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Abstract 
A good imputation model leverages relationships in the complete data to make predictions 
for missing values. However, there is some disagreement about how to handle imputed 
values in analyses when the imputation is driven by a single strong predictor, and that 
predictor will be included in the analysis model. One common situation is when subjects 
are assessed at two time points (y1 and y2), but some subjects are missing scores at one or 
both time points. Other auxiliary data are available for all subjects. The y2 score for each 
subject is typically the strongest predictor of the y1 score in the imputation model, but there 
is concern about “circularity” if the planned analyses then use the y1 score to predict the y2 
score. Suggested approaches in the literature include a multiple imputation then deletion 
(MID) approach, where all missing values are imputed but observations with imputed 
outcomes are dropped from analyses; or using all observations (AO), including those with 
imputed outcomes, for analyses following imputation. This paper investigates the 
conditions under which circularity may be a concern, studies the performance of the MID 
and AO methods under different settings, and makes recommendations for practice. 
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1. Introduction 
 
 
Standard practice for building a multiple imputation model is to include all predictors that 
will be included in any analysis models, as well as any additional variables that are likely 
to predict missingness. The former satisfies the requirement for congeniality of the analysis 
and imputation models (Little and Rubin, 2002; Meng, 1994; Allison 2002); the latter set 
of variables, often referred to as auxiliary variables, should in theory lead to a more 
powerful imputation model. In an ideal situation, no single variable drives the imputation 
model. Although some variables may be stronger predictors, removing one variable would 
not have a major impact on the imputation results. 
 
Imputation for longitudinal studies is a special case (Little and Su, 1989). A common 
analytic setup is to control for baseline score (y1), add some other predictors of interest, 
and use a follow-up score (y2) for the outcome. The baseline score is typically by far the 
strongest predictor of follow-up score. If there are missing data at y1 and y2, there is then a 
concern about circularity in the imputation. The concern is more severe if data are missing 
at both timepoints. If the y2 score is used to impute the y1 value when there are few other 
strong predictors and the y1 value is used to predict the y2 value, the analysis may overstate 
the strength of the y1- y2 relationship. Modeling an overly strong relationship between y1 
and y2 where both have a moderate to large percentage of imputed values may bias 
estimates for other variables of interest. 
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1.1 Multiple Imputation, then Deletion (MID) 
One recommendation is multiple imputation, then deletion (MID) (von Hippel, 2007). 
Under MID, all observations are imputed, but before analysis observations with missing 
outcomes (in this case, y2 scores) are dropped. Assuming data are missing at random 
(MAR) and that the analysis and imputation models are identical (contain the exact same 
set of variables), observations with an imputed outcome do not add any information to the 
analysis model and can be safely deleted. However, observations with missing outcome 
but complete predictors can contribute some information to impute missing predictors, so 
it is useful to retain them for imputation.  
 
MID is robust to a misspecified imputation model for the outcome, although misspecified 
imputation models for other variables are still a risk. This is the main advantage of MID 
for longitudinal data: it protects against circularity in the analysis model, since the model 
relies only on the relationship between the observed y2 and y1 (where y1 may include both 
imputed and observed values). If the percentage of missing data is not too high, the model 
will be driven primarily by cases with both observed y1 and y2. 
 
MID is not currently implemented in any major statistical software package (although a 
SAS macro is available from von Hippel) and adds an extra step to analysis. Von Hippel 
also acknowledges, “in terms of efficiency, the advantage of MID is often quite minor,” 
unless the percentage of missing data is high and there are relatively few imputed data sets.  
 
1.2 Issues with MID 
In some scenarios, standard multiple imputation (MI) can in fact lead to smaller standard 
errors than MID. MI using auxiliary variables will always outperform MID asymptotically; 
that is, with an infinite number of imputations, MI estimates will have smaller standard 
errors than the corresponding MID estimates in the presence of any auxiliary variables. A 
simulation study by Sullivan et al. (2015) found that MID can actually induce bias under 
MAR in the presence of an auxiliary variable related to missingness for the outcome, and 
provides only a modest decrease in standard errors when the auxiliary variable is not related 
to missingness in the outcome under a range of conditions. This result is not limited to a 
very large number of imputations: the simulation study found that when 50 imputations or 
more were used, standard MI outperformed MID in terms of both bias and standard error 
under nearly every scenario tested.  
 
