistent and one situation where the solution is not correct 
because the adjusted details do not balance to the total.  
 
The algorithm, as implemented in StEPS, imputes the detail items according to the 
following formula: 

1
∑

∑
    (1.1) 

where   is the total,   is the original detail value for item   and  is the imputed value 
for item . When all items are real-valued (i.e., can be positive or negative), this formula 
works well. However, when   <0 and item  cannot be negative, the balance complex 
must be resolved in another way. When this occurs, StEPS sets 0 and adds the value 
it would have assigned to  to the next item in the complex in addition to the value that 
item would have received by itself.  
 
This algorithm is best illustrated through an example. In this example and throughout our 
research we do not assess the assumption that the ratio of the total to the summed details is 
“small.” Consider the balance complex  and 200, 12, 
59 , and 17 where  can only take non-negative values. Using (1.1), the algorithm 
initially imputes the values as 43, 95, and 62.  Since  must be 
non-negative, it adds the -95 to  and gives the final result of 43, 0, 
157. Although the imbalance has been solved, the solution no longer includes the 

positive contribution from the second item and therefore loses valuable information. 
 
However, when the order of the items changes, a different result may be obtained.  
Suppose, we wrote the balance complex as  . The raking algorithm would 
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now add the 95 it would have given to , to  giving a final result of  0, 
138, 62. This solution balances as well but distributes the total differently among 

the details just because the order of the details was changed.  
 
Finally, suppose we wrote the balance complex as . Since is the last 
item, there is no place to put the -95 that would have been assigned to  . The “resolved” 
imbalance solution  is 43, 62, 0, which clearly does not add to the 
total 200.  
 
The differences in the results from the StEPS raking algorithm given by different orderings 
of the items in the balance complex specification highlights an undesirable property of this 
method. Ideally, the solution should be invariant to the item order in the balance complex. 
However, this problem only arises under very specific circumstances. First, one or more 
detail items must be positive valued only. Secondly, the residual, defined as ∑ , must 
be negative. Finally, the absolute value of the residual must be greater than the sum of the 
absolute values of the details, ∑ 	 ∑ . 
 
Clearly, when a survey has negative data, a simple extension of the raking algorithm is not 
straightforward and can yield an erroneous solution when the reported total is negative. 
Consequently, we needed to come up with an alternative to the raking method that is easy 
to implement, allows for real valued detail items, and provides valid solutions  when the 
reported total can be negative.  Currently, a new version of StEPS, aptly called StEPS II, 
is under development. One of the surveys scheduled to migrate to StEPS II is the QFR. We 
take this opportunity to explore alternative methods to raking when the total item and/or 
some of the detail items are allowed to be negative using data from the QFR.  The QFR 
had additional requirements related to balance complexes for us to consider: 

 Certain detail items should be held constant when resolving the balance 
complex 

 The balance complex resolution method should be able to incorporate 
detail reliability information so that certain details are modified before 
others. 

 
While conducting this research our goal was to find a method that was a satisfactory 
alternative to raking and flexible enough that the additional requirements could be 
addressed with our proposed method. 
 
We present a brief description of the Quarterly Financial Report in Section 2. This is 
followed by Section 3 which describes the alternative methods that we considered for 
resolving failed balance complexes.  Section 4 describes the implementation and evaluation 
of a case study using QFR data. We conclude in Section 5 with some recommendations for 
future research.   
 

2. The Quarterly Financial Report 
 

The Quarterly Financial Report (QFR) produces principal economic indicators that provide 
comprehensive and timely financial data, essential to calculation of key U.S. Government 
measures of national economic performance. Based upon a sample survey, the QFR 
presents estimated statements of income and retained earnings, balance sheets, and related 
financial and operating ratios for Manufacturing corporations with assets of $250,000 and 
over, and corporations in Mining, Wholesale Trade, Retail Trade, and Selected Service 
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Industries with assets of $50 million and over. For more information, see the “How the 
Data are Collected” section of the QFR website: 
https://www.census.gov/econ/qfr/collection.html. 

