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Abstract

We consider the dual problems of choosing between competing small area models and validating

model assumptions in an area-level model. Many classes of small area models result in an estimate

that is a convex combination of the direct and the marginal estimate for a given area. Therefore,

competing models may share the same direct estimates, but give different marginal estimates as well

as relative weight on the estimates. We discuss diagnostics to choose between competing models

and parametric bootstrap methods to check for model validity and goodness of fit. We use the

example of small area models related to the Voting Rights Act Section 203(b), which are used to

estimate the number of limited English proficient and illiterate persons in certain language minority

groups within jurisdictions using 5-year data from the American Community Survey.

1. Introduction

Small area estimation (SAE) models are often employed when the direct survey estimates from

small domains are unreliable, meaning that their standard errors are too large or the estimates them-

selves are based on extremely few observations. See Rao and Molina (2015) for an overview. SAE

models can improve on the direct survey estimates by “borrowing strength” from similar small areas

or by taking advantage of relationships between covariates and the variable of interest. In any mod-

eling situation, model selection and model diagnostics are essential steps of the modeling process.

This holds true for SAE models and more generally for mixed-effect models, which are typically

used in SAE. Mixed-effect models present unique challenges, and as a result diagnostic methods

are not as well developed as in other areas of statistics.

Model selection and diagnostics with mixed-effect models are challenging because the predic-

tion target of interest often includes the random effect, which is generally unobservable. In addition,

for many models, the best predictions are convex combinations of the direct estimator and a marginal

mean regression estimator. As a result, models can be evaluated not only by their marginal mean

regression estimator, but by the relative weight they give to the direct versus marginal mean part.

For example, at one extreme if a model gives almost all its weight to the direct estimates, the predic-

tions will be incredibly close to the direct estimate and when compared may look like a well-fitting

model. Lastly, generally in SAE modeling we do not observe the true target values for small areas,

only direct survey estimates. As a consequence, methods relying on out-of-sample predictions or

validations must be carefully considered.

In this paper, we consider only area-level models. Our goal is to estimate a parameter of interest

θi for each small area indexed i = 1, . . . ,m. Often small area models consist of two parts, the

population model and the sampling model. Generically, we assume a class of models such that for

small areas i = 1, . . . ,m

yi|θi ∼ f(· , θi) [Sampling Model];

θi|τ, ψi ∼ h(· , τ, ψi) [Population Model];

ψi = g(x′
iβ); and (1)

E[yi|θi] = θi,
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where xi are known covariates. The last equation specifies that the direct estimate yi is an unbiased

estimator of θi, and it implies that E[yi − θi] = 0.

This class of models is useful for small area estimation applications, but also could include

other random effect data problems. In the SAE context, yi is the unbiased survey direct estimate of

θi. The most widely used area-level SAE model, the Fay-Herriot model, is a linear mixed model

and can be written as

yi|θi, σ2
i ∼ N (θi, σ

2
i )

θi|ψ, zi, τ ∼ N (ψi, z
2
i τ

2) (2)

ψi = x
′
iβ,

with σ2
i and zi known positive constants for i = 1, . . . ,m. The zi’s could be for example, a covariate

that is proportional to the random effect variance. If the parameters of interest are proportions, one

could use a logistic regression-type model with a normal random effect:

yi = ti/ni; ti|θi, ni ∼ Binomial(ni, θi)

θi|ψ, zi, τ ∼ logitNormal(ψi, z
2
i τ

2) (3)

ψi = x
′
iβ,

with ni and zi > 0 known for i = 1, . . . ,m. The logit-normal distribution is such that if X ∼
logitNormal(µ, σ2), then logit(X) ∼ N (µ, σ2). Similarly, we could estimate proportions with a

beta-binomial model with a logit link:

yi = ti/ni; ti|θi, ni ∼ Binomial(ni, θi)

θi|τ, ψi ∼ Beta (τψi, τ(1− ψi)) (4)

ψi = logit−1(x′
iβ),

with ni known for i = 1, . . . ,m.