Early literature on multiple imputation suggested that 2 to 10 imputations were sufficient, 
and more imputations were often computationally infeasible. This is the range of values 
that von Hippel’s original simulations cover. However, recent recommendations suggest 
that the number of imputations should be linked to the percentage of missing data, and 
more imputations are better if computing time is not an issue (Graham et al., 2007; White 
et al., 2011). For example, if about 20 percent of cases in the data require imputation, then 
generate at least 20 imputations. 
 
Given that many modern applications of MI rely on auxiliary variables and use at least 20 
imputations, it is unclear whether the potential for bias due to circularity is greater than the 
potential for bias due to MID under these conditions.  
  
1.3 Motivation 
The simulation study described in Sections 2 and 3 is designed to assess under what 
conditions MID may be a better choice for practice. Section 2 describes the simulation 
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study setup. Four experimental settings are varied (imputation model correctly specified or 
misspecified, analysis model correctly specified or misspecified, size of treatment effect, 
and imputation method—available case, single imputation, or multiple imputation). Each 
combination of settings is tested with and without deletion of imputed outcomes. In Section 
3, the bias in estimating a treatment effect, as well as the width of the associated confidence 
intervals, is compared at each setting to assess whether including all observations or 
deleting imputed outcomes performs better. This paper is intended to provide 
recommendations for practice: using standard statistical software under a range of plausible 
scenarios, when is MID a better choice for longitudinal studies?  

 
2. Simulation Study 

 
2.1 Simulation Setup and Experimental Settings 
This simulation study considers a very simple case: outcomes are measured at baseline and 
at a single follow-up (y1 and y2), with one auxiliary variable x and one treatment effect T. 
The goal is to fit the linear analysis model 
 

  𝑦𝑦2 =  𝛼𝛼 +  𝛾𝛾𝑦𝑦1 +  𝛽𝛽𝛽𝛽 
 
and estimate the treatment effect, 𝛽𝛽. 
 
Let 𝑃𝑃𝑖𝑖(𝑧𝑧) denote the ith percentile of 𝑧𝑧. Then for all simulation runs, define1 
 

𝑦𝑦1 ~ 𝑁𝑁(50, 3) 
 

 𝑇𝑇~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.5) 
 

𝑥𝑥 =  

⎩
⎨

⎧
1, 𝑥𝑥′ < 𝑃𝑃10(𝑥𝑥′) 

2, 𝑃𝑃10(𝑥𝑥′) ≤ 𝑥𝑥′ < 𝑃𝑃50(𝑥𝑥′)
3, 𝑃𝑃50(𝑥𝑥′) ≤ 𝑥𝑥′ < 𝑃𝑃90(𝑥𝑥′)

4, 𝑃𝑃90(𝑥𝑥′) ≤ 𝑥𝑥′
, 𝑥𝑥′ ~𝑁𝑁(𝑦𝑦1, 20) 

 
Since the relationship between 𝑦𝑦1 and 𝑦𝑦2 is one of the experimental settings and varies 
between simulation runs, it is defined below. Essentially x is a categorized variable, 
constructed so that it is correlated with 𝑦𝑦1: observations with low values of 𝑦𝑦1 are more 
likely to also have low values of x. The missingness for 𝑦𝑦1 depends only on 𝑥𝑥; 40 percent 
of 𝑦𝑦1 values are set to missing, with probability proportional to 1 1 + 𝑥𝑥� .  
 
The missingness for 𝑦𝑦2  depends on the difference 𝑦𝑦2 − 𝑦𝑦1  in all simulation runs. 
Preliminary work showed that if missingness is related to 𝑦𝑦1, 𝑦𝑦2, or 𝑥𝑥 alone, there is very 
little difference between estimates and standard errors for MI vs. MID. Practically, it makes 
sense that in a longitudinal study one may expect to see dropout related to change over 
time. In a clinical trial, for example, patients who see negative results may be more likely 
to leave the trial. In educational studies, children and youth with falling test scores may be 
more likely to change schools or drop out entirely. The missingness is defined as: 
 

                                                 
1  Throughout this paper, the normal distribution is given as 𝑁𝑁(𝜇𝜇, 𝜎𝜎2) 
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𝑃𝑃(𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚) = �
0.8,  𝑦𝑦2-𝑦𝑦1 < 0

0.5,  0 < 𝑦𝑦2-𝑦𝑦1 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦2-𝑦𝑦1)
0.25 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

 
This results in between 40 to 50 percent missingness on 𝑦𝑦2. 
 
