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Abstract
Following its justification in widely cited papers (McCarthy 1969, Krewski and Rao 1981, Fay

1984, 1989), Balanced Repeated Replication (BRR) has become a standard method for variance
estimation in large complex surveys, especially in the US. However, it is also known that BRR vari-
ance estimates for very small domains are unreliable. Survey point estimates for small domains are
often based on empirical-Bayes small area estimation models (Rao and Molina 2015), with vari-
ances estimated through parametric-bootstrap methods. This paper presents theory and practical
details for a novel hybrid method, in which variances are estimated via parametric-bootstrap repli-
cations nested within BRR weight-replications. The method is presented first in general settings
where categories are modeled within larger (but sometimes still small) domains. Then the results
are specialized to the Dirichlet-multinomial hierarchical model describing small outcome propor-
tions developed in the recent estimation from 2010-2014 American Community Survey data of
language-minority and English proficiency characteristics in support of alternative-language ballot
assistance determinations under Section 203(b) of the Voting Rights Act of 1965.

Key Words: American Community Survey, Balanced Repeated Replication, Dirichlet-Multi-
nomial, Parametric Bootstrap, Small Area Estimation, Successive Difference Replication

1. Introduction

This paper concerns the problem of variance estimation arising in small area estimation
based on a large survey. Suppose that it is desired to estimate population fractions or totals
in disjoint subdomains C nested within somewhat larger domains D, where D may be
large enough for design-based estimation but C is generally not, so that estimation of C-
within-D proportions are to be achieved via small-area prediction. We assume that there
are sufficiently many comparable domains C for which area-level predictors for C or D
are available so that mixed-effect small area models make sense to fit. The topic of this
paper is how to estimate variances of C-within-D proportions when Balanced Repeated
Replication (BRR) variances for D totals are available and the models for observed data in
terms of underlying proportions are assumed to be properly specified.

To fix ideas, let the domainsD be indexed by j = 1, . . . ,m, while disjoint sub-domains
C are indexed by (c, j), for c = 1, . . . ,K. Let the true unknown populations of these
subdomains Ccj be denoted by Ncj and that of Dj by Nj . Sampled individuals are indexed
by i ∈ S and have survey weights w = (wi, i ∈ S), and we assume that survey-weighted
unbiased estimators

N̂j =
∑

i∈S∩Dj

wi , N̂cj =
∑

i∈S∩Ccj

wi

based on respective sample sizes nj , ncj are available and design-consistent but that ncj
are too small for the estimators N̂cj to be reliable. For simplicity, the disjoint domains Dj

will be treated as poststrata, with counts nj (but not ncj) regarded as nonrandom and fixed.
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Suppose also that vectors Xj of predictive variables at domain level are observed or
known, and that the sample-weighted estimators treated as data follow a two-level small-
area model,

πj ∼ f(p, θ,Xj) , πj = (πcj , c = 1, . . . ,K) , πcj ≡ Ncj/Nj (1)

where f is a probability density of known form with probability-vector dummy argument
p, and its unknown parameter θ will involve regression coefficients for Xj that may be
different for predictions applicable to each subdomain Ccj , leading to

Y j ≡ (Ycj , c = 1, ...,K) ∼ Multinomial(nj , πj) , Ycj ≡ njN̂cj/N̂j (2)

The rescaled sample counts Ycj for subdomain Ccj may not be integers, and may either be
rounded or analyzed using a likelihood extended to allow non-negative non-integer data.
Model (1)–(2) is interpreted conditionally given {nj , Xj}mj=1 and assumes that (πj , Y j)
are independent across domain-indices j. Although one might imagine a stochastic mecha-
nism by which N̂j and (Y j , πj) could be dependent (cf. Remark 1 at the end of Section 1.2),
the model formulation is completed here by assuming independence:

N̂j is independent of (Y j , πj) (3)

As a corollary of this assumption and the independence of (N̂j , Y j , πj) across j, it follows
immediately that N̂j is independent of the maximum likelihood (ML) estimator θ̂ of θ.

In this setting, the targets of estimation or prediction are the subdomain population
totals Ncj and functions of them. These predictions will be made following the Empiri-
cal Best Linear Unbiased Prediction (EBLUP) strategy (Rao and Molina 2015): first the
fixed-effect parameters θ are estimated by maximum likelihood (ML) from the combined
observable dataset (Y j , j = 1, . . . ,m), and then the targets Ncj = Nj πcj are estimated
by substituting parameter estimates N̂j and θ̂ into Eθ(πcj |Y j), in the particular form

Ñcj = N̂j Eθ(πcj |Y j)
∣∣∣
θ=θ̂

or Ycj + (N̂j − nj)Eθ(πcj |Y j)
∣∣∣
θ=θ̂

(4)

(Another reasonable choice for the estimator Ñcj is ncj + (N̂j−nj)Eθ(πcj |Y j)
∣∣∣
θ=θ̂

, and
this is the estimator that was used in producing the data results of Section 3. However, the
theory underlying the variance-estimation method of this paper applies only to the count
estimates (4), since ncj is not separately modeled in (1)-(2) while Ycj is.) This setting is
actually common, since large surveys are often planned to enable design-based inference
at the level of aggregation of domains which correspond to our Dj . But then the desire
for finer-grained survey inference requires parametric small-area models, and the variances
incorporate variability of both survey-weighted and parametrically modeled components.
Taking account of both types of variability simultaneously is the subject of this paper.