Define the marginal mean of small area i as θi,marg = E[yi] = E[E[yi|θi]] = E[θi] =∫
θih(· , τ, ψi)dθi. In both the Fay-Herriot (2) and Beta-Binomial (4) models, the marginal mean

is equal to ψi, whereas in the the normal logistic regression model (3), the marginal mean must be

computed numerically as a function of the parameters. In the cases of models (2) and (4) this is

a useful property of the EBLUP estimator θ̃i. For (2) and (4), the EBLUP estimator is a convex

combination of the direct estimate yi and the estimated marginal mean θ̂i,marg = ψ̂i, i.e.,

θ̃i = αiyi + (1− αi)θ̂i,marg (5)

The parameter αi is determined for each small area by the relative sizes of the sampling variance

and the model variance. In the case of model (2), αi = z2i τ̂
2/(σ2

i + z2i τ̂
2), and in the case of model

(4), αi = n/(n+ τ̂). When the sampling variance for area i is small, αi will be close to 1.

The convex-combination property (5) motivates the use of the estimated marginal mean in the

calculation of residuals for diagnostic purposes. While it might seem natural to calculate residuals

comparing the predicted values θ̃i with their direct estimates yi, we argue that comparisons of the

marginal mean estimator θ̂i,marg and yi are more useful. Assume that our estimators have the

convex-combination property in equation (5). Then the residual between the θ̃i and yi can be re-

written as a weighted version of the direct minus marginal residuals:

θ̃i − yi = (1− αi)(θ̂i,marg − yi). (6)

When αi is near 1, the θ̃i − yi will be zero no matter how badly the marginal predictor estimates θi.
Therefore, we found it more useful to consider residuals between θ̂i,marg and yi.

The goal of this paper is to propose and illustrate a method for model selection based on cross-

validation as well as a parametric bootstrap method for model validation and diagnostics. In the fol-

lowing sections we give an overview of existing SAE diagnostic methods, discuss the Voting Rights

Act (VRA) Section 203(b) application, and propose the model selection and diagnostic methods.

Lastly, we apply them to the VRA application as well as to a simulation.
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2. SAE Model Selection, Diagnostics and Validation Methods

When model error distributions are specified, methods based on information-based criteria (AIC,

BIC, etc.) are available for model selection. In the case of linear mixed models such as (2), exten-

sions to information criteria have been developed (Müller et al., 2013) as well as a fence method

(Jiang et al., 2008) which utilizes a lack-of-fit measure rather than a log-likelihood function. Resid-

ual analysis methods are also available for some methods. With the Fay-Herriot model (2), it is

possible to transform the model into a standard linear regression model and use the typical residuals

based on the transformed data (Calvin and Sedransk, 1991). So-called BLUP residuals (Calvin and

Sedransk, 1991) ẽi = yi − θ̃i can also be used investigate the distribution of model errors; however,

the BLUP residuals are correlated, making interpretation more difficult. Skinner (2007) proposes a

cross-validation method for linear mixed models in which predictions from small areas left out of

fitting are compared with the direct estimate, and a Wald test statistic is formed and compared with

a chi-squared distribution in order to test for departures from the true model. Additionally, Tang

et al. (2014) propose a class of goodness-of-fit tests for the mean structure of linear mixed models

based on observations and expectations restricted by where the covariates lie.

Many of these methods apply only to linear mixed models, and therefore do not apply to other

types of models such as (3) and (4) above. While motivated by longitudinal repeated measures data,

not small area estimation, Pan and Lin (2005) present goodness-of-fit methods for generalized linear

mixed models based on the cumulative sums of residuals. In their method, residuals are defined

as the difference between observed responses and the marginal means of the observed responses

ri = yi−θ̂i,marg . Sums of residuals are calculated over covariates or predicted values and compared

with realizations of zero-mean Gaussian processes, which approximate the asymptotic distributions

under the assumed model. This resembles our parametric bootstrap method in Section 2.3 in that

we utilize residuals with respect to the estimated marginal mean and are comparing a function

of residuals to their approximate distribution under the assumed model. However, in our method

we calculate the reference distribution from a parametric bootstrap and utilize sums of squared

residuals.

2.1 Voting Rights Act Section 203(b)

According to Section 203(b) of the U.S. Voting Rights Act, the Census Bureau Director deter-

mines subdivisions that are required to provide language assistance during elections for designated

language-minority groups of citizens who are unable to speak or understand English well enough to

participate in the electoral process. The criteria for determinations are based on estimates of counts

and ratios of language minority group voting-age persons (VOT), voting-age citizens (CIT), lim-

ited English proficiency voting-age citizens (LEP), illiterate limited English proficiency voting-age

citizens (ILL), and total voting-age persons in each specific political jurisdiction. Political subdi-

visions include States, counties or Minor Civil Divisions, and American Indian areas, with specific

determination criteria for each.

