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Abstract
In sample surveys with sensitive items, sampled units may not respond or they respond untruthfully.
Usually a negative answer is given when it is actually positive, thereby leading to an estimate of the
population proportion of positives (sensitive proportion) that is too small. In our study, we have
binary data obtained from the unrelated-question design, and the sensitive proportion is of interest.
A respondent answers the sensitive item with a known probability, and to avoid non-identifiable
parameters, at least two different random mechanisms are used, but only one for each cluster of
respondents. The key point here is that the counts are sparse (very small sample sizes), and we
show how to overcome some of the problems associated with the unrelated question design. We have
presented an example with sparse data on college cheating and a simulation study to illustrate the
properties of our procedure. Finally, we discuss two extensions to accommodate finite population
sampling and optional responses.

Key Words: Latent variables, Data augmentation, Gibbs sampler, Non-identifiable parameters,
Proportion, Rao-Blackwellized estimates.

1. Introduction

When people are asked sensitive (stigmatizing) questions, there is a tendency for them not
to respond or to tell lies if they do. One way to reduce these effects is to use the technique
of randomized response. In this approach to survey sampling, the randomization is not
only in drawing the sample but also in obtaining the response, and there is an enormous
literature. One possible design (Greenberg, Abu-Ela, Simmons and Horvitz 1969) is to ask
an unrelated nonsensitive (innocuous) question in addition to the sensitive question. The
respondents are asked to give a honest answer to one of the two questions selected accord-
ing to a random mechanism, the essential features of the random mechanism being known
to the investigator. This is an extension of the mirrored question design (Warner 1965)
in which the respondents are asked the opposite question instead of the unrelated ques-
tion. When randomized response techniques are used, a respondent’s individual answer is
not of interest, rather inference is needed for the population. One needs to strike a com-
promise between efficiency and response burden but respondents’ protection is paramount
(US Privacy Act of 1974), currently a hotly debated issue in the US Congress especially in
connection with the use of the Internet.

For example, one tosses a die and if one or six comes up, the respondent must give a
honest answer to the sensitive question, and if two, three, four or five comes up, the respon-
dent must give a honest answer to the nonsensitive question. In this way the respondents
should be more comfortable to answer the question because the investigator can never know
which question the respondents are answering. We do not rule out the situations where both
questions might be sensitive; one of them may be much less sensitive (most respondents do
not care). For example, two possible questions are stated below. Students at a university
are asked to circle the true answer to the question selected.
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Question 1: Have you ever cheated on an examination anywhere?
Question 2:Do you spend more than twenty hours per week on

all courses studying outside the classroom?

Circle your response. [Yes, No]

Here Question 1 is sensitive and Question 2 may be sensitive to some respondents, but much
less sensitive than Question 1. We need inference of the proportions of students answering
‘yes’ to respectively Question 1 and Question 2, the first being the sensitive proportion of
greater interest.

Warner (1965) proposed the randomized response method as a survey technique to
reduce potential bias due to nonresponse and social desirability when asking questions
about sensitive behaviors and beliefs. The method asks respondents to use a randomization
device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing
random noise, the randomized response method conceals individual responses and protects
respondent privacy. As a result, respondents may be more inclined to answer truthfully.

Direct questioning exposes a respondent’s privacy that is obviously unacceptable. Any
design, which adds noise to the response, will be less efficient than a direct questioning
design. One cannot compromise respondents’ privacy, but one can compromise respon-
dents’ burden and efficiency. However, it has been argued that socially desirable answers
and refusals are expected when sensitive questions are asked directly (e.g., see Tourangeau,
Rips and Rasinski 2000 and Tourangeau and Yan 2007). Evidently, as supported by many
psychologists, sensitive questions should not be asked directly.

We assume that respondents respond truthfully. It should be obvious that this assump-
tion is more easily attained under indirect questioning than direct question. In direct ques-
tioning, it is more likely that there will be nonresponse that may be nonignorable, and we
need to develop nonignorable nonresponse models (Nandram and Choi 2002, 2010) to han-
dle them. So at least on two fronts, indirect questioning is advantageous. We will call the
model for the unrelated question design the individual-area model, and in this paper, we
are mainly concerned with this model.