The variability of predictions Ñcj (and ratios of them) comes about in two ways: first,
through N̂j which is not model-based, with variability asssessed through BRR, and sec-
ond, through Ycj with variability assessed through parametric bootstrap under model (1)–
(3). The randomness in N̂j is due to the sampling mechanism, acting through the unequal
weights associated with the nj randomly selected individuals in domain j. However, the
parametric statistical model (1)–(3) is assumed to govern the proportions πcj of domain
j population within respective subdomains Ccj , as well as the scaled sample counts Ycj .
The ‘hybrid’ variance estimators studied in this paper combine the two levels of error. In
general, the vector of Ycj counts may be stochastically dependent on N̂j . (See Remark 1
below for discussion of this point.)
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1.1 BRR methods

BRR methods of variance estimation attempt to embody design-based quadratic-form esti-
mators of variance for a survey-weighted point estimator in the form of a weighted sample
variance of the point estimator recalculated with a series of alternative weight-columns
w(r) = (w

(r)
i , i ∈ S) indexed by r = 1, . . . , R. (In later notations, we occasionally use

w
(0)
i ≡ wi to denote the original column of survey weights.) The perspective of Fay (1984,

1989) is that with sufficiently many replicates, corresponding to pairs either of Primary
Sampling Units (PSUs) or of split samples from single PSUs, quadratic-form variance es-
timators can be made exactly equal to such a scaled sample variance. The underlying
theoretical assumption is that weighted totals of survey attributes within paired PSUs or
split-samples can be treated as independent identically distributed (iid) random variables.
Depending on the choice of paired, split, or paired and split PSU samples, the alternative
weight-columns are products of w by linear combinations of the vector 1 of 1’s and of
one or two columns of ±1’s taken from a so-called Hadamard matrix {aj,m} of ±1’s with
orthonormal columns orthogonal to 1. In the case of paired PSUs or a single split PSU
within selected strata, the replicate weights for r ≥ 1 are given, following Fay (1984), as

w
(r)
i ≡ wi · (1 +

1

2
aj,r (−1)h) , j = Strat(i), h = h(i)

where each sampled individual i belongs to a unique split or paired PSU indexed as h(i) =
1, 2 within a unique (pseudo-) stratum j = Strat(i) that contains i. With full degrees
of freedom, the number of replicates can be taken between M-1 and M-4, where M is
the total number of PSUs and split half-PSUs. Design-based quadratic-form estimators
of variance of survey-weighted totals – usually chosen to be unbiased, but in systematic-
sampling settings this is impossible and a biased quadratic form is allowed (Fay 1989) –
are expressed exactly in terms of the replicate-weight estimators by equation (5). Then the
large-sample properties of the BRR variance estimators are exactly those of the underlying
quadratic form estimator. Large-sample properties of nonlinear functions of the survey
point-estimator are obtained as in Krewski and Rao (1981) by linearization and the Delta
Method.

Software implementations of BRR in Census Bureau surveys generally allow fewer
than the full number (usually many hundreds) of degrees of freedom, grouping indices j
more coarsely to allow R = 80, but after such reduction the orthonormality relations in the
resulting Hadamard-matrix columns {aj,r}mj=1 are only approximate (often satisfying the
equations below with an error of order 0.01–0.02): for all distinct j, j′,

R−1
R∑
r=1

aj,r ≈ 0 , R−1
R∑
r=1

a2j,r ≈ 1 , R−1
R∑
r=1

aj,r aj′,r ≈ 0

The large-sample properties of BRR estimators with reduced degrees of freedom are largely
undocumented, as far as we are aware. Nevertheless, this is the form in which the method
is generally used in large national surveys. With replicate weight-columns w(r) and vector
attribute Zi, the BRR variance-estimator V̂ BRR for a function g( ˆ̄Z) of weighted (Horvitz-
Thompson) survey estimators of the mean of Zi’s in a frame population of size N is

V̂ BRR =
4

R

R∑
r=1

(g( ˆ̄Z(r))− g( ˆ̄Z(0)))2 , ˆ̄Z(0) =
1

N

∑
i∈S

wiZi ,
ˆ̄Z(r) =

1

N

∑
i∈S

w
(r)
i Zi

(5)
A further adaptation of BRR, called Successive Difference Replication (Fay and Train

1995), is based on sorting a survey sample into segments using survey variables and treating
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consecutive paired segments as approximate replicates. That is the approach to variance
estimation used in the American Community Survey (ACS 2012). See Wolter (2007) for a
general summary of BRR methods.