In order to improve the reliability of estimates from the American Community Survey used

to estimate the quantities needed to make the determinations, it was decided in 2011 [see Joyce

et al. (2014)] and again for 2016 to make use of small area estimation models. Multiple models are

necessary because estimates are needed across geographies for each of 68 non-exclusive language

minority groups (LMGs). The LMGs consist of 16 Asian groups, 51 American Indian groups,

and a Hispanic group. Additionally, more than one outcome needs to be estimated in the models.

Estimates for each of the four nested categories above (VOT, CIT, LEP, ILL), are needed for the

determination criteria.

This setup makes for a difficult small area estimation problem. We not only need to make pre-

dictions for multiple nested quantities, but we need to create many models for many different parti-

tions of the sampled population into areas (e.g., jurisdictions). The general model form chosen for

this problem was a Dirichlet-Multinomial model with 4 categories. This model is a generalization of

the beta-binomial model (4). The four estimation categories (VOT, CIT, LEP, ILL) needed for deter-

minations are nested, not mutually exclusive. Therefore, we translated these into mutually-exclusive

categories that were used to fit the model, then we translated them back. Let N̂V
i , N̂

C
i , N̂

L
i , and N̂ I

i

be the directly estimated totals of VOT, CIT, LEP, and ILL persons, respectively, in jurisdiction i
for a given LMG. We write the model as:
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Ti =
ni

N̂V
i

(N̂V
i − N̂C

i , N̂
C
i − N̂L

i , N̂
L
i − N̂ I

i , N̂
I
i )

Yi = Ti/ni; Ti ∼ Multinomial(ni,ωi),

ωi = (ωi1, ωi2, ωi3, ωi4) ∼ Dirichlet(τ
√
ni, 1− µi, µi(1− νi), µiνi(1− ρ), µiνiρ) (7)

µi = exp(β′
X

C
i )/exp(1 + β′

X
C
i )

νi = exp(γ′
X

L
i )/(1 + (γ′

X
L
i )

for i = 1, . . . ,m small areas (jurisdictions),

where ni is the sample size (number of voting age persons in the LMG sampled in small area i),
µi represents the citizenship proportion, ν represents the LEP proportion among citizens, and ρ
represents the illiteracy proportion among LEP citizens. X

C
i and X

L
i are sets of covariates that

correspond to citizenship and limited English proficiency respectively. The data Yi are directly

estimated proportions of the four mutually exclusive categories. One slightly unusual aspect of

the model is the use of a non-constant precision parameter τ
√
ni. The change from a constant

precision was made in an effort to improve the overall fit of the model after looking a several

diagnostics across LMGs. The covariates considered in the models were the corresponding rates

directly estimated from the ACS at the level of the state containing the domain, as well as several

other covariates such as educational level, age, proportion foreign born, and average time in US,

separately calculated for all adults in the domain and also for the adults in the LMG within the

domain.

While we estimate ωi in the model, we actually care about certain linear combinations of ωi

instead: θCi = 1 − ω1, θ
L
i = ω3 + ω4, and θIi = ω4. These represent the proportion of CIT, LEP,

and ILL voting-age persons respectively among the voting-age population. Maximum likelihood

estimation was used to fit the models. Marginal mean estimates of (θCi , θ
L
i , θ

I
i ) are given by

θ̂Ci,marg = µ̂i = exp(β̂
′
X

C
i )/exp(1 + β̂

′
X

C
i )

θ̂Li,marg = ν̂i = exp(γ̂′
X

L
i )/(1 + (γ̂′

X
L
i ))

θ̂Ii,marg = ρ̂

where β̂, ν̂, ρ̂ are the respective maximum likelihood estimates. EBLUP predictions of (θCi , θ
L
i , θ

I
i )

are made using Equation (5) with αi = ni/(ni + τ̂
√
ni). The mean-squared prediction error of

modeled estimates were made using a novel method containing balanced repeated replication and

parametric-bootstrapping (Slud and Ashmead, 2017).

