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Abstract 

Hinkins et al. (1997) introduced inverse sampling as a way to aid analysts navigating 
complex sample designs. One intent was to provide users a set of inverse samples that 
could each be analyzed using methods designed for simple random samples and then 
combined for inference. These techniques assume one has knowledge of the complex 
sample design and can properly invert the sample. For public use data, unless inverse 
samples are provided, a data user would be hard-pressed to create inverse samples based 
on the complex sample design. Our current research empirically investigates the 
performance of inverse sampling by comparing the resulting estimates to estimates that use 
the original sample and incorporate the survey design properly. We study the performance 
of inverse sampling both when the sampling design is known and when only the survey 
weights are known and thus only approximate inverse samples can be obtained. The results 
show that inverse sampling performs well for producing unbiased estimates of model 
coefficients, but caution is needed for estimating standard errors. 
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1. Introduction 

 
Complex survey designs are tremendously valuable to researchers and data users, allowing 
data to be collected efficiently and assuring that the data have strong statistical properties 
to support analyses. Software packages for applying a range of analyses to different 
complex survey designs are available with common statistical software. 
 
Often, data users are interested in fitting statistical models to survey data, but do not have 
the resources to use the common statistical packages for estimation. Sometimes, the data 
user does not have statistical software available to incorporate the survey design for 
estimating his/her model. It is possible that the statistical model being estimated is 
sophisticated enough that the methods and/or software for incorporating the survey design 
for estimation have not been developed. Finally, it may be the case that the user has not 
been trained in the features of complex survey designs needed to use the software and may 
prefer a different option. 
 
Hinkins et al. (1997) introduced inverse sampling to support such data users with analyses 
with complex survey data. Inverse sampling refers to drawing a subsample of a survey 
sample such that the subsample has the properties of being a simple random sample of the 
population. Thus, an inverse sample can support analyses assuming that the data are 
generated by an independent, identically distributed (IID) sampling process. 
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To address the decreased precision of estimates from using a subsample of the original 
sample, multiple inverse samples can be drawn, with analyses combined across the inverse 
samples. Hinkins et al. (1997) demonstrated how to conduct estimation with multiple 
inverse samples. Using an example for estimating sample means, they show that inverse 
sampling produces unbiased estimates and the correct variance estimates as long as a 
sufficient number of inverse samples are used.  
 
Inverse sampling relies on the development of algorithms tailored for specific designs. 
Further, not every possible complex survey design has had an inverse sampling algorithm 
developed for it. Thus, a related method for users of complex survey data was applied in 
Hinkins et al. (2009) called pseudo-inverse sampling. This approach takes subsamples with 
replacement of complex survey data with subsample selection probabilities proportional to 
the survey weight. This method can be applied to every complex survey dataset for which 
weights are available, including public use files which may not provide sample design 
information beyond the weights.  
 
This paper assesses the value of inverse sampling as well as pseudo-inverse for obtaining 
analyses with correct statistical inferences. We focus on the use of inverse sampling as a 
method for model estimation with complex survey data, extending the work of Hinkins et 
al. (1997). In particular, we focus on two different contexts: when full information about 
the sample design available and when a user encounters a public use file with limited 
information about the sample design.  
 
Our studies of linear and logistic regression found that while both proper and pseudo-
inverse sampling approaches tended to produce unbiased estimates, neither reliably 
produced variance estimates that were similar to those obtained from incorporating the 
sample design in model estimation, nor did the variance estimates consistently over- or 
underestimate the variance. Thus, inverse sampling or pseudo-inverse sampling can be 
used when the estimates or model coefficients are of interest. However, further study or 
refinements are needed before using either inverse sampling or pseudo-inverse sampling 
for statistical inference.  
 
Section 2 provides further background on inverse sampling and its past uses. Section 3 
describes the methods for evaluating the use of inverse sampling for modeling, and Section 
4 presents results. Section 5 discusses the findings and suggests some directions for future 
work. 
 