1.2 Parametric Bootstrap

In survey settings involving Small Area Estimation, where model-based methods enjoy
wide acceptance, variances of survey-based statistical estimators are often found using
Parametric Bootstrap methods. This is too large a topic for a self-contained introduction
here, and we refer to the book of Shao and Tu (1995) for background. The idea is the same
as a pure Monte Carlo study of variability with a large number B of iid replicates within a
specified model, with unknown parameters replaced by the ML estimates from actual data.
(Here and below, ML estimates might be replaced by other consistent estimates with vari-
ances of the same order 1/m, but some of the excellent properties of parametric bootstrap
do seem to depend on the parameter being chosen either as the ML estimator or at least
approximately from a posterior distribution, which under the regularity conditions of the
Bernstein- von Mises theorem will differ at most O(1/m) from the ML estimator.) While
a Monte Carlo study generates replication-based estimates of expectations of complicated
functions – including variances of estimators and predictors – from data of a given struc-
ture at a single fixed parameter, the parametric bootstrap is justified in large samples by the
proximity of the ML estimator to the unknown parameter values governing the data.

Based on a fixed (or ML estimated) vector θe, and a fixed set of sample sizes nj and
domain-level covariate vectors Xj for j = 1, . . . ,m, imagine generating sets (π

(b)
j , Y

(b)
j ,

j = 1, . . . ,m), where π(b)cj ≡ N
(b)
cj /Nj and Y (b)

cj ≡ n
(b)
cj N̂

(b)
cj /N̂j , independently across j

and iid from model (1)–(3) across b = 1, . . . B for a large number B:

π
(b)
j

indep∼ f(p, θe, Xj) , Y
(b)
j

indep∼ Multinomial(nj , π
(b)
j )

The ML estimators of θe from data (Y
(b)
j , j = 1, . . . ,m) conditionally given Xj , nj

for j = 1, . . . ,m will be denoted θ̂(b), and domain-specific predictors of π(b)j by

π̂
(b)
j = Eθ

(
π
(b)
j |Y

(b)
j

) ∣∣∣
θ=θ̂(b)

By the law of large numbers, empirical averages such as

B−1
B∑
b=1

h(θ̂(b), π̂
(b)
j ) , B−1

B∑
b=1

(
π̂
(b)
j − π

(b)
j

)⊗2
(where v⊗2 for a vector v denotes v v′, and v′ denotes transpose) estimate well-defined
population quantities that are functions of (the fixed data nj , Xj and) the model parameter
θe. Parametric-bootstrap estimators would generally estimate the unconditional expecta-
tions of quantities h(θ̂(b), π̂

(b)
j ), but in our setting it is important to emphasize that they

can estimate only expectations conditionally given the design-based total-estimates N̂j .
The need for a hybrid estimator becomes clear when we try to estimate mean-squared pre-
diction error (MSPE) from empirical averages of expressions involving estimates N̂j . In
that case the two kinds of variability (design-based for N̂j and model-based for π̂j) interact.

For each r = 1, . . . , R, alternative replicate estimators

N̂
(r)
j =

∑
i∈S∩Dj

w
(r)
i , N̂

(r)
cj =

∑
i∈S∩Ccj

w
(r)
i
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are generated, from which replicate ML estimators θ̂(r) are fitted to model (1)–(2) on data
nj N̂

(r)
cj /N̂

(r)
j . Then parametric bootstrap samples are drawn based on θe ≡ θ̂(r), also for

r = 0 which corresponds to the case of the original data Ycj based on estimates N̂cj with
weights wi, and all bootstrap loops are nested within loops of replicate-weights indexed
by r. Since assumption (3) implies that πj and Y j are stochastically independent of N̂j ,

it follows that π(b)j , Y
(b)
j and θ̂(b) are stochastically independent of N̂j and N̂ (r)

j for fixed

θe. However, the bootstrapped quantities Y (b)
j , π

(b)
j drawn in this way will generally de-

pend on the index r through θe = θ̂(r). For this reason, we generated the bootstrapped
data π(b)j , Y

(b)
j nested within loops of replicate-weights indexed by r. These conventions

on nested parametric bootstrapping are indicated notationally by placing an asterisk and
‘r’ wherever bootstrap indices (b) appear. Thus the bootstrapped quantities are denoted
π
∗(r,b)
j , Y

∗(r,b)
cj , θ̂∗(r,b), etc., where r = 0, 1, . . . , R. The estimated domain counts N̂ (r)

j

are not bootstrapped, and the weighted replicate subdomain estimates N̂ (r)
cj are used only

in the rescaled variables nj N̂
(r)
cj /N̂

(r)
j and in the resulting ML estimates θ̂(r) which play

the role of true parameters for parametric-bootstrap under the r’th weight-replicates.