The plan of the rest of the paper is as follows. In Section 2, we present a review of
the literature of the unrelated question design. In Section 3, we show some difficulties
associated with the analysis of the unrelated question design. In Section 4, we present
the Bayesian methodology for individual-area model. In Section 5, we discuss empirical
studies, where we use an illustrative example on college cheating, and we describe a small
simulation study to show the frequentist properties of the individual-area model. In Section
6, we present concluding remarks and a discussion of two possible extensions.

2. Unrelated Question Design and Extensions

Blair, Imai, and Zhou (2015) gave an excellent review paper on randomized response tech-
niques (RRT). They classified many of the designs into four types: mirrored question,
forced response, disguised response, and unrelated question. For each type, they provide a
brief explanation, an example, and a discussion about identification. All four designs make
two general assumptions: (1) the randomization distribution is fully known to researchers,
and (2) respondents comply with the instructions and answer the sensitive question truth-
fully.

In the mirrored question design (Warner 1965), a respondent is asked to perform a
Bernoulli trial. If a success occurs, the respondent is asked to answer the sensitive question,
otherwise the respondent is asked to answer the opposite of the sensitive question. In the
unrelated question design (Greenberg, Abul-Ela, Simmons and Horvitz 1969), a Bernoulli
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trial is performed, and if it is a success, the respondent is asked to answer thesensitive
question, otherwise the respondent is asked to answer the unrelated question. The forced
response design (Boruch 1971, Fox and Tracy 1986), is like the unrelated question design,
but there is no unrelated question. Two Bernoulli trials are performed. In the first trial, if
a success occurs, the respondent is asked to answer the sensitive question (‘yes’ or ’no’);
otherwise a different Bernoulli trial is performed. If it is a success, the respondent must
answer ‘yes’; otherwise the respondent must answer ‘no’. The unrelated question design
is a natural extension of the mirrored question design. See Kuk (1990) for the disguised
design.

Researchers have worked on many extensions of Warner’s randomized response tech-
niques (RRT). Greenberg et al. (1969), Folsom et al. (1973), Christofides (2005), Odumade
and Singh (2009), Mangat (1992), Perri (2008), Mahmood, Singh and Horn (1998), Kim
and Warde (2004) are some of them. The interested readers may refer to Chaudhuri and
Mukerjee (1988), Fox and Tracy (1986) and Tracy and Mangat (1996) and more recently
Chaudhuri (2011) and Chaudhuri and Christofides (2013) for a comprehensive discussion
on RRT. Finally, see Johnson, Sedory and Singh (2016).

It is important to use an optimal design. For the unrelated question design Greenberg,
Abul-Ela, Simons and Horvitz (1969) used a heuristic argument to suggest a choice ofp1
as .2 ± .1 or .8 ± .1 andp2 = 1 − p1. Moors (1971) provided a more systematic study
of optimality and showed thatp2 = 0. That is, the randomized experiment should be per-
formed on a sample ofn1 individuals and a sample ofn2 individuals should only be asked
the nonsensitive question and none of these should be asked the sensitive question; see also
Lanke (1975). Of course, the unrelated question design is more efficient than the mirrored
design. There are further increases in efficiency with mild addition of response burden.
Mangat, Singh and Singh (1992), Mangat and Singh (1990), Mangat (1992) and Mangat
(1994) introduced the two-stage designs. One design is an extension of the mirrored ques-
tion design and another is an extension of the unrelated question design. For example, two
different Bernoulli trials are performed. If the first Bernoulli trial is a success, the respon-
dent answers the sensitive question. If the first trial is a failure, the respondent performs the
second Bernoulli trial. If the second Bernoulli trial is a success, the respondents answer the
sensitive question; otherwise the respondent answers the unrelated or opposite question de-
pending on whether the mirrored question design or the unrelated question design is used.
The two-stage design with the unrelated question is more efficient than the correspond-
ing one for the mirrored question design and each is more efficient than the corresponding
one-stage design (Mangat, Singh and Singh 1992, Mangat and Singh 1990, Mangat 1992,
Mangat 1994).