2. Background 

 
2.1 Inverse Sampling Background 

Inverse sampling was introduced by Hinkins et al. (1997) to provide a new tool for users 
conducting estimation with complex survey data. The authors considered that many 
common statistical methods are developed with the simplifying assumption that the data 
are generated by an IID sampling process. The goal of the new method was to allow a user 
interested in a method relying on this assumption to conduct the analysis on inverse 
samples, for which the IID assumption would be valid. 
 
For inverse sampling, a specific algorithm must be tailored to the complex sample design. 
Hinkins et al. (1997) describe the algorithms for inverting a stratified sample, a range of 
cluster samples, and few kinds of multistage design. A limitation that the paper recognizes 
is that an inverse sampling algorithm has not been developed for every sample design, and 
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when the sample design is too complex, inverse sampling may not be possible. The 
approach for drawing an inverse sample from a stratified sample is presented in Exhibit 1. 

 
As for the stratified sample example in Figure 1, the inverse sample size can be much 
smaller than the sample size, resulting in decreased precision of estimates from using one 
inverse sample. Thus, Hinkins et al. (1997) propose using resampling, i.e., taking multiple 
inverse samples with replacement and combining estimates from across the inverse 
samples.   
 
2.2 Uses of Inverse Sampling 

Hinkins et al. (1997) empirically study the use of inverse sampling for estimation from a 
stratified sample of corporate returns from the Statistics of Income database. They show 
that using inverse sampling produces unbiased estimates of total corporate assets without 
using information about the sample design for analysis. They also show that with a 
sufficient number of inverse samples, the variance of estimates becomes arbitrarily close 
to the variance of the estimate from stratified sample. With 1,000 inverse samples, the 
relative increase in variance from using inverse sampling is 3%. 
 
Beyond estimation, inverse sampling has also been used for visualization of regression 
diagnostics from complex survey data in Hinkins et al. (2009). As many common 
regression diagnostics are developed for IID data, the paper demonstrates how inverse 
sampling can be used to examine residuals versus fitted values plots, normal quantile-
quantile plots, scale-location plots, and plots of Cook’s distances for complex survey data. 
The paper proposes and demonstrates using a plot corresponding to each inverse sample 
produced, using an example of a regression with Survey of Consumer Finances public use 
data. 
 
Because Hinkins et al. (2009) uses a public use dataset without full information about the 
sample design available to the data user, proper inverse samples per the algorithms 
developed in Hinkins et al. (1997) cannot be used. Thus, the paper uses pseudo-inverse 

Exhibit 1: Inverse Sampling Algorithm for Stratified Sample 

 

1. Set subsample size m  to be size of smallest stratum. 
2. Determine the number of cases drawn from each stratum by drawing from a 

hypergeometric distribution: 
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where h  is number of strata, N  is population size, 1 ,..., hN N  are populations of 
each stratum, and 1 ,..., hm m  are the sample sizes to be drawn within each stratum. 

3. Draw simple random samples with sample sizes 1 ,..., hm m  without replacement. 

It is straightforward to show that each subsample has probability 1/
N

m
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drawn.  
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sampling, which involves subsampling with replacement from the original sample with 
probability proportional to the survey weight.  
 
There is limited research on the use of inverse sampling for statistical modeling to date. 
One investigation was conducted in Nahorniak et al. (2015), which applies pseudo-inverse 
sampling to estimate models from complex survey data for linear regression, quantile 
regression, and boosted regression trees. They find for their examples that pseudo-inverse 
sampling performs well in terms of model coefficient bias and obtaining correct standard 
errors. However, they do not investigate the proper inverse sampling approach of 
Hinkins et al. (2009). 
 

3. Methods 

 
3.1 Comparisons between Approaches 

To study the performance of inverse sampling and pseudo-inverse sampling, we study 
linear regression models and logistic regression models, as an example of a non-linear 
model. We estimate these from two different data sources and compare four kinds of 
estimates: 

 
A. Estimates based on the original sample that incorporate the survey design, using 

the R survey package. See Lumley (2004) for a description of the package. These 
results are designated as “Incorporate Design” in this paper. They serve as the 
benchmark against we compare other methods. 
 

B. Estimates based on the original sample that ignore the sample design, designated 
as “Ignore Design.” 

 
C. When examining stratified samples, estimates conducted via proper inverse 

sampling using the subsampling approach described in Exhibit 1, designated as 
“Exact Inv Samp.”  