Remark 1 Especially when the number of sampled individuals withinDj is very small, it is
easy to see that the design-based ratios N̂cj/N̂j may be dependent on N̂j . The randomness
of N̂cj depends both on the number of sampled Dj persons in Ccj but also on the weights
associated with those individuals. The form of model (2) does not depend on the estimated
numbers N̂cj of sampled Ccj persons, and we have imposed an assumption (3) of indepen-
dence and done our bootstrap sampling nested within fixed N̂ (r)

j . Then (π
∗(r,b)
j , Y

∗(r,b)
j ) is

related to N̂ (r)
j only through dependence of both on θ̂(r). The validity of assumption (3)

may be investigated by exploratory data-analytic comparison of the degree of dependence
of (Ycj , N̂j) versus that of (Y

∗(r,b)
cj , N̂ (r)), but we have not done that in the real application

to ACS data in this paper. 2

2. Hybrid BRR and Bootstrap

The idea behind the nested replicate-bootstrap loops described in the previous section is to
estimate the variability of predictors Ñ c

j (defined in the second way within (4)) in terms of
levels of error from N̂j in estimating Nj and from π̂j in predicting πj . Since the estimates
Ñcj aim to predict Ncj = Nj · πcj , which according to our formulation (1) contains πcj as
a random domain effect, the overall measure of prediction error to be estimated is the Mean
Squared Prediction Error, MSPEcj = E(Ñcj − Nj πcj)

2. Here and below, the expectation
is defined both over the design and the model, conditionally given nj and the covariates.
This MSPE is decomposed as in Analysis of Variance, based on the idea of estimating the
separate errors at Nj and πcj level. Using Ñcj = Ycj + (N̂j − nj)π̂cj , we find

Ñcj − N̂j πcj = {Ycj − nj π̂cj + Nj(π̂cj − πcj)} + (N̂j −Nj)(π̂cj − πcj)

so that by (3) and unbiasedness of N̂cj for Ncj ,

E
(
Ñcj − N̂j πcj

)2
= E

(
Ycj − nj π̂cj + Nj(π̂cj − πcj)

)2
+ Var(N̂j)E(πcj − π̂cj)2

and similarly

E
(
Ñcj − Nj πcj

)2
= E

(
Ycj − nj π̂cj +Nj(π̂cj − πcj)

)2
+ Var(N̂j)E((π̂cj)

2)
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so that (by subtracting the first of these last two equations from the second), MSPEcj =

E
(
Ñcj − Nj πcj

)2
= E

(
Ñcj − N̂j πcj)

)2
+ Var(N̂j)E

(
(π̂cj)

2− (πcj − π̂cj)2
)

(6)

The purpose of the four preceding displayed equations was to express MSPEcj in terms
of bootstrap residuals

e
∗(r,b)
cj = Ñ

∗(r,b)
cj − N̂

(r)
j π

∗(r,b)
cj and ε

∗(r,b)
cj = π̂

∗(r,b)
cj − π

∗(r,b)
cj (7)

instead of expressions involving Nj , which is not known and not modeled. This step is im-
portant, since the residual expression Ñcj − Nj πcj cannot be bootstrapped and although
N̂

(r)
j is computed from weight-replicates for purposes of design-based variance estimation,

these quantities are not independent replicates of the unknown Nj across r .
To develop the decomposition of MSPEcj , using the notation ejc ≡ Ñcj − N̂j πcj and

the independence (3), we expand

E(e2cj) = E(ecj − E(ecj | N̂j))
2 + E

(
E(ecj | N̂j) − E(ecj)

)2
+ (E(ecj))

2 (8)

To estimate the three terms in this decomposition from the nested replicate-weight boot-
strap, we define respective Within, Between and Bias2 terms, using the notations

ē
∗(r+)
cj ≡ 1

B

B∑
b=1

e
∗(r,b)
cj , Within({e∗(r,b)cj }) =

1

R(B − 1)

R∑
r=1

B∑
b=1

(e
∗(r,b)
cj − ē∗(r+)

cj )2

Betw({e∗(r,b)cj }) =
4

R

R∑
r=1

(ē
∗(r+)
cj − ē∗(0+)

cj )2 , Bias({e∗(r,b)cj }) =
1

R

R∑
r=1

ē
∗(r+)
cj

The Within estimator represents an unconditional design-based estimator of the bootstrapped
conditional variance of the residual e∗(r,b)cj given N̂ (r). The idea in the Between term is to
estimate the r’th replicate of E(ecj | N̂j), viewed as a nonlinear function of N̂j , via the
bootstrap-averaged within-r residuals ē∗(r+), and to use the replicates to estimate the un-
conditional variance of E(ecj | N̂j) by the standard BRR recipe (5). The summed terms on
the right-hand side of (8) are estimated by

Ê(e2cj) = Within({e∗(r,b)cj }) + Betw({e∗(r,b)cj }) +
(

Bias({e∗(r,b)cj })
)2

(9)

where the laws of large numbers underlying the Parametric Bootstrap imply the consistency

1

B − 1

B∑
b=1

(e
∗(r,b)
cj − ē∗(r+)

cj )2
P→ Var(ejc | N̂j = N̂

(r)
j ) , ē

∗(r+)
cj

P→ E(ecj | N̂j = N̂
(r)
j )

for fixed r and B → ∞. The probability limits in this last display are then regarded
as nonlinear functions of the replicate-weight domain j population estimates which when
averaged over the full set of r = 1, . . . , R replicates are approximately equal to the design
expectations over N̂j .