We also mention nonrandomized designs that do not use a random mechanism as in
randomized design. The crosswise and triangular designs (e.g., Tan, Tian and Tang 2009,
Tian, Yuen, Tang and Tan 2009) can be viewed as extensions of the unrelated question de-
sign because each of them has a sensitive (stigmatizing) question and an unrelated nonsen-
sitive question. LetX be a binary sensitive variable andW denote a nonsensitive variable
X = 0 orW = 0 are ‘nos’ andX = 1 orW = 1 are ‘yeses’. In the crosswise design, a re-
spondent is asked to answer ’yes’ toX = 1,W = 1 orX = 0,W = 0 and ‘no’ otherwise.
In the triangular design, a respondent is asked to answer ‘no’ toX = 0,W = 0 and ‘yes’ to
X = 0,W = 1 or X = 1,W = 1 or X = 1,W = 1. As in the unrelated question design,
if both probabilities are unknown, two samples are needed. There are similar difficulties
for estimation and multiple answers are proposed (e.g., Groenitz 2017); the key gain is a
random mechanism is not needed.

Greenberg, Kuebler, Abernathy and Horvitz (1971) and Eriksson (1973) extended the
unrelated question model of Greenberg, Abul-Ela, Simmons and Horvitz (1969) to the case
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in which the response is quantitative.
Prior informationabout the unknown parameters is sometimes obtainable and can be

used along with the sample information for estimation of these unknown parameters. This
is the Bayesian approach of estimation. There are not many works within the Bayesian
paradigm of randomized response models. Nonetheless, attempts have been made on the
Bayesian analysis of randomized response techniques. For example, Winkler and Franklin
(1979) gave an approximate Bayesian analysis of Warner’s mirrored design, O’Hagan
(1987) derived Bayesian linear estimators for the unrelated question design, and Oh (1994)
used data augmentation to introduce latent variables to Gibbs sampling of the mirrored
design, the unrelated question design and the two-stage design with binary and polychoto-
mous responses. Also, Tian, Yuen, Tang and Tan (2009) proposed Bayesian approaches to
non-randomized response models without using randomized mechanisms; non-randomized
designs (crosswise and triangular) may be more efficient than their randomized response
counterparts; see, for example, Tan, Tian and Tang (2009). Most recently, Song and Kim
(2017) gave a Bayesian analysis of two rare unrelated questions (i.e., Poisson modeling
rather Binomial modeling). Bayesian methods, with useful prior information, deserve much
more attention because it is easy to obtain proper estimates; MLEs are difficult to obtain.

Finally, we note that in 2017, there was a special issue on randomized response tech-
niques in the journal of Statistics and Applications in honor of Warner. Many of these
fifteen papers cover extensions of the mirrored question design and the unrelated ques-
tion design. Randomized designs for both qualitative and quantitative data were discussed.
There are extensions of the unrelated question design to optional response (e.g., Dass and
Chhabra, 2017) and to inverse unrelated question design used for additional privacy pro-
tection (Dihidar and Basu, 2017). But most of the papers are on design-based analyzes,
generally true in randomized response analyzes.

3. Difficulties of the Unrelated Question Design

We discuss some difficulties arising in the analysis of the unrelated question design that
has two unknown parameters. We consider the situation where two Bernoulli trials are
performed with success probabilitiesp1 andp2. Both proportions,π1 andπ2, of people
with the sensitive character and the nonsensitive character respectively are of interest.

We consider the first problem of the design-based estimator. The standard model is

ys
ind
∼ Binomial{ns, psπ1 + (1− ps)π2}, s = 1, 2.

Let as = ys/ns, s = 1, 2, be the MLE ofpsπ1 + (1− ps)π2. Then, one can find the MLEs
of π1 andπ2 by solving the two equations,as = psπ̂1 + (1 − ps)π̂2, s = 1, 2, whereπ̂1
andπ̂2 are respectively MLEs ofπ1 andπ2 provided that̂π1 andπ̂2 lie in (0, 1) (may not
happen). It can be shown that forp1 < p2 thatπ̂1 andπ̂2 lie in (0, 1) provided that

1− p2
1− p1

< min{
a2
a1

,
1− a2
1− a1

}, max{
a2
a1

,
1− a2
1− a1

} <
p2
p1

.

This isa tight condition especially for small sample sizes that are of interest here. There-
fore, π̂1 and π̂2 may not lie in(0, 1), and this is, indeed, disturbing. The expectation-
maximization (EM) algorithm can be used to obtain MLEs, but now there is an underes-
timation of the standard error. We note that the EM algorithm was applied to random-
ized response (e.g., Bourke and Moran 1988). Lee, Sedory and Singh (2013) considered
the problem of developing minimum sample size requirements for different randomized
response models based on guessed values of the parameters of interest and on the ran-
domization device parameters being used in collecting the datasets. They found that very
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large sample sizes are needed to get an admissible estimate of the required proportion ofa
sensitive attribute. Of course, the Bayesian method can overcome this difficulty.