There are three different forms used by QFR. Manufacturing companies with assets 
between $250 thousand and $50 million receive the short form. Companies with assets 
greater than $50 million receive one of two long forms, which collect more line items. One 
long form is for companies in manufacturing, mining, retail, and wholesale trade industries, 
the other long form is for companies in selected services industries. The items collected on 
both the long forms are the same, and thus for the remainder of this paper they will be 
collectively referred to singularly as “the long form.” Figure 1 below presents an excerpt 
from the short form for Total Liabilities And Stockholders' Equity. In the form, the item 
number appears just before the response field. For example, item number 301 is presented 
just before the response field for question A1, Short-term loans from banks.  These 
numbers are used in-house to describe the various items collected on the form.  From this 
point forward we will use these numbers interchangeably with the descriptions on the form. 
Copies of the various QFR forms can be found at 
https://www.census.gov/econ/qfr/forms.html . 
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Figure 1: Liabilities and Stockholders’ Equity Balance Sheet from Short Form 

The QFR survey form contains two balance sheets: Schedule B1 (Assets) and Schedule B2 
(Liabilities and Stockholders’ Equity). On each of these balance sheets, it is important that 
the value entered on the (final) total line is the sum of the values entered for the line items 
above the total line. On the short form, there are eight items that must sum up to total assets 
and 12 items that must sum up to total liabilities and stockholders’ equity. On the long 
form, there are 16 items that must sum up to total assets and 16 items that must sum up to 
total liabilities and stockholders’ equity. A few of the detail items that go into the 
calculation of the totals are themselves the sum of other items on the balance sheet. For 
example, on both the long and the short forms, the line item “net property, plant, and 
equipment” (Item 219), which is a component of totals assets, is itself the sum of three 
other line items (216+217-218). Therefore, when the total assets balance complex is 
resolved either 219 needs to be held constant or 216, 217, and 218 need to be updated after 
the complex is brought into balance.  We refer to this type of relationship as a nested 
balance complex, because the sum of the values from one complex is a detail in another 
complex. 
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Table 1: QFR Balance Complexes Subject to Raking After Imputation 

Total Details 

         

B1 
Long 
Form 
Items 

Item  
223 

Item  
201 

Item  
202 

Item  
203 

Item  
204 

Item  
205 

Item  
206 

Item  
207 

Item  
208 

Item  
209 

Item  
211 

Item  
212 

Item  
214 

Item  
215 

Item 
219 

Item  
220 

Item  
221 

B1 
Short 
Form 
Items 

Item  
223 

Item  
201 

Item  
202 

Item  
210 

Item  
213 

 

Item  
214 

Item  
215 

Item 
219 

Item  
222 

        

B2 
Long 
Form 
Items 

Item  
328 

Item  
301 

Item  
302 

Item  
303 

Item  
305 

Item  
306 

 

Item  
307 

Item  
308 

Item  
310 

Item  
311 

Item  
312 

Item  
314 

Item  
316 

Item  
317 

Item  
318 

Item  
320 

Item  
327 

B2 
Short 
Form 
Items 

Item  
328 

Item  
301 

Item  
304 

Item  
306 

Item  
309 

Item  
310 

Item  
313 

Item  
315 

Item  
316 

Item  
319 

Item  
320 

Item  
322 

Item  
326 

Note:   Items in green-shaded cells are kept constant for this research 
Items in yellow-shaded cells can take negative values 

 
 
Table 1 displays a representation of the QFR balance complexes subject to balancing after 
imputation. There is one total item represented by , and 16 detail items are represented 
by , , … , . The Schedule B1 Asset items from the long form and short form are 
displayed in rows 3 and 4, respectively. Item 223 denotes the reported total assets that must 
balance to the sum of the detail asset items. The Schedule B2 Liability and Stockholders’ 
Equity items are displayed in rows 5 (long form) and 6 (short form), where Item 328 is the 
reported total and must balance to the sum of the reported details. 
 