Remark 2 There is no theoretical justification for treating weight-replicated estimates
N̂

(r)
j as independent identically distributed variables across r. A law of large numbers

over indices r might be justified for large domains by viewing N̂ (r)
j as a weighted sum
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of many independent terms corresponding to primary sampling units (PSUs). For small
domains and reduced sets of replicates, this approximation is likely not to be very good.

There is another justification for estimates based on averaging over r. In settings where
the number m of domains is large and the model (1)–(3) holds, under some assumptions
the estimates θ̂(r) can be shown to be close in the sense of convergence in probability to
the true parameter values θ. The dependence of residuals ecj on N̂j when θ̂(r) estimates are
replaced by θ is linear, so that the MSPE terms are linear or quadratic, and in that case
the justifications of large-sample BRR consistency in Krewski and Rao (1981) hold, when
R and Dj are large, just as they do for

V̂ BRR(N̂j) =
4

R

R∑
r=1

(N̂
(r)
j − N̂j)

2 2

The reasoning of the previous paragraphs justifies the accuracy for large B, large do-
mains Dj and large sets of distinct replicates, of the estimation of mean-squared error
E(ecj)

2 by (9). Similar reasoning support the accuracy (for large B,R, and Dj) of

Ê(εcj)
2 = Within({ε∗(r,b)cj }) + Betw({ε∗(r,b)cj }) +

(
Bias({ε∗(r,b)cj })

)2
(10)

as an estimator of E(εcj)
2. Averaging over both replicate and bootstrap iterations provides

a similarly justified estimator

Ê((π̂cj)
2) =

1

BR

R∑
r=1

B∑
b=1

(π̂
∗(r,b)
cj )2 for E(π̂cj)

2

These results, together with the formula (6) for MSPE cj = E(Ñcj −Njπcj)
2, establish

Proposition 1 For large B,R, and Dj , subject to the caveats of Remark 2, the estimator

M̂SPE cj = Within({e∗(r,b)cj }) + Betw({e∗(r,b)cj }) +
(

Bias({e∗(r,b)cj })
)2

+ V̂ BRR(N̂j) ·

{ 1

BR

R∑
r=1

B∑
b=1

(π̂
∗(r,b)
cj )2 − Within({ε∗(r,b)cj }) − Betw({ε∗(r,b)cj }) −

(
Bias({ε∗(r,b)cj })

)2}
is an accurate estimator of MSPE cj .

The terms in this formula multiplying V̂ BRR are grouped as ‘Between’ terms together
with Betw({e∗(r,b)cj }). Then the three types of terms are interpreted as follows: Within terms
for e residuals reflect the average (over replicate-weights) contribution to mean-squared e
residuals of bootstrap iterations bwithin r; Bias-Squared terms for e reflect the contribution
to variability of averaged e residuals and measure errors in proper centering across r; and
all other terms viewed as Between terms reflect variability due to variance contributions
from sampling differences arising from different replicate weights.

It is evident that the MSPE estimates obtained by the hybrid method described here are
available only for domains j with positive sampled and true counts nj , Nj . Thus, in the
next section, jurisdictions j without sample nj are out of scope for estimates and variance
predictions. Only a purely synthetic or model-based prediction of πj could be hoped for in
such jurisdictions.
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Remark 3 There is a further modification of the variance estimation formula which can be
implemented, for computational savings, by basing the BRR loop on a subset of L weight-
replicates sampled from the full set {1, . . . , R} of available replicates. (In our application
below to Hispanic data from ACS 2010-2014, R = 80 and L = 40.) In this case, the
replicate-weight indices r range over L values selected as a simple random sample L of L
elements from 1 to R. Then the BRR variance formula changes to

V̂ BRR
L (N̂j) = 4

L− 1

L
Var({N̂ (r)

j }r∈L) + 4
( 1

L

∑
r∈L

N̂
(r)
j − N̂j

)2
The Betw terms in Prop. 1 change similarly, and the other averages R−1

∑R
r=1 in the

final variance formula, including those in Within and Bias, change to L−1
∑

r∈L. 2

3. Implementation on ACS 2010-2014 Data

Section 203(b) of the Voting Rights Act of 1965 as amended in 1975 requires that US states
and political subdivisions must in certain circumstances make voting materials available
in languages other than English. These circumstances are specified in terms of the sizes
and proportions of designated population subgroups measured by the decennial census and
most current available American Community Survey (ACS), as determined from these data
sources by the Director of the Census Bureau. See https://www.census.gov/
rdo/data/voting_rights_determination_file.html for additional details.

The population subgroups whose estimated sizes figure into the law are the numbers of
voting-age persons within states and ‘jurisdictions’ and American Indian or Alaska Native
(AIAN) voting-age persons within American Indian Areas (AIAs), who also fall into one
of 68 specified racial/ethnic Language Minority Groups (LMGs) and are either Citizens,
Limited English Proficient (LEP) Citizens, or Illiterate LEP Citizens. The ‘jurisdictions’
are the political units which run local elections, counties except in 8 ‘MCD states’ where
Minor Civil Divisions (MCDs) are the relevant units. The sizes of the Citizen, Citizen LEP,
and illiterate Citizen LEP subpopulations of the intersections of the political subdivisions
and LMGs range from quite large (as, for example, Hispanics within large cities or large
border-state counties) to very small (for the smaller Asian LMGs, or AIAN tribal groups
outside the areas near their AIAs or reservation areas). For this reason, the estimates of
population sizes and fractions within these small population domains, which is how we
refer to these intersections, may be based on very small sample-sizes in the 5-year 2010-
2014 direct ACS survey-weighted estimates.