The second problem is thatπ̂1 andπ̂2 can be highly correlated. This is also disturbing
becauseπ1 andπ2 are completely unrelated. It is true that

var(π̂1) =
(1− p2)

2v1 + (1− p1)
2v2

(p2 − p1)2
,

var(̂π2) =
p22v1 + p21v2
(p2 − p1)2

,

cov(π̂1, π̂2) = −{
p2(1− p2)v1 + p1(1− p1)v2

(p2 − p1)2
},

where

vs = (psπ1 + (1− ps)π2){ps(1− π1) + (1− ps)(1− π2)}/ns, s = 1, 2.

One way to reduce the correlation is to increase the sample size, but this may be costly and
prohibitive (or infeasible). Nevertheless, this is a useful result because it warns us to be
cautious in running a Gibbs sampler as there will be the weak mixing phenomenon. Again,
the Bayesian method can reduce this correlation, but it cannot be eliminated completely.

The third problem with the design-based estimators is that while they are theoretically
unbiased and consistent, in small samples they may be practically biased. Again, one
solution is to increase the sample size but this may be costly in many applications.

4. Bayesian Methodology

In this section, we discuss the Bayesian methodology to analyze data from a randomized
response application. First, in Section 3.1, we discuss the analysis for a single area with
sparse data; this is the individual-area model.

We assume that there is a single area and in each area there areg clusters of individuals,
and the respondents within a cluster toss a possible different random mechanism. Because
we are studying two items, we need at least two distinct random mechanisms (i.e., at least
two clusters, more the better). In this paper, we are not interested in combining data from a
number of small areas, but rather we are interested in the individual-area model.

Let pj denote the probability that the sensitive item is selected for thejth cluster
of respondents interviewed, wherenj is the number of respondents in thejth cluster,
j = 1, . . . , g. Note thatpj is known for thejth cluster interviewed. Letπ1 andπ2 de-
note respectively the probabilities of a ‘yes’ for the sensitive question and the nonsensitive
question. Then the probability of getting a ‘yes’ answer from a respondent in thejth cluster
is pjπ1 + (1− pj)π2 and a ‘no’ answer ispj(1− π1) + (1− pj)(1− π2). Under random
sampling, lettingyj denote the number of ‘yeses’ obtained, we have

yj | π1, π2
ind
∼ Binomial{nj , pjπ1 + (1− pj)π2}, j = 1, . . . , g, g ≥ 2,

where the number of different random mechanisms can beg. Then, the joint probability
mass function ofy = (y1, . . . , yg) is

p(y | π1, π2) =
g∏

j=1

{pjπ1 + (1− pj)π2}
yj{pj(1− π1) + (1− pj)(1− π2)}

nj−yj . (1)

1166



Among theg clusters, weassume that there at least two distinctpj . While the design-based
analysis via maximum likelihood estimation is defective, the Bayesian analysis is attractive
here.

It is worth noting that this is a more general model than the one discussed in the litera-
ture with just two random mechanisms. By introducing more than two random mechanisms
(samples), we can improve the efficiency of the unrelated question design.

For a full Bayesian analysis, we assume a prioriπs
iid
∼ Uniform(0,1), s = 1, 2; the

posterior density is the same as the likelihood function. However, because of the sparseness
of the data, posterior inference may be sensitive to this assumption, and one may need to
use a more informative prior (subject to availability). Other possibilities are Jeffreys’ prior
(not much different from the uniform prior) and Haldane’s prior that may cause posterior
impropriety with zero counts of ‘yeses’ or ‘nos’.

There are at least two methods to get estimators ofπ1 andπ2 within the Bayesian
paradigm. First, one can use a grid method to drawπ1 andπ2 separately. This can be done
by numerically integrating out one of them, sayπ2, and then drawπ1 using a grid. Then,
drawπ2 conditional onπ1 using a grid again. Or, to avoid the numerical integration, one
can draw from a bivariate grid on(π1, π2) (more computer storage and time are required).
Second, one can introduce latent variables as a data augmentation and use the Gibbs sam-
pler; e.g., see Oh (1994). It is convenient that this latter method allows implementation of
the more efficient Rao-Blackwellized estimators, not discussed in Oh (1994).