Although most of the items are positive valued only, some items, including item 309, 
“Domestic income taxes accrued, prior and current, net of payments – Include 
overpayments,” can take either a positive or negative value. 
 
The balance complexes in QFR have many detail items with very intricate relationships, 
so that there are often discrepancies between the sum of the details and their corresponding 
reported total. Furthermore, some companies may not have the requested detailed 
breakdowns readily available and may report an estimate of the value of the detailed item 
or leave it blank. This leaves the analysts, who are staff accountants and have specialized 
expertise, with the job of resolving these discrepancies by either calling the companies to 
ascertain a response or using their expertise to fill in the response.  This can be quite 
cumbersome and time consuming. An alternative method for resolving out-of-balance 
complexes that relies on the same principles employed by the staff accountants would save 
a lot of time and resources and would eliminate a random error source 

In addition to correcting reported out-of-balance complexes, QFR accounts for unit 
nonresponse via imputation. If previously reported data are available, this method uses 
statistical procedures utilizing previously reported data and data from current respondents 
of similar asset size and industry classification. Imputation is done item by item, and the 
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imputed values of the detail items may not sum to the imputed value of the total item. In 
this case the imputed data need to be corrected so that the complex is in balance. Currently, 
the QFR uses raking, among other methods, to correct the balance complex discrepancies 
on imputed data. However, the current raking procedure is very vulnerable to errors, 
because it operates on all items in the balance complex and cannot hold any detail item 
constant. A delicate workaround has been put into place that only works because 
imputation is done for unit nonresponse. This workaround would not work if the QFR 
began imputation for partial response.  Additionally, the workaround is not straightforward 
and adds several steps to raking the balance complex which increases the possibility of 
inadvertent errors during the imputation process.  As we investigate alternatives to raking, 
we add the requirement of holding an item constant when balance complexes are nested. 
Our goal is to find a method for resolving out-of-balance complexes that is flexible enough 
to produce similar results to the currently-used raking method and at the same time can be 
modified to incorporate the preferences/rules used by the staff accountants in resolving the 
failed balance complexes. In the following section we describe the methods we considered. 

3. Considered Methods 
 

We investigated methods for finding optimal solutions to balance complex failures with 
the SAS® procedure PROC NLP, considering several different objective functions that can 
be used to meet the varying requirements a survey may have when resolving a balance 
complex. 
 
For the methods outlined below, let  be the cost of changing detail  i; , ,  and y  retain 
the previous definitions.  We assume that 0	 	 ∑ 0. 
 
Weighted Squared Difference (WSD): This approach is designed to minimize the 
weighted sum of the squared deviations of the perturbed values from the reported values. 
In this case the objective function is  	∑  . We include the reliability 
costs in the objective function as a means to control the frequency of which items are 
changed.  This method is equivalent to raking as proposed by Luery and Sigman (2000) 

when 
| |

 . 

 
Weighted Absolute Difference (WAD): As an alternative to WSD, we looked at 
minimizing the weighted sum of absolute differences between the reported and perturbed 
detail item values.  In this case, the objective function is	 ∑ | 	 |. 
 
Squared Difference of Ratios (SDR): This approach is designed to minimize the sum of 
the squared differences between the proportion of each detail to the summed total and the 
proportion of the perturbed detail to the reported total. Ultimately, the end goal is to 
preserve the reported distribution of the details to their summed total. In this case, the 

objective function is 	∑
∑

. 

 
Ratio of Absolute Totals (RAT): The SDR method does not always preserve the 
distribution of the details to their summed total when negative data are present. This is 
because the magnitude of the differences will be large if there is a change of sign between 
the reported and perturbed values. The RAT  approach compensates for distortion of the 
distribution that can occur when SDR is used.  It also prevents any ratios in the objective 
function from being larger than 1. This approach  minimizes the sum of the squared 
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differences in the proportions of the absolute value of the reported details to the sum of 
absolute value of details and the proportions of the absolute perturbed values of each detail 
to the sum of the absolute value of the perturbed details. In this case, the objective function 

is  ∑ | |

∑ | | ∑
 . 