The methods of this paper were developed in connection with the Voting Rights Act
Section 203(b) determinations recently released (Dec. 5, 2016) by the Census Bureau based
on ACS 2010-2014 data. Related methods for Section 203(b) determinations in 2011, de-
veloped by Joyce et al. (2014), were based on ACS 2005-2009 data but also made direct use
of decennial 2010 Census totals Nj . The estimation of population proportions in the cate-
gories of Citizen, LEP Citizen, and illiterate LEP Citizen within the universe of voting-age
Language Minority Group persons was done in 2016 using a Dirichlet-Multinomial model
which is a special case of the model (1)-(3) given in the Introduction. We introduce the
model in a slightly simplified setting, considering only a single LMG (Hispanic, the largest
one) and as domains Dj only the 6837 jurisdictions (2897 counties and 3940 MCDs) in
which ACS sampled at least one Hispanic voting-age person in 2010-2014, and only three
c categories: non-citizen (c=1), non-LEP citizen (c=2) and LEP citizen (c=3). The Voting
Rights Act Section 203(b) requires not only the estimation of the LEP citizen population
in each LMG, both as a count and as a proportion of the overall citizen population, within
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jurisdictions, but also other counts and proportions in other political subdivisions. In this
section, and in the data results, we restrict attention to estimation of LEP citizen counts for
the Hispanic LMG.

The Dirichlet-Multinomial model used in this application (for each LMG) had the form
(1)–(3) in which (1) is specified as

(π1j , π2j , π3j) ∼ Dirichlet(τ
√
nj , (1− µj , µj(1− νj), µjνj)) (11)

where Dirichlet(m, (p1, p2, p3)) is the density on 3-entry probability vectors which is
proportional to xmp11 xmp22 (1− x1 − x2)mp3 , the unknown parameter is θ = (τ, β, γ), and
where domain-level parameters µj , νj are expressed in terms of coefficient vectors β, γ of
the same dimension d as the predictive domain-level covariates Xj in the form

µj = exp(β′Xj) / (1 + exp(β′Xj)) , νj = exp(γ′Xj) / (1 + exp(γ′Xj))

For this model, the conditional expectations used in predictors take the explicit BLUP form

Eθ(π3j |Y j , Xj) = (τ
√
nj µj νj + Y3j)

/
(τ
√
nj + nj) (12)

after which the predictors π̂3j are given by the same formula with ML estimates µ̂j , ν̂j
obtained by substituting respective MLEs β̂, γ̂ for β, γ in the defining formulas for µj , νj .
The predictor variables Xj used in fitting this Hispanic LMG model are: State-level rates
of citizenship within Hispanic voting-age population and of LEP within Hispanic citizens;
Jurisdiction-level proportions of Hispanic persons who are foreign-born, or have educa-
tional level less than high-school; Jurisdiction average number of years Hispanic persons
have been in the US; Jurisdiction proportions of all voting-age persons with less than high
school education or who are white-or-black non-Hispanic. All rates and proportions in this
covariate list were logit-transformed, but other averages and counts were not transformed.

3.1 Data Results

Model fitting and validation of (11) and (2) in the data application are discussed in Ash-
mead and Slud (2017). In this section, we exhibit varous aspects of the variances of the
model-based estimator Ñ3j of LEP citizen Hispanic population counts obtained by the
‘hybrid’ variance estimation methodology of Section 2. Recall that the BRR method of
survey-weighted variance estimation used in the ACS is the SDR method of Fay and Train
(1995). We compare the variances estimated by the new hybrid method with the direct SDR
variance estimators V̂ BRR(N̂3j) that would have been used if direct ACS-weighted estima-
tors N̂3j had been used to estimate N3j , showing that the latter would have had excessively
large Coefficients of Variation (CVs). Although CVs were generally much better using
the model-based estimates, the improvement was not universal, and drastic differences be-
tween model-based variance improvements are seen in large versus small jurisdictions. For
model-based variances, we will display the proportions due respectively to the Within and
Between terms, noting that the Bias-squared terms are small.

3.2 CV’s and Variances for Direct and Model-based Estimators

The main reason for estimating domain-level LEP citizen populations within each LMG
through a parametric model with cross-domain shared parameters is that the variances of
direct survey-weighted estimators are too large. To quantify this effect, Table 1 displays
the proportion of jurisdiction-within-Hispanic estimated CVs within various ranges, for
estimators of total numbers of LEP Hispanic citizens. The ranges include a small-CV
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Table 1: Fractions of 3671 jurisdictions with positive number of sampled LEP citizens in
which direct-method and model-based estimators of CV fall within indicated ranges.