Using the latent variables(zj , wj), j = 1, . . . , g, the joint posterior density is

π(π1, π2, z,w | y) ∝
g∏

j=1

(
yj
zj

)
(pjπ1)

zj ((1− pj)π2)
yj−zj

×
g∏

j=1

(
nj − yj
wj

)
(pj(1− π1))

wj ((1− pj)(1− π2))
nj−yj−wj .

For any proper priors onπ1 andπ2, the joint posterior density ofπ1, π2, z,w | y is proper
because it is proportional to a product of binomial probability mass functions that are all
bounded by unity.

The Gibbs sampler is easy to run because the conditional posterior densities are all in
simple forms,

zj | π1, π2, yj
ind
∼ Binomial{yj ,

pjπ1
pjπ1 + (1− pj)π2

}, j = 1, . . . , g,

wj | π1, π2, yj
ind
∼ Binomial{nj − yj ,

pj(1− π1)

pj(1− π1) + (1− pj)(1− π2)
}, j = 1, . . . , g.

Note that givenπ1, π2, yj , zj andwj are independent. More importantly, lettingy· =∑g
j=1 yj , z· =

∑g
j=1 zj , w· =

∑g
j=1wj ,

π1 | z·, w·, y· ∼ Beta(z· + 1, w· + 1),

π2 | z·, w·, y· ∼ Beta(y· − z· + 1, n· − y· − w· + 1).

Again, it is convenient that, givenz·, w·, y·, π1 and π2 are independent and they are
beta random variables. This independence is important because it provides a better mixing
Gibbs sampler than if they were correlated. One needs to be careful in running any Gibbs
sampler. However, it is unfortunate that the conditional density function ofπ1 is a function
of the missing data,z·, w·, but not a function of the observed data,y·.
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We can obtain Rao-Blackwellized estimators ofπ1 andπ2 because

π(π1, π2 | y) =
y1∑

z1=0

n1−y1∑

w1=0

. . .

yg∑

zg=0

ng−yg∑

wg=0

π(π1, π2 | z,w,y)π(z,w | y)

=
y1∑

z1=0

n1−y1∑

w1=0

. . .

yg∑

zg=0

ng−yg∑

wg=0

π(π1 | z,w,y)π(π2 | z,w,y)π(z,w | y)

as follows. Let(z(h)j , w
(h)
j ), j = 1, . . . , g, h = 1, . . . ,M , denote a random sample of size

M from the posterior density,π(z,w | y), obtained from the Gibbs sampler. Then, the
Rao-Blackwellized density estimator ofπ(π1, π2 | y) is

̂π(π1, π2 | y) =
1

M

M∑

h=1

π(π1 | z
(h),w(h),y)π(π2 | z

(h),w(h),y).

The first method does not allow Rao-Blackwellization, and this was not discussed in the
Bayesian approach of the analysis of data from the unrelated question design before.

5. Empirical Studies

In Section 5.1, we describe an application on college cheating and, in Section 5.2, we
perform a simulation study to assess the performance of the individual-area model.

5.1 Illustrative Example

The data on college cheating were collected by a social science professor at a University.
This is an important practical issue because college cheating has become a serious problem
in the US (e.g., Shon 2006 and Jones 2011).

The professor asked the students in the class to carry out the experiment and find 20-30
different students on campus to ask these questions. He told them to be certain that this
is the first time the respondent is doing this questionnaire. The students in the class were
divided into teams of 2-3 to make 11 teams and they were asked to visit various locations
(campus center, library, fitness center, food courts, etc.) on campus to carry out the survey.

The students were given specific instructions as follows. “When each of you collect
the data, you would need to use at least two different random mechanisms. This has to
be done because both the probabilities for a ‘yes’ answer of the sensitive question and the
nonsensitive questions are assumed to be unknown. For example, if you use a six-sided
die, you may take 1 or 2 for the sensitive question and 3, 4, 5, or 6 for the nonsensitive
question for some students and 1,2, 3, or 4 for the sensitive question and 5 or 6 for the non-
sensitive question. You must not use the same random mechanism for all the students you
interviewed; the example just discussed has two random mechanisms. However, you must
record which mechanism you use for a particular student. You would ask each student to
toss the die, and answer honestly, ‘yes’ or ‘no’, to the question that turns up, but the student
must not tell you which question she/he is answering. When you interview the students,
you must ensure that they are giving you independent answers. If you enjoy collecting the
data, you may try a third random mechanism.” Note that the nonsensitive question is a
bit sensitive and the optimal design was not used. The experiment was performed at 11
locations on campus. However, the data are confidential and cannot be presented. There is
a single location with three random mechanisms.