Four experimental settings are varied: 

1. Imputation model is correctly specified (includes 𝑥𝑥) or is incorrectly specified 
(excludes 𝑥𝑥). 

2. The relationship between 𝑦𝑦1 and 𝑦𝑦2 is: 
a. Linear:   𝑦𝑦2~ 𝑁𝑁(𝑦𝑦1 + 𝛽𝛽𝛽𝛽,  25) 
b. Nonlinear:   𝑦𝑦2~ 𝑁𝑁(0.5𝑦𝑦12 − 50𝑦𝑦1 + 1300 + 𝛽𝛽𝛽𝛽,  25) 

3. True treatment effect: large (𝛽𝛽 = 5), small (𝛽𝛽= 1), or none (𝛽𝛽=0) 
4. Imputation method 

a. None (available case analysis) 
b. Single imputation (k-nearest-neighbors via kNN function in VIM R 

package (Kowarik and Templ, 2016)) 
c. Multiple imputation (MICE via mice R package (van Buuren and 

Groothuis-Oudshoorn, 2011), m=40 imputations). 
 
For the single and multiple imputation methods, standard imputation is also tested vs. 
imputation with deletion. Under multiple imputation, this is a test of MI vs. MID; single 
imputation is included as a test to see if the recommendations are similar across single and 
multiple imputation methods. Available case analysis is included as a control condition. 
Methods that consistently perform worse than available case analysis should not be 
considered. 
 
The imputation methods and implementations were selected because they are widely 
available, often recommended, and simple to use with default settings (see, for example, 
Penone et al., 2014; Kalaycioglu et al., 2016; or White et al., 2011). Other imputation 
methods could be considered as well. Single imputation methods like hot-deck, predictive 
mean matching, last observation carried forward, etc., were purposely not tested because 
these methods are not appropriate for high percentages of missing data. More complex 
imputation methods, such as Bayesian imputation or pattern-mixture models, are beyond 
the scope of this paper, as are tree-based imputation methods that can require extensive 
tuning. 
 
The experimental grid contains data generated under 12 scenarios (2 imputation models x 
2 true models x 3 true parameter values). Each scenario is run 1,000 times; in each 
simulation run, a dataset of size n=500 is independently generated. The data from each run 
are passed through five imputation frameworks: available case (no imputation), single 
imputation (with or without deletion), and multiple imputation (with or without deletion). 
The complete data (i.e., before generating missingness) are also retained for each run.  
 
2.2 Results 
 
As a broad metric, we first compare estimates from the fitted linear models after each 
imputation method to the corresponding estimates from models fit to the complete data. 
(To simplify discussion, available case analysis is referred to throughout this section as an 
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imputation method, although that is not strictly true.) For each of the 1,000 simulation runs, 
the relative bias (relbias) for each estimated coefficient was calculated as: 
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
(𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� )

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�  

 
Relative bias is used here rather than absolute bias because the size of the true estimate 
varies depending on the simulation settings, and relative bias is a standardized value that 
can be compared across settings. The comparison here is to the estimate from the 
complete data set rather than the true parameter value, as a test of how well each 
imputation method recovers the information in the complete data. 
 
Figures 1a and 1b summarize the relative bias by parameter and imputation method. The 
plots are divided by whether the true relationship is linear or nonlinear, since the true 
parameter values for the intercept and baseline effect varied between the two models.  
 

 
 

Figure 1a: Histograms of relative bias of estimates, by imputation method, when true 
model is linear. (Note: For readability, histograms exclude outliers outside of (-10, 10), 
which represents about 5% of all observations.) 
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Figure 1b: Histograms of relative bias of estimates, by imputation method, when true 
model is nonlinear. (Note: For readability, histograms exclude outliers outside of (-10, 10), 
which represents about 5% of all observations.) 