 
There are three core constraints: 

 Most important, the details need to sum to the reported total y, i.e. ∑  
 Nonnegative items must have a solution that is greater than or equal to zero 
 Input zero values should not be perturbed. 

Additional constraints can be added depending on the requirements in the survey. In the 
following section, we describe an additional constraint that we implemented to meet the 
requirements of the QFR. 
 

4. Case Study 
 
For our case study we used data from the fourth quarter of 2012 through the third quarter 
of 2015 from the Quarterly Financial Report for a total of 12 statistical periods. We focused 
our research on reported data that fail at least one balance complex. This made it easy for 
us to compare our results to the analyst corrections, because we also had the analyst 
corrected versions of the data. We focused our research efforts on the B2 short form and 
long form balance complexes from Table 1, because these complexes included items that 
can contain negative values.  The aggregate data are subject to sampling error. However, 
we are focusing on individual companies and sampling errors will not change our results 
or conclusions. 
 
4.1. Implementation 
When implementing the considered methods for the QFR, there are some survey-specific 
considerations that need to be addressed. First, an additional constraint needs to be added 
to the three core constraints outlined in Section 3 to ensure the additivity rules of the QFR 
survey are met. As mentioned earlier, some items need to be held constant. So, we add the 
constraint that an item’s perturbed value must be equal to its reported value. 
 
Our proposed method(s) will be used for two different scenarios that rely on two very 
different philosophies.  In the first scenario, the analyst correction scenario, the optimized 
solution would be used in place of analyst corrections. In this scenario the philosophy is 
that some items’ values are more reliable than others in general, and we would want to 
modify the values accordingly. 
 
In the second scenario, the raking scenario, we are attempting to find an optimization 
method that can be used in place of raking. While the StEPS raking algorithm does not 
work perfectly with negative data, it does work well with positive data and is currently 
used in QFR.  The philosophy in this case is that for the most part, each item is equally 
reliable and the distribution of the details should be maintained to the furthest extent 
possible. 
 
For the analyst corrected scenario, we chose to employ costs according to how the staff 
accountants (analysts) choose to modify the balance complex items, independent of the 
order. Consequently, we consulted with them to understand how they decide which items 
to change when adjusting a failing balance complex. They provided us with four different 
levels, the verbal description of the costs, of how they make changes to the items as 
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presented in columns 2-5 in Table 2. They explained how there are some items that are 
never changed (e.g. totals), while other items can be classified as rarely changed, 
sometimes changed, or most likely to be changed. The last column lists items that should 
be held constant by schedule and form type. 
 

Table 2: Analyst Assigned Reliability Levels 
 Analyst Assigned Reliability Categories 

Most Likely 
to Change 

Sometimes 
Change 

Rarely 
Change 

Never 
Change 

Hold 
Constant 

B1 
Short 
Form 
Items 
 

Item 215 
Item 222 

Item 201 
Item 209 

Item 202 
Item 213 

Item 214 
 

Item 219 

B1 
Long 
Form 
Items 

Item 215 
Item 221 

Item 201 
Item 209 

Item 202 
Item 203 
Item 204 
Item 205 
Item 206 
Item  207 
Item 208 
Item 212 

Item 211 
Item 214 
Item 220 
 

Item 219 

B2 
Short 
Form 
Items 

Item 315 
Item 320 

Item 301 Item 304 
Item 306 
Item 309 
Item 310 
Item 313 
Item 316 
Item 319 

Item 322 
Item 326 

Item 319* 

B2 
Long 
Form 
Items 

Item 314 
Item 320 

Item 301 Item 303 
Item 306 
Item 307 
Item 308 
Item 310 
Item 312 
Item 316 
Item 318 

Item 302 
Item 305 
Item 311 
Item 317 
Item 327 
 

Item 317* 

* Item 317 and Item 319 were held constant for research purposes only and are not held 
constant during production. 
 