For each location, when the individual-area model is fit using the Gibbs sampler, we
ran20, 000 iterations, used5000 as a “burn-in” and picked every15th thereafter. For this
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sample all the autocorrelations are nonsignificant, effective sample sizes are1000 for all
locationsexcept two of them, which were nearly800 for π1 andπ2. The Geweke test of
stationarity did not reject stationarity. The computations for the 11 locations took just less
than one minute.

In Table 1 and Table 2, we present some results for the individual-area model. The
design-based estimators are not very good and some of them are out of range. Note that the
Bayesian method provides much more reasonable estimates, standard errors and coefficient
of variations although they are large especially forπ1, not so bad forπ2 (CVs are a bit
misleading here). Also, we can see that the correlations betweenπ1 andπ2 are smaller for
the Bayesian model.

5.2 Simulation Study

We run a simulation study to assess the performance of the individual-area model. Our
objective is modest and we want to study the frequentist properties of the individual-area
model.

The design plan is as follows. First, we have used three random mechanisms with

p1 = .30, p2 = .60, p3 = .80. Second, we obtain the sample sizes by takingn
ind
∼

Uniform(24,48), (i.e., 8 − 16 for each random mechanism). The numbers of respon-

dents to the three mechanisms are drawn from a multinomial distribution [(n1, n2, n3)
ind
∼

Multinomial(n, (.30, .40, .30)]. We have taken the true values ofπ1
ind
∼ Beta(µ1τ, (1 −

µ1)τ) andπ2
ind
∼ Beta(µ2τ, (1 − µ2)τ), whereµ1 = .279, µ2 = .798 (posterior means

of π1 andπ2 when all the11 locations are combined into a single location). We per-
form a two-factor experiment. The first factor is the number of locations that we select as
ℓ = 10, 18, 25, 50, 75, 100. The second factor isτ that we select asτ = 10, 100, 1000 to
have different degrees of closeness of the locations. Of course, if we increase the sample
sizes in each location, the individual-area model will perform well, but this is not our inter-
est. Whenτ = 10, the locations are very different and whenτ = 1000, the areas are very
similar. In fact, asτ gets larger, the locations get internally more consistent.

We have generated the data as follows. We explain the procedure for the first random
mechanism (i.e.,p1 = .30) with n1 respondents. For each respondent at a location, we
select the question to be answered with probabilityp1. If the first question is selected,
we select a “yes” answer with probabilityπ1, and if the second question is selected, we
select a “yes” answer with probabilityπ2. This procedure is run in the same manner for all
respondents in all locations. We have performed1000 simulated runs.

We fit each of the1000 simulated runs using the individual-area model in exactly the
same manner as described for the data. For each of the1000 simulated runs, we per-
formed the Geweke test of stationarity, calculated the effective sample sizes and the auto-
correlations. We found that the performance of the Gibbs sampler was satisfactory in almost
all cases. These computations were done using parallel computing on our Solar Cluster.

We computed the posterior means (PM), posterior standard deviations (PSD), the nu-
merical standard errors (NSE), the 95% HPD intervals and its width, and the correlation
betweenπ1 andπ2 for all locations. Then, at a macro level, we take the averages and
standard errors for all quantities over all simulated runs and all locations. Specifically, we
calculated the relative absolute bias,RAB = (PM − T )/T , and the posterior root mean
squared error,PRMSE =

√
(PM − T )2 + PSD2, whereT denotes the true propor-

tions,π1 or π2 (known by simulation). With respect to the intervals, we computed their
average width (WID) and the coverageC, which is the proportion of intervals containing
the true in the 1000 simulated runs. We also computed the average of the correlations
betweenπ1 andπ2. The NSEs are mostly smaller than.001.
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In Table 3, we present the bias (B) and the posterior standard deviation (PSD) ofπ1 and
π2 averaged over all simulation runs and locations, number of locations (ℓ) andτ . There
are minor changes in PSDs overℓ andτ . Also for both models the bias inπ1 is positive
andπ2 is negative; this is expected becauseπ2 are large andπ1 are small. In addition, the
biases are virtually the same over the number of locations for the individual-area model.
There are also some changes in the biases asτ increases.