CV Range (0, .2] (.2, .3] (.3, .4] (.4, .5] (.5, .61] (.61, 1] (1,∞]
Direct CV 0.168 0.104 0.089 0.089 0.093 0.317 0.140
Model CV 0.234 0.151 0.141 0.111 0.108 0.221 0.034

bracket (those less than 20%) and two moderate-range CV’s (20-30% and 30-40%). CV’s
of 50% are usually considered large, and those 61% or more excessively large. (According
to ACS quality guidelines, tables whose entries have median CV> 0.61 are held back from
public release in American Factfinder.) The first row of Table 1 shows the distribution of the
direct-method CV, that is, the square-root of the SDR variance of the direct survey-weighted
estimator, divided by the value of that estimatior. This row of CV’s makes sense only for
those jurisdictions in which the direct survey estimator was non-zero, i.e., only for those
with at least one sampled Hispanic LEP citizen. The second row contains ranges of CVs for
the model-based estimator also restricted to those sample jurisdictions, for comparability.
Although generally much better than the direct-method CVs, the model-based CVs are
also frequently large. For example, while 64% of the direct CVs are greater than 0.4, the
corresponding proportion for model-based CVs is 47%.

Because of the sharing of model parameters across jurisdictions, the model-based esti-
mators and variances are positive (and generally, small) even in those jurisdictions in which
no Hispanic LEP citizens were sampled. Thus, in the 3166 jurisdictions in which Hispanic
voting-age persons were sampled but none were LEP citizens, the rounded 90th percentile
of the estimated jurisdiction totals of Hispanic LEP citizens was 5, while the 90th percentile
of the proportion of Hispanic LEP citizens out of all citizens was 0.15%. The latter pro-
portion should be compared with the national LEP proportion of 4.6% among Hispanic
voting-age citizens. The jurisdictions with no Hispanic LEP citizen sample at all, represent
the extreme of the tendency for small jurisdictions with only a few sampled Hispanic LEP
citizens to yield model-based variance estimators for Hispanic LEP citizen estimates that
are larger than the corresponding direct-method SDR Variance estimates.

To obtain further perspective, consider Figure 1 in which the log ratios of MSPEs over
SDR direct-method variances are plotted against the logarithms of direct SDR variances.
The Figure shows first that the MSPE/(SDR Variance) ratio is usually less than 1, as can be
visualized through the lowess line falling below the level 1. However, there are numerous
jurisdictions where this ratio is > 2. However, the great majority of jurisdictions where
this occurs have SDR Variances of 250 or less (so standard deviations of 16 or less). In the
larger jurisdictions, where logarithm of SDR Variance is 10 or more, the great bulk have
MSPE/(SDR Variance) < 1 and nearly all have ratio < 1.5. Moreover, the coloring of
points progressing from green (the smallest LEP-total jurisdictions) through yellow toward
red (the jurisdictions with largest LEP totals) shows several clear tendencies. First, the
jurisdictions with very small sample sizes or LEP count estimates have especially small
ratios of MSPE over SDR variance. Second, the jurisdictions with large variances tend also
to have large LEP-count estimates, showing very little MSPE improvement versus SDR
variance. Finally, the great majority of jurisdictions with intermediate variance (say from
100 to 30, 000) have MSPE much smaller than SDR variance; but within this group, it tends
to be the jurisdictions with smallest LEP-count that have MSPEs notably worse than SDR
variance.
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Colors tend from green to red with increasing LEPtot count.

Figure 1: Plot of MSPE/SDR Variance (on log10 scale) vs. log10(SDR Var), for the 3671
jurisdictions with 2010-2014 ACS-sampled LEP Hispanic citizens. Color tends from green
to red with increasing model-estimated LEP count. Dashed line is plotted lowess curve.

3.3 Model-based Variance Improvements by Size

Two additional displays usefully show the improvement of MSPE over SDR Variance and
the magnitude of MSPE as a function of jurisdiction size. The first partitions the ACS 2010-
2014 sample (of all voting-age Hispanic persons in each jurisdiction) by size-classes. While
Figure 1 showed comparisons of variances of estimators of LEP Hispanic citizen totals by
individual jurisdiction, Figure 2 compares selected quantiles (0.25, 0.5, 0.75, 0.8, .0.9)
of these same variances among jurisdictions with sample, for three different size-classes
and for all jurisdictions pooled together. This comparison strikingly shows both that the
MSPE quantiles are much reduced versus SDR Variances in all size classes, but also that
the reduction is greater in the small-size jurisdictions than in the large ones, and greater for
the above-median quantiles than the below-median. The larger model-based reductions for
small-size jurisdictions does not contradict our comments summarizing Figure 1, in view
of the color (LEP-total) progression and the very large numbers of small-variance (usually
small-size) jurisdictions.