We use the analysts’ insight to assign numeric costs to the QFR items, where the higher 
costs indicates higher reliability, meaning it is less likely to be changed. Table 3 presents 
the final numeric values used for the WSD and WAD optimization methods.  We believed 
we could control the frequency at which a particular item would be changed by using costs, 
but it proved to be a bit more involved than that, because the costs really control the 
magnitude of the change and not necessarily the frequency. We began with a never-change 
cost of 200 and identified changes to “never change” items for over 90% of the resolved 
records. We kept increasing the cost for the “never change” items first to 1000, then 
1,000,000 and so on until we reached 10 trillion when we felt that the frequency of changes 
to the “never change” items was at an acceptable level. 
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Table 3: Numeric Values of Costs 

Categorization Cost 
Never Change 10,000,000,000,000 
Rarely Change 50 
Sometimes Change 25 
Most Likely to Change 1 

 
We only considered the WSD and WAD methods for the analyst corrected scenario, 
because applying costs when the goal is to maintain the distribution of details, as is the 
case in the raking scenario, is counterproductive. 
 
For the raking scenario, we considered the methods that are designed to preserve the 
distribution of the details, specifically the RAT and SDR methods. Additionally we 

employed the WSD optimization method with a cost of 
| |

 , because this should be 

nearly equivalent to the current raking method implemented in StEPS.  Currently, StEPS 
does not have the capability to hold an item constant for the nested balance complexes.  So, 
in our implementation for each method being compared to the StEPS raked value (RAK) 
we evaluated two sets of results, one where all items are allowed to change and the other 
with the specified item held constant. 
 
Table 4 below summarizes the considered methods and under which scenarios they are 
applied. 
 

Table 4: Methods Tested on Each Balance Complex by Objective 
 Objective 
Method Analyst Corrected Scenario Raking Scenario 
WSD Y, with reliability costs Y, with costs = 

| |
 

WAD Y, with reliability costs N 
SDR N Y 
RAT N Y 

 
4.2. Evaluation 
We considered several summary statistics to evaluate how closely the perturbations match 
the results obtained by currently employed analyst corrections and by the raking 
procedures. We look at statistics that serve as a gauge for how close each method matches 
the desired results for each scenario. We use the analyst corrected values as our target in 
the evaluation, but note that this is only a guideline and not a gold standard.  Analyst 
corrections can differ for the same case, and it would be impossible to match exactly how 
they correct the data. 
 
First, we look at the change frequency percentages at which items are substantively 
changed for each method. We define a substantive change for observation j as a change 
were the rounded absolute difference of the perturbed value and the reported value is 
greater than zero, i.e. , 	 , 0.  We calculate the percentage of times each 

detail i changes in statistical period t using method  m as  ∆ , ,
∑ ∆ , , ,

 where J is 

the number of eligible cases with out-of-balance complexes and ∆ , ,  is a zero-one 
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indicator of a substantive change. If the optimization solution matched the analyst 
correction, these change frequency percentages would be the same. 
 
A similar rate of change for each of the items being modified by the balance complex does 
not imply that the changes themselves are similar.  We measure this feature using the 
relative perturbation measure, defined as 
 

RelP , , 100 ∗
	 , , 	 , ,

	 , ,
, 

 
and the average relative perturbation as 
 

, ∑ RelP , , . 

 
For our recommended method, we are looking for the optimization method that results in 
average relative perturbations that are generally closest to the targeted scenarios average 
relative perturbations. 
 
These statistics help us gauge how close each method’s results are to the targeted scenario. 
However, it is also important that our recommended method would not make egregious 
changes to the estimates. After analyst review and correction is performed, the QFR data 
can still be machine-edited and changed for simple errors, so for this particular scenario it 
is very hard to gauge what the effect on the reported totals will be. However, raking occurs 
after imputation and just before estimation, so we are particularly interested in a method 
that will not have a severe effect on the totals estimates. In order to assess the effects on 
the estimates, we compare weighted total estimates of each detail item for each considered 
method along with StEPS raking for eligible observations that have out-of-balance 
complexes for each publication level industry, pl. These totals are defined as 
 

, , , , , , , ,  

 
where wi,t is the final weight used by the QFR. It is important to clarify the difference 
between a total estimate of a detail item and a total item.  A total estimate is the aggregate 
of a single detail item across all eligible observations, J, and a total item should be the 
aggregate of all detail items for a single observation, j. 
 