In Table 4, we have presented these summaries byℓ and the individual-area model for
π1 andπ2 for τ = 10, 100, 1000 respectively. The RAB and PRMSE are quite large. As
expected, the model gets better asτ increases. The coverageC is reasonably closed to the
nominal value of 95% but Wid is relatively large. However, the changes in these quantities
with ℓ are not important.

6. Concluding Remarks

We have shown how to analyze data from the unrelated question design using the individual-
area model via a Bayesian method. We have pointed out several problems associated with
randomization-based method, and we have shown how the Bayesian methods can overcome
or reduce their effects. This is evident in our example on college cheating.

It is unfortunate that we did not find very good frequentist properties of the individual-
area model that is used to analyze data from the unrelated question design. However, we
have seen some improvement in accuracy and precision as a location becomes more inter-
nally consistent. This effect should be similar to the one when the sample size increases.
But we have been primarily concerned with sparse data as in our example on college cheat-
ing.

It is possible to improve the individual-area estimates by pooling the data from several
areas. We are reporting this work in elsewhere.

However, here we consider two extensions of our method to accommodate covariates,
to prediction of the finite population proportion, and to optional response. Extension to
stratification is trivial, but it is not so trivial for cluster sampling. These extensions have
not been discussed in the literature on randomized response under a model-based analysis.

The first extension is how to do prediction in a finite population under simple random
sampling. Once our individual-area model is fit, we will obtainπ1 andπ2. Therefore,

Xs | π1
ind
∼ Binomial(N, πs), s = 1, 2.

Then, the finite population proportionPs = Xs/N, s = 1, 2, and inference about thePs

can be made in a straight forward manner under the Bayesian model. It is worth noting
that we need to sample both the sample part and the non-sample part. Of course, we are
assuming that there is no selection bias.

Our second extension is to optional responses (e.g., Gupta, Gupta and Singh 2002,
Gupta, Javid and Supriti 2010) for quantitative data with the unrelated question design. A
coin is tossed with probability heads,p 6= 1/2. If the coin comes up tails, the respondent is
asked to answer the nonsensitive question. If the coin comes up heads, answer the sensitive
question. If the respondent has the sensitive characteristic, answer ‘yes’ to the sensitive
question if you are comfortable in doing so. Otherwise, answer the unrelated question.
This option gives the respondents an incentive to answer truthfully, thereby improving the
efficiency of the design.
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APPENDIX A: EM Algorithm

We obtainthe EM algorithm for a single area, where

yj | π1, π2
ind
∼ Binomial(nj , pjπ1 + (1− pj)π2), j = 1, . . . , g.

We introduce latent variables(zj , wj), j = 1, . . . , g, as in the Gibbs sampler.
Then, for the expectation step,

zj | π1, π2, yj
ind
∼ Binomial{yj ,

pjπ1
pjπ1 + (1− pj)π2

}, j = 1, . . . , g,

wj | π1, π2, yj
ind
∼ Binomial{nj − yj ,

pj(1− π1)

pj(1− π1) + (1− pj)(1− π2)
}, j = 1, . . . , g.

Therefore,

E(zj | π1, π2,y) =
yjpjπ1

pjπ1 + (1− pj)π2
, E(wj | π1, π2,y) =

(nj − yj)pj(1− π1)

pj(1− π1) + (1− pj)(1− π2)
,

j = 1, . . . , g.
For the maximization step, it is convenient that, givenπ1, π2, yj , zj andwj are inde-

pendent. It is worth noting that thezj andwj are replaced by their expectations. More
importantly, lettingy· =

∑g
j=1 yj , z· =

∑g
j=1 zj , w· =

∑g
j=1wj ,

π̂1 =
z·

z· + w·
,

π̂2 =
y· − z·

n· − z· − w·
.

It is convenient that again, givenz·, w·, y·, π1 andπ2 are independent and they are beta
random variables.

The estimated covariance matrix ofπ̂1 andπ̂2, based on the negative inverse Hessian
matrix, is

C =

(
1/a −c/ab

−c/ab 1/b

)
/(1− c2/ab),

where

a =
g∑

j=1

p2j

{
yj

(pj π̂1 + (1− pj)π̂2)2
+

(nj − yj)

(pj(1− π̂1) + (1− pj)(1− π̂2))2

}
,

b =
g∑

j=1

(1− pj)
2

{
yj

(pj π̂1 + (1− pj)π̂2)2
+

(nj − yj)

(pj(1− π̂1) + (1− pj)(1− π̂2))2

}
,

c =
g∑

j=1

pj(1− pj)

{
yj

(pj π̂1 + (1− pj)π̂2)2
+

(nj − yj)

(pj(1− π̂1) + (1− pj)(1− π̂2))2

}
.