 
D. Estimates conducted via pseudo-inverse sampling, that subsample with 

replacement with probability proportional to the weight, designated as “Pseudo-
Inv Samp.” 

  
When incorporating the same design for (A), standard errors are estimated by producing 
replicate weights using the features of the same design and then applying the replicate 
weights for estimation. 
 
The estimates from proper inverse sampling and pseudo-inverse sampling are estimated by 
combining estimates from multiple inverse samples, taking the mean over all inverse 
samples. Standard errors for all model coefficients are estimated using the bootstrap. 
Specifically, the standard error is estimated as the standard deviation of parameter 
estimates from across the inverse samples.  
 
We hypothesized that the estimates from proper inverse sampling will produce unbiased 
estimates with standard errors similar to those obtained using software to incorporate the 
sample design. Because pseudo-inverse sampling does not incorporate information about 
the joint probabilities of sample selection for cases, we hypothesized that pseudo-inverse 
sampling produces unbiased estimates but does not consistently produce the correct 
standard errors. 
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3.2 Data 

3.2.1 2000 California Academic Performance Index 

The first dataset we examine includes data from 6,194 California public schools as of 2000 
with a variety characteristics and a score summarizing students’ academic success, called 
the Academic Performance Index (API). The R survey package makes these data available 
and includes different samples, including the original population. All sample design 
information is available. We use the stratified sample (sample size 200 with strata of sizes 
100, 50 and 50) and the two-stage cluster sample (sample size 126) made available in the 
package.  

 
We examine two models, a linear model with API (api00) as the outcome and a logistic 
regression model with an indicator for meeting the school-wide growth target (sch.wide) 
as the outcome. Both models use the same independent variables: the percentage of 
students who are English language learners (ell), the percentage eligible for subsidized 
meals (meals), and the percentage in their first year in the school (mobility). 

 
For the stratified sample, we compare proper and pseudo-inverse sampling, while for the 
two-stage cluster sample we examine only pseudo-inverse sampling. In each case we take 
20,000 inverse samples. When conducting proper inverse sampling with the stratified 
sample, each inverse sample has size 50, equal to the size of the smallest stratum. For the 
pseudo-inverse samples, each subsample size is set to the effective sample size of the parent 

sample, using Kish’s formula 
2

2
eff i i

i i

n w w
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  where iw  is the weight for 

sample member .i  The effective sample sizes of the stratified and cluster samples are 169 
and 45 respectively. 

 
3.2.2 2016 General Social Survey 

In addition, we evaluate inverse sampling for estimating models with a public use dataset 
that contains limited information about the sample design available. The 2016 General 
Social Survey (GSS) included 2,867 respondents from a complex survey design, reporting 
on their attitudes, behaviors, and attributes. On the public use file, some data are provided 
to support variance estimation, including the primary sampling units and strata created for 
variance estimation purposes.  
 
We examine two models, a linear model with number of hours of TV per day (tvhours) as 
the outcome and a logistic regression model with the reporting of being very happy 
(veryhappy) as the outcome. Both models use the same independent variables: respondent 
age (age), parent’s education (paeduc), and respondent education (educ). We only examine 
pseudo-inverse sampling for the GSS. When conducting pseudo-inverse sampling, we took 
30 inverse samples of size 2,867, the same as the sample size 
 

4. Results 

 
The regression results with estimated regression coefficients and standard errors are in 
Table 1. The estimates are compared visually in Figure 1, followed by the standard errors 
in Figure 2.  
 
Across both datasets, both linear and logistic regression models, and across different kinds 
of sample designs, the coefficient estimates from proper inverse sampling and pseudo-
inverse sampling compare very well to the benchmark that incorporates the survey design 
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in estimation. We find in nearly all cases that the difference from the benchmark in 
coefficient estimates using an inverse sampling approach is less than that from ignoring 
the sample design in estimation. These results demonstrate, as expected, that incorporating 
the sample design is critical for eliminating bias in coefficient estimates. In these empirical 
investigations of linear and logistic regression models, inverse sampling is an appropriate 
approach for estimating model coefficients  
 
The estimates from either proper or pseudo-inverse sampling are not materially different 
from each other. From this study, it is inconclusive whether one approach performs better 
than the other for estimating model coefficients. This indicates that for public data users 
who have limited information about the sample design available to them, pseudo-inverse 
sampling may be a good approach when model coefficients are of most interest. 
 