4.3. Analyst Corrected Scenario Results 
Below we present box plots that summarize our findings for the change frequency 
percentages for each of the considered reliability levels presented in Table 2 comparing the 
results of the applicable considered methods to the analyst corrected values, labeled AC. 
The results for the long form and short form were very similar and for brevity’s sake we 
will only present the short form results here. The long form results are available upon 
request. Figures 2 - 4 present box plots for the change frequency percentages for most likely 
change, sometimes, and rarely change details for the short form, respectively.  These plots 
show that in general our considered methods change the details more frequently than the 
analysts do. 
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Figure 2: Analyst Corrected Scenario - Boxplots of the Change Frequency Percentages for 
Most Likely Change Items for the QFR Short Form 2012Q4-2015Q32 

 
Figure 3: Analyst Corrected Scenario Boxplots of Change Frequency Percentages for QFR 
Short Form 2012Q4-2015Q3 Sometimes Change Detail 

                                                 
2 While the data are subject to sampling error, the sampling errors do not affect the conclusions 
from these results. 
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Figure 4: Analyst Corrected Scenario - Boxplots of Change Frequency Percentages for 
QFR Short Form 2012Q4-2015Q3 Rarely Change Details 

Figure 5 presents box plots of the change frequency percentages for the two never change 
detail items (Items 322 and 326) for the short form.  Here we see that our considered 
methods change the details less frequently than the analysts do. This is expected: we added 
an extremely high cost (reliability weight) to the never change items to ensure these items 
are not changed when solving the nonlinear optimization problem. 
 
We confirmed that the item we held constant, Item 319, remained constant for all balance 
complexes and the change frequency percentages were all equal to zero. However, the 
analysts do not work under this constraint for this particular item. Consequently, we do not 
expect our considered methods change frequency percentages to match that of the analysts, 
and we do not present that comparison here. 
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Figure 5:  Analyst Corrected Scenario - Boxplots of Change Frequency Percentages for 
the QFR Short Form 2012Q4-2015Q3 Never Change Details 

For this analysis we focused on getting the never change reliability weights to the 
appropriate level, and these results confirm that we selected an effective value. Looking at 
change frequency percentages for the rarely change reliability level items, we could use a 
similar process to assign the rarely change weight value. Ultimately, these change 
frequency percentages indicate that it is possible to meet the requirements outlined by the 
analysts. 
 
In addition to the importance of obtaining similar change frequency percentages it is also 
important that the considered methods perturb the detail items on average in a way that 
reflects the reliability categories defined by the analysts. To assess this, we start by 
examining summary boxplots of the average relative perturbations for the most likely 
change and sometimes change reliability level detail items in Figures 6 and 7. While we 
are trying to match the requirements outlined by the analysts, we will look at the actual 
analyst corrections to see how their corrections are to the targeted requirements. We find 
that our considered methods, WSD and WAD, perturb the values by a higher magnitude 
than the analysts in these cases. These items have the lowest reliability costs and it is 
unsurprising that they are changed more frequently and the magnitude of the change is 
consistently larger. 
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Figure 6: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation for 
the Most Likely Change QFR Short Form 2012Q4-2015Q3 Detail Items 

 

Figure 7: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation for 
the Sometimes Change QFR Short Form 2012Q4-2015Q3Detail Items 

Next, we look at box plots of the average relative perturbations for the rarely change items. 
We find that the perturbations that result from the WSD method are similar in value to the 
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analyst corrections for four of the six detail items. We present the box plots of items 304 
and 306 in Figure 8 and 313 and 316 in Figure 9. 