In terms of model selection, diagnostics, and validation methods this problem is particularly

challenging because the sample sizes vary from very small to very large and our goal is to develop

a model that fits well over all of them. Also, the LMGs are quite diverse in terms not only of

their characteristics but also of the number of areas included in each. Instead of trying to optimize

each individual model, we searched for classes of models that worked well over similar groups of

LMGs. In this context similar means that the LMGs are related in data richness, i.e the numbers

of jurisdictions with sample size over a certain small threshold. As a result, Asian LMGs, large

American Indian, and small American Indian LMGs each used different covariate sets. Additionally,

the discreteness of the data makes any sort of residual analysis difficult, especially for small sample

sizes. Lastly, the multiple outcomes/levels of the model make evaluations multidimensional.

2.2 Model Selection Using Cross-Validation

Our first proposed technique is a cross-validation method to aid in model selection. The general

idea is to compare the predictive properties of multiple possibly non-nested models. Consider the

following procedure for a selected model:

1. Randomly order the m small areas;

2. Divide the small areas to K approximately equal sized groups;

3. For each group k in 1, . . . ,K;
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a. Leave out all the observations in group k and fit the model;

b. Estimate θ̂
(−k)
i,marg for each small area in group k;

4. Repeat steps 1 through 3, L times;

5. Compute a statistic comparing the predictions to the direct estimates:

Γ =
1

L

L∑

l=1

m∑

i=1

(
(θ̂

(−k,l)
i,marg − yi)

)2

(8)

where θ̂
(−k,l)
i,marg indicates the marginal mean estimate for small area i after being left out of the model

fitting in iteration l.
A variation of the statistic (8) is to multiply the residuals by a function of the sample size.

Γg(·) =
1

L

L∑

l=1

m∑

i=1

(
(θ̂

(−k,l)
i,marg − yi)g(ni)

)2

(9)

In the VRA application, we used g(·) = √
ni. We found this to be useful because the sample

size varied by such extremes, and it was possible that many small jurisdictions might overwhelm

the influence from medium and large jurisdictions. Using the
√
ni term also strikes a balance in the

statistic between a sum of squared differences of proportions and totals.

In order to compare different models, we compute Γ for each model, ideally using the same

leave-out groups. This allows for quantitative comparisons of different models and speaks to how

predictive the marginal model is without the influence of the small areas themselves contributing to

the model fit.

We have not yet developed reference distributions with which to compare (8) or (9). It may be

possible do so using a parametric bootstrap; however, this would be computationally burdensome.

Otherwise, it may be possible to derive large-sample limiting distributions for these statistics given

specific models or classes of models. This will be the subject of future work.

The following examples are from the VRA application. In this exercise we considered four

different models:

A. The model chosen for the actual production of the small area estimates which uses 5 covari-

ates total (2 for the Citizenship level and 3 for the LEP level)

B. The model with the same covariates as a) but a constant precision parameter τ for all areas

(as opposed to τi = τo
√
ni)

C. A “lower” model with only 2 covariates (one for each Citizenship and LEP)

D. An “upper” model with 7 covariates total (2 and 5 respectively)

In Tables 1, 2, and 3 we show examples of Γg from three different LMGs. The first is a LMG

with a moderate number of areas. The second and third both have a large number of areas. In

addition to the Γg statistic for each outcome, we show the AIC for each model. In all three cases,

we find that the AIC correlates strongly with the Γg statistic.

In all three tables we observe that model A does better than the “lower” model (C) by each of the

metrics and generally by large margins. This indicates that the additional covariates are worthwhile.

Comparing model A and B, we observe that model A does at least marginally better in all all cases

and in some cases much better (AIC in Example 2 and Γg - LEP in Example 3). Interestingly, those

large differences are not uniformly seen in both metrics. Comparing the “upper” model (D), which

has two additional covariates, to model A, we find while it is best in each of the examples, only in

Example 3 (Table 3) with the Γg - LEP category is the difference large (compared with differences

between A and B or A and C). Still, without a reference distribution for Γg we cannot say for sure

what is a meaningful difference.
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Table 1: Prediction Statistics for VRA Example 1