Table 1: Estimated Model Coefficients and Standard Errors from Four Methods for 
Estimation with Complex Survey Data 

 
 Incorporate 

Design 

Ignore Design Proper Inverse 

Sampling 

Pseudo-Inverse. 

Sampling 

Independent 

Variable 

Est St. 

Error 

Est St. 

Error 

Est St. 

Error 

Est St. 

Error 

 Estimates for Linear Model of api00 from 2000 CA API Stratified Sample 

Intercept 820.89 10.52 794.98 11.74 820.42 11.00 820.43 12.57 
ell -0.48 0.41 -0.64 0.42 -0.48 0.32 -0.48 0.39 
meals -3.14 0.29 -2.87 0.29 -3.15 0.25 -3.15 0.30 
mobility 0.23 0.45 0.02 0.47 0.28 0.48 0.27 0.57 
         
 Estimates for Linear Model of api00 from 2000 CA API Cluster Sample 
Intercept 811.49 30.23 821.45 15.05   809.97 20.16 
ell -2.06 1.38 -1.30 0.72   -2.04 0.93 
meals -1.78 1.08 -2.92 0.42   -1.80 0.62 
mobility 0.33 0.61 0.58 0.64   0.46 1.05 
         
 Estimates for Logistic Model of sch.wide from 2000 CA API Stratified Sample 

Intercept 0.836 0.476 0.766 0.409 0.783 0.500 0.769 0.569 
ell -0.002 0.014 -0.004 0.013 -0.003 0.012 -0.003 0.015 
meals -0.003 0.010 -0.003 0.009 -0.003 0.010 -0.003 0.011 
mobility 0.061 0.034 0.040 0.024 0.068 0.037 0.070 0.041 
         
 Estimates for Logistic Model of sch.wide from 2000 CA API Cluster Sample 

Intercept 0.821 0.756 0.658 0.506   0.849 0.507 
ell -0.055 0.022 -0.064 0.023   -0.057 0.025 
meals 0.029 0.018 0.024 0.014   0.030 0.015 
mobility 0.015 0.030 0.057 0.038   0.015 0.024 
         
 Estimates for Linear Model of tvhours from 2016 GSS 

Intercept 3.462 0.613 3.459 0.425   3.447 0.406 
age 0.037 0.004 0.039 0.004   0.037 0.004 
paeduc -0.034 0.050 -0.032 0.020   -0.036 0.031 
educ -0.148 0.034 -0.152 0.026   -0.145 0.027 
 Estimates for Logistic Model of veryhappy from 2016 GSS 
Intercept -1.425 0.391 -1.360 0.298   -1.428 0.298 
age 0.003 0.003 0.001 0.003   0.003 0.003 
paeduc -0.023 0.019 -0.027 0.014   -0.023 0.014 
educ 0.052 0.022 0.053 0.018   0.053 0.019 
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Figure 1: Comparison of model coefficient estimates among incorporating sample design 
(benchmark), ignoring design, proper inverse sampling, and pseudo-inverse sampling. 
Examining linear and logistic regression models from 2000 California API (stratified and 
cluster samples) and 2016 GSS. 
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Figure 2: Comparison of model coefficient standard errors among incorporating sample 
design (benchmark), ignoring design, proper inverse sampling, and pseudo-inverse 
sampling. Examining linear and logistic regression models from 2000 California API 
(stratified and cluster samples) and 2016 GSS. 
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For obtaining standard errors, we do not find a consistent result for how inverse sampling 
compares with ignoring the sample design, and thus we cannot readily recommend inverse 
sampling for estimation when standard errors and/or statistical testing are also of interest. 
Out of eight coefficients for which we examine proper inverse sampling, there are five for 
which the difference from the benchmark is about as small as or smaller than ignoring the 
sampling. However, there are instances where using proper inverse sampling led to 
underestimating the standard error, a finding that surprised us. Particularly for the linear 
model standard errors for either ell or meals, using proper inverse sampling yields smaller 
standard errors and therefore smaller p-values for hypothesis testing. 
 