 
The biases for the baseline effect estimates are generally small and centered around zero, 
with the exception of kNN with deletion under the linear condition. The relative bias for 
the baseline effect estimate is slightly lower under mice with deletion, on average, than the 
relative bias for mice when using all observations, suggesting that MID may offer some 
protection against circularity and the associated bias in estimating the effect of the baseline 
score. Biases for the intercept term are more variable than those for the baseline under the 
linear condition but less variable under the nonlinear condition. However, the treatment 
effect is almost uniformly underestimated on average; the single imputation method (kNN) 
performs the worst.  
 
The remaining discussion focuses on the treatment effect, since that is the parameter of 
most interest. Table 1 shows that when the analysis model is correct (the true model is 
linear), all observations (AO) and MID perform similarly, on average, in most of the 
scenarios tested. The table gives a summary of the differences between the estimate and 
the true value, so that closer to zero is better for all parameter settings. The average and 
median biases indicate that using AO is better, on average, under most conditions (smaller 
average bias). The exception seems to be when 𝛽𝛽 = 1  and the imputation model is 
misspecified. This is not a particularly useful result since a priori one would not know the 
size of the treatment effect, nor whether the imputation model is correct. Available case 
analysis actually performs quite well comparatively, which is not entirely surprising when 
the missing data mechanism is not MAR; imputation methods assuming MAR are not 
capturing the full missingness mechanism. 
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Table 1: Summary of Bias From Linear Relationship Runs (Estimate – True Value), 
1,000 Simulation Runs Per Setting 
 Correct imputation model Misspecified imputation model 
 𝛽𝛽 = 0 
 Min Median Mean Max Min Median Mean Max 
Available case -1.78 0.00 0.00 1.44 -6.98 0.49 0.51 9.07 
kNN, All obs -2.20 -0.06 -0.06 1.88 -5.89 -1.33 -1.34 3.09 
kNN, Deletion -1.84 -0.54 -0.53 0.76 -5.91 1.38 1.42 8.06 
mice, All obs -1.18 0.30 0.29 1.67 -9.46 0.20 0.29 7.83 
mice, MID -1.25 0.14 0.13 1.38 -10.46 0.21 0.33 9.53 
 𝛽𝛽 = 1 
 Min Median Mean Max Min Median Mean Max 
Available case -1.69 -0.23 -0.23 1.37 -7.17 -0.43 -0.42 7.06 
kNN, All obs -2.57 -0.39 -0.40 1.63 -6.08 -1.45 -1.44 2.74 
kNN, Deletion -2.09 -0.75 -0.75 0.52 -5.39 0.50 0.40 5.04 
mice, All obs -1.21 0.03 0.02 1.61 -6.71 -0.73 -0.68 7.32 
mice, MID -1.39 -0.10 -0.12 1.28 -7.45 -0.58 -0.57 7.47 
 𝛽𝛽 = 5 
 Min Median Mean Max Min Median Mean Max 
Available case -2.29 -0.81 -0.81 0.83 -8.80 -3.03 -3.00 3.73 
kNN, All obs -2.75 -0.99 -0.96 1.47 -7.61 -1.89 -1.88 2.10 
kNN, Deletion -2.86 -1.31 -1.32 0.31 -7.42 -2.38 -2.42 2.57 
mice, All obs -1.85 -0.59 -0.58 1.07 -11.29 -2.94 -2.82 4.37 
mice, MID -2.05 -0.71 -0.71 0.67 -10.91 -3.34 -3.23 4.53 

 
Figure 2 shows the results for the linear, β = 5 scenarios under the correct imputation 
model. First, a subsample of 100 simulation runs was selected so that the graph does not 
appear too cluttered. The final estimate from each simulation run is shown as a colored dot, 
with its 95% confidence interval displayed as a light grey horizontal line. The average 
estimate from each imputation method is marked with a darker grey vertical line. The 
“correct” (complete data) estimates are shown as green stars, with the average complete 
data estimate marked by a black vertical line. The ideal imputation plot would show the 
green stars virtually covering the colored dots, and the grey and black vertical lines 
overlapping. In Figure 1 it appears that estimates from all imputation methods are biased 
low, on average, since the grey vertical line is uniformly lower than the black line. The 
least biased method (shortest distance between the grey and black lines) seems to be mice 
with AO, although there is a great deal of variability in all plots. Note also the difference 
in the 95% confidence interval lengths: kNN AO has very short, almost certainly 
underestimated 95% confidence intervals, while mice AO has much wider intervals. 
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Figure 2: Treatment effect estimates and confidence intervals by imputation type, linear 
relationship, 𝛽𝛽 = 5, correct imputation model. Grey vertical line marks average estimate 
for imputation type; green stars indicate complete data estimates, and black vertical line 
marks average complete data estimate. 
 