 
Figure 8: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation for 

Rarely Change QFR Short Form 2012Q4-2015Q3Detail Items 304 and 306 

 

 
Figure 9: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation for 

Rarely Change QFR Short Form 2012Q4-2015Q3Detail Items 313 and 316 
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For two of the items, 309 and 310 present in Figure 10, the WSD and WAD methods result 
in larger perturbations than the analyst changes.  Perhaps, modifying the assigned 
reliability cost values as discussed with the previous results may help to bring these average 
relative perturbations down to the analyst levels. 
 

 
Figure 10: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation 

for Rarely Change QFR Short Form 2012Q4-2015Q3 Detail Items 309 and 310 

 
We find results that are more consistent with the analysts’ stated preferences for the average 
relative perturbations for the never change items, 322 and 326, presented in Figure 11. 
Here, we see that our considered method had comparable  perturbations when compared to 
the analyst corrections for detail 326.  However, we note that the WSD and WAD methods 
resulted in smaller perturbations than the analyst corrections. In this case the WSD and 
WAD methods are optimizing according the assigned reliability levels, but the analysts are 
not. 
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Figure 11: Analyst Corrected Scenario - Boxplots of the Average Relative Perturbation 

for Never Change QFR Short Form 2012Q4-2015Q3 Detail Items 322 and 326 

 
After looking at the difference with the change frequency percentages and the average 
relative perturbations, we noted some discrepancies between the results from our 
considered methods and the analyst corrections that indicated perhaps we were meeting the 
requirements of the assigned reliability level, but the analysts did not seem to be correcting 
that data at that same level. We took these results to the analysts and they are revisiting the 
assigned reliability levels. In the meantime, we are reassessing the values of the costs 
assigned to the rarely change reliability level.  However, we have shown that we can use 
these optimization methods to come up with solutions that can conform to the analysts’ 
specifications. 

 
4.4. Raking Scenario Results 
For the methods that attempt to replicate the desirable properties of the raking algorithm, 
the results from the short form and the long form had similar patterns, and much like the 
previous section for brevity’s sake we present the short form results here. Before we present 
the results for the raking scenario, recall that the StEPS raking algorithm does not allow an 
item to be held constant, but this is a requirement for the QFR balance complexes. The 
results we present in this section have item 319 held constant and the comparison to the 
raking results is not direct. However, we looked at these results without item 319 held 
constant and the differences were minimal. 
 
Figures 12 and 13 present summary box plots for the change frequency percentages for all 
of the short form items (except 319) using the applicable considered methods compared to 
StEPS raking (RAK).  Here most of the box plots show a similar pattern, where the RAK 
method and the WSD method are pretty well aligned and the RAT and SDR are distinctly 
different from the RAK and WSD methods.  One exception is detail 316, where all of the 
methods have similar change frequency percentages.  It does appear that raking has a 
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slightly smaller change frequency percentage on average when compared to the WSD 
method. However, in general this difference appears to be less than five percent and would 
only be a big concern if the average relative perturbations also differed substantially. 
 

 
Figure 12: Raking Scenario - Boxplots of Change Frequency Percentages for the QFR 

Short Form 2012Q4-2015Q3 Details 
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Figure 13: Raking Scenario - Boxplots of Change Frequency Percentages for the QFR 

Short Form 2012Q4-2015Q3 Details Continued 
 
Looking at the average relative perturbations we found similar patterns for all of the detail 
items. The RAK and WSD methods had very similar average relative perturbations but the 
RAT and SDR methods were distinctly different and generally had larger magnitudes. 
Additionally, as shown in Table 5, which shows the average relative perturbations for detail 
item 310, the magnitude of the RAT and SDR perturbations is a lot larger than the 
magnitude of the RAK and WSD methods. The WSD average relative perturbations are 
slightly higher and more variable than the RAK average relative perturbations. 
 