Similarly, the standard error estimates from pseudo-inverse sampling do not consistently 
perform well when compared with the benchmark. While there are instances where the 
standard errors compare favorably with proper inverse sampling (e.g, the standard errors 
for ell and meals for the stratified sample from the CA Academic Performance Index), 
there are other instances where the standard errors are either very high or very low 
compared with the benchmark. This result is not surprising given that pseudo-inverse 
sampling does not account for joint probabilities of selection, which are critical for variance 
estimation.  
 
We find that both proper and pseudo-inverse sampling perform well for estimating model 
coefficients with low bias, but do not perform well consistently for estimating standard 
errors. The reasons for these findings should be investigated in the future. Users should 
proceed with caution in using pseudo-inverse sampling for modeling when interested in 
either the standard errors or hypothesis testing. 
 

5. Discussion 

 
While we caution users as to how to apply inverse sampling, there are some instances where 
this method can offer strong advantages. First, whether examining linear or nonlinear 
models, either proper or pseudo-inverse sampling reduces the bias of coefficient estimates 
and performs much better than ignoring the sampling design. There are instances when the 
model coefficients are of most interest, and thus inverse sampling may be very useful. 
Inverse sampling is also helpful when data users cannot readily incorporate the survey 
design for estimating the model in which they are interested—either because software is 
not readily available to them or because the model they are estimating may be new or 
sophisticated enough that the software for their model has not been developed. 
  
Nonetheless, in many contexts, obtaining valid estimates for the standard errors is critical. 
While variance estimation for complex survey data is an active area of research, the 
estimates from either proper or pseudo-inverse sampling do not consistently perform well 
when compared with the benchmark of incorporating the survey design in model 
estimation. In some cases, the estimated standard errors may be too small. Understanding 
the reasons why standard errors from proper inverse sampling do not perform well is an 
area for future research. 
 
Both proper and pseudo-inverse sampling can be computationally intensive, as the methods 
involve estimating models for each inverse sample. In addition, a proper inverse sampling 
algorithm has not been developed for every complex survey design. For these additional 
reasons, data users may face challenges in applying inverse sampling. 
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In spite of these limitations, we encourage survey statisticians to seek opportunities to 
understand the needs of their data users and find new ways to meet their needs. There are 
data users for whom estimating a possibly sophisticated model with complex survey data 
may prove very challenging, and ignoring the sampling design will yield highly misleading 
inferences. Future research may prove that in addition to providing survey software, data 
products may be able to be provided as a solution that would allow estimation of their 
model more readily. Further, with growing computational power, research on resampling 
with complex survey data may yield new possibilities for how to analyze such datasets and 
obtain statistical inferences with good properties.  
 

References 

 
Hinkins, S., Oh, H. L., & Scheuren, F. (1997). Inverse sampling design algorithms. Survey 

Methodology, 23, 11-22. 
Hinkins, S., Mulrow, E., & Scheuren, F. (2009). Visualization of complex survey data: 

Regression diagnostics. 2009 Proceedings of the Section on Survey Research Methods, 
2206-2218. 

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical 

Software, 9(1), 1-19. 
Nahorniak, M., Larsen, D. P., Volk, C., & Jordan, C. E. (2015). Using inverse probability 

bootstrap sampling to eliminate sample induced bias in model based analysis of 
unequal probability samples. PLOS ONE, 10(6), e0131765. 

NORC at the University of Chicago (2017). General Social Surveys 1972-2016: 
Cumulative Codebook.  
http://gss.norc.org/documents/codebook/GSS_Codebook_intro.pdf 

 

1155

file://///norc.org/home/chicago/Seeskin-Zachary/Inverse%20Sampling/http
file://///norc.org/home/chicago/Seeskin-Zachary/Inverse%20Sampling/http
http://gss.norc.org/documents/codebook/GSS_Codebook_intro.pdf