This covariance matrix,C, gives an underestimate of the true variability ofπ̂1 and π̂2
becausêπ1 andπ̂2 themselves are substituted into the population covariance matrix.
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Table 1: Summaries under the design-based procedure - estimates (π̂1, π̂2), standard errors
(SE), coefficient of variation (CV) and correlation (Cor)

π1 π2
π̂1 SE CV π̂2 SE CV Cor

1 .050 .325 6.492 1.100 .248 .225 -.829
2 .450 .335 .745 .600 .273 .455 -.817
3 5.700 4.210 .739 -.300 .990 -3.301 -.995
4 .731 .510 .698 .038 .692 17.991 -.944
5 .535 .195 .364 .823 .243 .295 -.591
6 -.150 .548 -3.654 1.050 .390 .371 -.943
7 1.291 .821 .636 .582 .312 .537 -.919
8 .071 .286 4.009 .786 .202 .258 -.707
9 .115 .188 1.633 .577 .215 .373 -.605
10 .889 .355 .400 .222 .367 1.650 -.800
11 -.556 .251 -.452 1.444 .296 .205 -.811

NOTE: Using the EM algorithm, the overall estimates forπ1 andπ2 are respectively
.279 (.067) and.798 (.037); see Appendix A for the EM algorithm.
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Table 2: Summaries under the individual-area Bayesian model - posterior mean (PM),
posterior standarddeviation (PSD), coefficient of variation (CV) and correlation (Cor)

π1 π2
PM PSD CV PM PSD CV Cor

1 .353 .198 .562 .810 .138 .171 -.604
2 .482 .239 .495 .567 .209 .369 -.730
3 .555 .279 .502 .808 .110 .136 -.395
4 .479 .225 .469 .411 .260 .633 -.736
5 .568 .163 .286 .710 .187 .264 -.469
6 .387 .249 .643 .661 .195 .295 -.785
7 .601 .201 .335 .753 .134 .178 -.532
8 .265 .186 .700 .679 .157 .232 -.554
9 .216 .146 .677 .530 .173 .327 -.447
10 .667 .222 .333 .427 .233 .545 -.612
11 .191 .152 .796 .736 .180 .245 -.414

NOTE: Under the individual-area Bayesian model, the overall estimates forπ1 andπ2 are
respectively .279 (.082) and.793 (.070).

Table 3: Bias (B) and posterior standard deviation (PSD) ofπ1 andπ2 averaged over all
locations and the 1000 simulation runs, number of locations,ℓ, andτ .

τ = 10 τ = 100 τ = 1000

π1 π2 π1 π2 π1 π2

ℓ B PSD B PSD B PSD B PSD B PSD B PSD

10 .129 .183 -.189 .214 .128 .183 -.189 .213 .132 .178 -.194 .214
18 .130 .183 -.188 .214 .129 .183 -.188 .213 .132 .178 -.192 .214
25 .131 .183 -.189 .214 .130 .183 -.189 .213 .133 .178 -.192 .214
50 .130 .183 -.188 .214 .130 .183 -.188 .214 .134 .178 -.192 .214
75 .130 .184 -.188 .214 .131 .183 -.188 .214 .135 .178 -.193 .214
100 .130 .183 -.188 .214 .131 .183 -.188 .214 .135 .178 -.193 .214
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Table 4: Relative absolute bias, posterior root mean squared error, coverage of 95% credi-
ble intervals and width of 95% credible interval averaged over the 1000 runs and the number
locations,ℓ, andτ

π1 π2

τ ℓ RAB PRMSE C Wid RAB PRMSE C Wid

10 10 .980 .264 .883 .638 .258 .307 .924 .721

100 1.01 .265 .880 .637 .258 .306 .924 .722

100 10 .571 .252 .929 .658 .247 .301 .945 .734

100 .578 .253 .926 .659 .246 .301 .946 .735

1000 10 .543 .251 .935 .660 .246 .301 .948 .735

100 .548 .252 .931 .661 .245 .300 .950 .736

NOTE: The correlations betweenπ1 andπ2 for all locations atτ = 10, 100, 1000 are
respectively and approximately−.550, −.565, −.567.
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