The difference in confidence interval lengths is more striking when the true relationship 
between 𝑦𝑦1 and 𝑦𝑦2 is nonlinear—that is, the analysis model is incorrect. Figure 3 displays 
treatment effect estimates for each simulation run in the nonlinear case when the imputation 
model is misspecified and the treatment effect is large (β = 5). The confidence intervals 
for mice AO are extremely wide, while the confidence intervals for MID are much 
narrower. The average bias still appears to be slightly smaller under AO vs. deletion. Table 
2 summarizes the full results for the simulation runs when the analysis model is 
misspecified. Under most conditions AO performs somewhat better than or only slightly 
worse than deletion, on average, and the range of observed biases is often narrower as well. 
The exception is when β = 1, where both single and multiple imputation perform better on 
average with deletion.  
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Figure 3: Treatment effect estimates and confidence intervals by imputation type, 
nonlinear relationship, 𝛽𝛽 = 5, misspecified imputation model. Grey vertical line marks 
average estimate for imputation type; green stars indicate complete data estimates, and 
black line marks average complete data estimate. 
 
Table 2: Summary of Bias From Nonlinear Relationship Runs (Estimate – True Value), 
1,000 Simulation Runs Per Setting 
 
 Correct imputation model Misspecified imputation model 
 𝛽𝛽 = 0 
 Min Median Mean Max Min Median Mean Max 
Available case -6.98 0.49 0.51 9.07 -7.98 0.55 0.50 7.81 
kNN, All obs -5.89 -1.33 -1.34 3.09 -6.02 -0.74 -0.58 4.76 
kNN, Deletion -5.91 1.38 1.42 8.06 -4.99 1.89 1.86 7.14 
mice, All obs -9.46 0.20 0.29 7.83 -7.43 0.98 0.97 7.87 
mice, MID -10.46 0.21 0.33 9.53 -9.36 1.15 1.11 7.56 
 𝛽𝛽 = 1 
 Min Median Mean Max Min Median Mean Max 
Available case -7.17 -0.43 -0.42 7.06 -9.36 -0.64 -0.64 7.28 
kNN, All obs -6.08 -1.45 -1.44 2.74 -5.18 -0.77 -0.65 4.65 
kNN, Deletion -5.39 0.50 0.40 5.04 -4.86 0.52 0.56 5.91 
mice, All obs -6.71 -0.73 -0.68 7.32 -6.43 -0.24 -0.20 5.78 
mice, MID -7.45 -0.58 -0.57 7.47 -6.83 0.01 0.01 6.33 
 𝛽𝛽 = 5 
 Min Median Mean Max Min Median Mean Max 
Available case -8.80 -3.03 -3.00 3.73 -9.93 -3.09 -3.06 5.31 
kNN, All obs -7.61 -1.89 -1.88 2.10 -5.29 -0.98 -0.86 4.91 
kNN, Deletion -7.42 -2.38 -2.42 2.57 -7.35 -2.11 -2.06 3.27 
mice, All obs -11.29 -2.94 -2.82 4.37 -10.18 -1.83 -1.92 3.56 
mice, MID -10.91 -3.34 -3.23 4.53 -11.16 -2.37 -2.41 3.20 
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The much wider confidence intervals under AO in the nonlinear case are evident in Figure 
4. Each bar shows the range of 95% confidence interval half-widths, minimum to 
maximum, and the mean half-width is marked with a dot. Under the linear condition, the 
half-widths do not vary dramatically across imputation methods, regardless of the other 
settings. However, under the nonlinear condition, it is clear that available case analysis and 
single imputation produce confidence intervals that are too narrow. More importantly, mice 
AO results in confidence interval half-widths that are much larger, on average, than those 
generated by MID. When the imputation model is also misspecified, the maximum half-
width observed for MID is equal to or less than the average half-width observed for mice 
AO.  
 