Model Γg - CIT Γg - LEP Γg - ILL AIC

A 19.617 9.234 1.265 547.5

B 19.819 9.378 1.267 550.1

C 40.984 11.273 1.300 606.1

D 19.590 8.790 1.260 547.8

Table 2: Prediction Statistics for VRA Example 2

Model Γg - CIT Γg - LEP Γg - ILL AIC

A 551.278 367.065 13.783 13,524.3

B 552.939 367.650 13.842 13,727.9

C 2064.005 457.580 15.915 15,117.6

D 551.194 360.276 13.664 13,512.7

Table 3: Prediction Statistics for VRA Example 3

Model Γg - CIT Γg - LEP Γg - ILL AIC

A 489.144 1097.937 80.067 15,674.7

B 494.988 1433.494 92.360 15,678.3

C 2987.981 3275.775 91.765 17,832.6

D 488.370 769.515 78.284 15,563.9

2.3 Model Validation and Diagnostics using a Parametric Bootstrap

In general, bootstrapping is a useful method and is often used to estimate the variance of an esti-

mator. In a parametric bootstrap, after selecting a fitted model of interest, we assume that model

and its fitted parameters are true and we take random draws from the model corresponding to each

observation. Next, we re-fit the model using the bootstrapped observations and create bootstrapped

estimates. Repeating this process many times allows us to generate distributions of bootstrapped

estimates and therefore estimate variance of those estimates under the assumption that the model is

true. Instead of using the bootstrapped estimates to estimate variances, we can use them for model

validation and diagnostics by comparing quantities of interest (e.g. sums of squares between yi and

θ̂i,marg) from the actual data with their bootstrapped equivalents. When the assumed fitted model

is true, the quantities of interest should generally fall in the central quantiles of the bootstrapped

equivalents (at least at a rate corresponding to the quantile). However, if the assumed fitted model

departs strongly from the true model, the quantities of interest will correspond to extreme quan-

tiles of the bootstrapped equivalents, implying that the observed data could not have come from

the given model. Additionally, the direction of the extreme quantile may give additional diagnos-

tic information for the model. As in Section 2.2, we use statistics based on the squared residuals.

Again, consider residuals based on the difference of the marginal mean and direct estimates. For

the bootstrap diagnostic do the following:

1. For our observed data and fitted model, compute:

ŜS =
∑

i∈A

(θ̂i,marg − yi)
2 (10)

where A represents all or some subset of the areas.

2. Compute the reference distribution

ŜS
(b)

=
∑

i∈A

(θ̂
(b)
i,marg − y

(b)
i )2 (11)

for parametric bootstraps b = 1, . . . , B from the fitted model.
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3. Compare the observed statistic ŜS or to the reference distribution ŜS
(b)

by calculating the

bootstrap quantile

Q = Pr(ŜS ≥ ŜS
(b)

).

Extreme values of Q (near 0 or 1), indicate that the amount of variation in the observed data is

respectively less than or greater than the parametrically bootstrapped data. The choice of A depends

on how we think the true model deviates from the fitted model. For example, if we think it possible

that the random effect variance is not constant across all areas, then we may choose A to subdivide

the areas (by size or by a covariate) into several groups and calculate the bootstrap diagnostic for

each of the groups separately. When the variable used to form the groups is closely related to the

model misspecification, the power of the method is improved.

As in in Section 2.2, we can weight the residuals by a function of the sample size. Define

ŜSg(·) =
∑

i∈A

[(θ̂i,marg − yi)g(·)]2, and (12)

ŜS
(b)

g(·) =
∑

i∈A

[(θ̂
(b)
i,marg − y

(b)
i )g(·)]2. (13)

As before, in our VRA application we use g(·) =
√
ni. Again, the parameters of interest in our

VRA application are proportions. Instead of looking at squared differences of counts which would

give much more weight to the large areas, or squared differences of proportions which give equal

weight to all areas, multiplying by the
√
ni term splits the difference.

Consider a small simulation example with m = 200 small areas. Motivated by the VRA ap-

plication, we use a beta-binomial model with two independent standard normal covariates. Assume

that µ = exp(β′
Xi)/(1+exp(β

′
Xi)) and β = (0.1,−0.5, 0.5), where Xi = (1, X1i, X2i) andX1i

and X2i are independent draws from a standard normal distribution. Let θi ∼ Beta(τiµ, τi(1−µ))
where µ is the mean and τ the precision variable and Yi ∼ Binomial(ni, θi) with ni being gener-

ated from a Poisson random variable with rate parameters 15, 50, 100, and 200 for 50 small areas

each. We first simulate the model using a constant τ value, τi = 4, and fit that same model. Then,

we simulate the data using τi =
√
ni, but fit a constant τ (misspecified) model in an attempt to see

if the parametric bootstrap diagnostic ŜSg can identify the model misspecification. In both cases

we will use 1000 parametric bootstraps drawn from the fitted model. We repeat the simulation 100

times in each case.