Table 5: Raking Scenario - Average Relative Perturbation Change QFR Short Form 
2012Q4-2015Q3Detail Items 310 

Statistical 
Period 

SDR RAT WSD RAK 

2012Q4 29.50 42.82 23.83 12.59 

2013Q1 107.15 109.58 16.49 21.15 

2013Q2 390.96 -2.53 0.55 0.34 

2013Q3 127.24 123.15 42.09 29.64 

2013Q4 2681.31 2688.57 19.39 6.96 

2014Q1 78.38 63.51 9.72 8.76 

2014Q2 47.29 47.69 29.39 19.64 

2014Q3 542.21 229.39 11.48 13.87 
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2014Q4 547.58 58.07 13.29 15.53 

2015Q1 96.38 90.33 7.75 8.92 

2015Q2 16.68 9.08 1.37 5.37 

2015Q3 65.36 68.18 2.00 0.95 

 
We created box plots summaries for detail item 310 of the RAK and WSD methods average 
relative perturbations, allowing us to visualize the difference between the two methods. 
Figure 14 presents these box plots and it can be seen that there is a good deal of overlap 
between the average relative perturbations. 
 

 
Figure 14:Raking Scenario - Boxplots of the Average Relative Perturbation Change 

Short QFR Short Form 2012Q4-2015Q3Items 310 

Looking at similar box plots comparing only the RAK and WSD methods, we did find one 
detail item, item 326, where the average relative perturbations were drastically different.   
Figure 15 shows this difference.  The WSD average relative perturbations are of a much 
larger magnitude than the RAK method.  However, this is expected and not cause for 
concern because item 326 can take on negative values and the two methods differ in how 
they treat negative values. 
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Figure 15 Raking Scenario - Boxplots of the Average Relative Perturbation Change QFR 

Short Form 2012Q4-2015Q3Detail Items 326: 

Looking at the change frequency percentages and the average relative perturbations it does 
not appear that WSD method would be a severe departure from the currently implemented 
RAK method. It appears that the two methods are likely to provide comparable estimates 
of totals. To this, we looked at the weighted totals across observations that had out-of-
balance complexes for all of the applicable methods to determine how well they tracked 
with the raking weighted total. 
 
Again looking at detail item 310, we present the weighted totals of all observations with 
out-of balance complexes in Figure 16. Here it appears that the WSD method tracks nearly 
identical to the RAK method, suggesting that the change to the totals with the WSD method 
would be minimal. 
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Figure 16:Raking Scenario – Plots of Weighted Totals for QFR Short Form 2012Q4-

2015Q3Detail Items 310 

There was one instance where the WSD and RAK methods totals did not appear to be 
identical and that was for item 322 shown in Figure 17.  This is an item that can be 
negatively valued, thus we anticipate differences but the differences do not look severe. 

 
Figure 17:Raking Scenario – Plots of Weighted Totals for QFR Short Form 2012Q4-

2015Q3Detail Items 322 
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5. Conclusion 
 
At the beginning of this project we sought to find a method to resolve out-of-balance 
complexes that could contain real valued data items.  However, as the project continued 
more requirements were provided to us and two different scenarios emerged. In the first 
scenario, we were attempting to match a procedure that has a human element to it and is 
therefore subject to a random analyst error. In the second scenario, we were trying to match 
a sometimes inconsistent or erroneous automated procedure.  Of all of the methods that we 
considered, only the WSD method could be applied to both scenarios easily. This is 
particularly appealing, because we have found an automated procedure for adjusting failing 
balance complexes that is flexible enough that it can work with the constraints provided 
for both scenarios. 
 
Narrowing down the method was just the beginning. There is still much work to be done 
regarding implementation and setting up the parameters so that transitioning to this new 
method is as seamless as possible. This includes adjusting the costs to more appropriately 
adjust the rarely change items. This also includes looking into why the WSD method can 
result in lower weighted totals than the RAK method does. Finally, we would like to 
continue this analysis on additional balance complexes like Assets (C223) from the QFR 
and balance complexes from other economic surveys. 
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