A second way to exhibit variances of model-based estimated totals is to plot them or
their CVs against the estimated weight √nj/(τ̂ +

√
nj) applying to the direct estimator

Y3j/nj in equation (12). This weight increases monotonically with domain sample size
nj , and approaches 1 as nj gets large. Figure 3 plots MSPE-based CV versus weight, for
jurisdictions in which 10 or more voting-age persons were sampled in ACS 2010-2014 and
in which the rounded estimate of Hispanic LEP citizen count was at least 1. The picture
strongly shows the pattern of CV decrease with direct-estimate weight, narrowing down to
a CV close to 0 as the sample-size becomes large and the weight approaches 1. Similar
figures, in which the restriction to sample-size of 10 or more is dropped, are more cluttered
but show the same pattern.
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Figure 3: MSPE-based CVs for estimated Hispanic LEP totals versus weight of predictor
(12) on direct estimator, plotted for jurisdictions with positive variance, rounded LEP count
estimate ≥ 1, and sample-size ≥ 10
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for Hispanic LEP total in 3671 ACS−sampled Jurisd's
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Colors tend from green to red with increasing LEPtot count.

Figure 4: Plot of MSPE-based CV versus log10(Between/Within) for estimated Hispanic
citizen LEP totals in 3671 jurisdictions with positive Hispanic sample. Colors range from
green to red with increasing estimated LEP count .

Another aspect of Figure 3 deserves comment. The blue plotted curve, generated by
a least squares fit of log(CV) to log(Wt), shows an unexpectedly simple relation between
CVj versus the sample-size-dependent weight Wtj =

√
nj/(
√
nj+τ̂). From the simplicity

of the fitted curve, the blue line suggests a simple Generalized Variance Function.

3.4 Relative Contribution of Variance Components

Immediately following Proposition 1, the terms in the hybrid MSPE/Variance formula
given there were sorted into three categories: Within, Between, and Bias-squared. The
relative magnitudes of these three types of variance terms for the outcome estimate of His-
panic LEP citizen totals in the jurisdictions with Hispanic sample, vary considerably with
LEP count. In Figure 4, we exhibit the MSPE-based Coefficient of Variation as a function
of the base-10 logarithm of the ratio Between/Within. The points are plotted in colors pro-
gressively tending from green to red as (estimated) LEP count increases. The plot shows
that, at least in the Hispanic LMG, the Within variance-component is generally the largest
one (since more than 90% of the points lie to the left of the log-ratio value 0), and that the
Between/Within ratio has a slight tendency to increase with increasing LEP count, while
the CV has a marked tendency to decrease with increasing LEP count, with Between frac-
tion generally larger when the CV is smaller. (The Between and Within components of
variance separately have a tendency to increase with LEP count, but the slight increase of
the Between/Within ratio shows that Between component increases slightly faster with LEP
count than the Within does.) For the points in this plot, we did not show the Bias-squared
term since it was always relatively small, with maximum value 0.113.

1728



4. Summary and Future Research

This research was first undertaken as part of the technical support for the estimation of
Language Minority Group population components and ratios required for determinations
of alternative language election materials mandated for states and political subdivisions
under the Voting Rights Act, Section 203(b). The methods described here were used in
estimating variances for all model-based population estimates1 released together with the
2016 Voting Rights Act determinations on December 5, 2016. These variances were re-
leased July 25, 2017 by the Census Bureau. Full technical documentation of the point and
variance estimation in this application will be publicly released in the near future.

The hybrid MSPE and variance estimation method introduced in this paper has theoret-
ical validity established in Proposition 1 and has been shown in the paper’s data application
(within the Hispanic Language Minority Group) to provide generally smaller and more ac-
ceptable variance and CV estimates than would have been possible for direct (model-free)
estimates from ACS data. Accurate variance and MSPE estimation enhances the credibility
of model-based estimates of the population components required by the Voting Rights Act
Section 203(b). The regression-type models (11) and (2) used in the model-based estimates
are assessed in the related research report of Ashmead and Slud (2017). In addition, the
variance estimation method studied here rests in part on an assumption (3) which, while
plausible, needs to be checked further in the data application, as mentioned in Remark 1.

The variance estimation method advanced here may be useful in other contexts where
Small Area Estimation is used to estimate population subdomains within domains that are
themselves large enough to support direct survey-weighted (Horvitz-Thompson) estimates.
It applies broadly in the setting where design-based estimates are adequate for domains
within which conditional probabilities of falling in subdomains can be parametrically mod-
eled and are needed because direct estimates of subdomain totals are too inaccurate. An-
other example of survey inference with this combination of design-based domain estimates
and model-based subdomain proportions can be found in Thibaudeau et al. (2017), with
data application to the Survey of Income and Program Participation.

We suggest three promising directions of further research related to the hybrid vari-
ance estimation method of this paper. First, it seems likely that a similar nested-loop vari-
ance estimation procedure could be developed under similar assumptions with the outer
loop provided by a jackknife or bootstrap procedure in place of BRR. Second, combined
balanced-replicate and parametric-bootstrap variance estimation would benefit from fur-
ther research extending to cases where the independence assumption (3) does not hold.
And third, in the Voting Rights Act datasets extending to other Language Minority Groups,
further research developing Generalized Variance Functions in the spirit of Figure 3 would
be valuable.

1For some smaller Language Minority Groups, data were too sparse to fit models, and in those cases the
released population estimates were calculated via direct survey-weighted totals from ACS 2010-2014 data,
with variances estimated by the direct SDR method regularly used by ACS.
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