First, we calculate ŜSg including all 200 areas in the set A. Using the correctly specified

model, most of the bootstrap quantiles were near 0.5 and the median was 0.565. Only one out of one

hundred were extreme (greater than 0.95 or less than 0.05), whereas under the misspecified model

most of the bootstrap quantiles were small (median 0.0955) and 26 out of 100 were extreme. In

this simulation the method was not always successful at identifying misspecified models; however,

it can be improved by a more precise lack of fit statistic. If we are able to specify a variable to

group areas by that is related to the misspecification, we can increase the power of the test. For

example, in the VRA application, we were concerned that the model does not fit well for areas with

a small population. Instead of summing over all areas to calculate ŜSg and ŜS
(b)

g , we will restrict

ourselves to those with sample size less than or equal to 30. When we use this subset, we find over

the 100 simulations, 65 gave extreme quantile values and the median quantile was 0.973. Note that

the power of detecting lack of fit depends on the number of small areas. When we increase the

number of small areas to 400, the rate of finding an extreme quantile under the misspecified model

increases to 83 and 94 respectively out of 100 for the overall statistic and the statistic restricting to

sample size less than or equal to 30.

Next we apply our proposed methodology to a few examples from the VRA application. In

Table 4 we show the parametric bootstrap quantiles for lack of fit statistic for a LMG with a mod-

erate number of areas that shows good fit properties. In the VRA application, we were particularly

concerned with the fit of the model across all sample size groupings. As a result, we decided to

calculate the fit statistics across sample size classes.

The next example (Table 5) shows the parametric bootstrap quantiles for lack of fit statistic

for a LMG with a large number of areas and shows poor fit properties. Overall, across all sample
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Table 4: Estimated Parametric Bootstrap Quantiles (Q) for the Lack of Fit Statistic (SSg),
VRA Example 1

Sample Size Grouping CIT LEP ILL

Overall 0.420 0.244 0.104

(1,4) 0.868 0.222 0.047

(5,9) 0.164 0.553 0.831

(10,24) 0.240 0.145 0.635

25+ 0.101 0.850 0.236

size categories, the quantile in the CIT column does not seem to show a lack of fit; however, when

broken down by sample size we observe a serious lack of fit for each sample size. The lack of fit

in different directions cancels out in the overall statistic. This is a good example why it would be

important to break the lack of fit statistic down by sample size.

Table 5: Estimated Parametric Bootstrap Quantiles (Q) for the Lack of Fit Statistic (SSg),
VRA Example 2

Sample Size Grouping CIT LEP ILL

Overall 0.419 0.996 0.000

(1,4) 1.000 0.012 0.019

(5,9) 0.002 0.943 0.3631

(10,24) 0.017 0.961 0.017

25+ 0.003 0.998 0.000

3. Discussion

Small area estimation relies on correctly specified models, and the tools to check for model assump-

tions in such models are limited compared to other types of models, especially when the model is

not a mixed-linear effect model. Misspecification in small area models can cause estimates that are

severely biased or estimated prediction errors that are incorrect, ascribing either too much or too

little uncertainty to the estimate.

In this paper we have tried to develop tools for model selection and model diagnostics for model

validation specifically for models that are not of the form of a mixed-linear type. We utilize residuals

defined as the difference between the observed direct estimates and the marginal mean estimate.

These methods are a work-in-progress and further research is needed to make them more broadly

applicable. Specifically, we would like to further compare the model selection cross validation

method to other selection methods. Additionally, we would like to explore reference distributions

for the cross-validation statistic through either a parametric bootstrap or asymptotic distribution.

In both methods, we would like to explore different specifications for the weight function applied

to the residuals g(·). The relative weight αi from equation 5 or some function thereof might be

useful. For the parametric bootstrap evaluation we would like to understand further the power of

the test to find a lack of fit in order to help us refine the approach. Additionally, we would like

to explore its use in a variety of distributional models. For additional information on the VRA

application and estimates see https://www.census.gov/rdo/data/voting_rights_

determination_file.html .
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