 
Figure 4: Range and mean of 95% confidence interval half-widths, by setting and 
imputation method. 
 
If AO and MID perform similarly, with AO perhaps having slightly less bias on average 
but much wider confidence intervals under some conditions, the natural question to ask is 
whether the wider confidence intervals reflect the true variability of the estimates. While it 
seems attractive to choose a method with much smaller standard errors at the risk of a small 
amount of bias, falsely low standard errors can lead to nominal p-values that are much too 
low and nominal 95% confidence intervals with true coverage rates that are much lower. 
 
In Figure 5, the percentage of 95% confidence intervals that cover the true parameter value 
(β = 0, 1 or 5, as appropriate) is shown for each method. Ideally, for a 95% confidence 
interval we would like to see 95% coverage. Across all conditions kNN, the single 
imputation method, performs poorly, with coverage rates less than 50 percent in several 
scenarios. This is not surprising, since single imputation methods do not account for 
uncertainty due to imputation and are known to underestimate variance. When the true 
parameter value is large, mice AO does not always achieve the desired 95% coverage, but 
it consistently performs better than MID.  
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Figure 5: Coverage of nominal 95% confidence intervals, by imputation method. 
 
A related question is whether one would make the correct conclusion about statistical 
significance under each imputation method. Figure 6 assumes that the analysis uses a 
bright line at p = 0.05 to determine statistical significance and plots the percentage of 
simulation runs that make the correct decision about the presence or absence of the 
treatment effect. (This metric disregards the American Statistical Association’s best 
practice guidelines about the use of p-values but makes the decision rule much easier to 
program!). Again, with a p-value cutoff of 0.05 one would expect to see that the correct 
decision is made about 95% of the time when there is no treatment effect (β = 0). In the 
presence of a treatment effect, 80 percent power to detect the effect is a commonly used 
cutoff. In general, higher (closer to 1) is better across all plots. 
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Figure 6: Percentage of simulation runs with the correct inference on the treatment effect, 
using a cutoff of p = 0.05, by imputation method. 
 
When the analysis model is correct (linear), all methods correctly detect the large treatment 
effect. The single imputation method performs poorly, however, when the treatment effect 
is small or there is no treatment effect. For multiple imputation, MID and AO perform 
similarly when there is no treatment effect, and AO is slightly better in the presence of a 
small treatment effect. When the analysis model is incorrect (the true relationship is 
nonlinear), the large standard errors for the multiple imputation estimates mean that it is 
very difficult to achieve statistical significance, even in the presence of a large treatment 
effect. MID performs somewhat better than AO but still only detects the treatment effect 
25 percent of the time, and consistently underperforms even available case analysis. 
Conversely, AO is more accurate when there is no treatment effect, while MID falsely 
concluded that there was a treatment effect in up to 25 percent of simulation runs. 
 

3. Conclusion and Recommendations 
The limited simulation study performed on longitudinal data suggests that MID does lead 
to narrower confidence intervals but at the risk of serious undercoverage of nominal 95% 
confidence intervals, especially when the analysis model is misspecified. Any bias 
potentially due to circularity when using all observations was found to be either similar to, 
or smaller than, the bias induced by MID. This suggests that concern about circularity alone 
is not sufficient to justify the use of MID. Deletion of imputed outcomes generally 
improved power but decreased coverage of the true parameter estimates when a treatment 
effect was present. 
 
Any analysis method promising smaller standard errors is always attractive; for some 
simulation runs where both the analysis and imputation models were misspecified, the half 
widths of the 95% confidence intervals generated under MID were less than half the size 
of those generated using AO. This simulation work suggests that those narrower confidence 
intervals may often understate the true variability in the MID estimates, however.  
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A conservative recommendation is to use all observations for analysis and treat large 
confidence intervals as a signal that either the imputation or analysis models, or both, may 
be misspecified. If the model(s) remain misspecified, inference based on AO will likely be 
conservative; in most situations, conservative inference is preferable to reporting nominal 
coverage rates that are misleadingly high. More research is needed, however, especially 
with more complex imputation models. 
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