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Abstract 

In multiple imputation (MI), the total variance (T) is estimated by 
U+(1+1/m)B, where U is the within-imputation variance, B the between-imputation 
variance, and m the number of imputations. The expected value of U is not affected 
by a proper MI, whereas the extra variance B can be captured only by MI but not by 
single imputation (SI). Whether B is large enough to cause a meaningful change in T 
may have an effect on people’s perspective towards the value of MI as compared to 
SI. This paper evaluates how data analysis affects the impact of MI (IMI), measured as 
IMI = 100(B/T)1/2. MI trials were conducted using the data of the 2012 Physician 
Workflow Mail Survey. Difference in analytic models had differentiated effects on B 
and U. Our results suggest that, for the same MI and the same data, IMI may be 
negligible (<1%) in one analysis but substantial (>5%) in another. 

 
 Keywords: Impact of multiple imputation; Multiple imputation; Missing 
data; Between-imputation variance; National Ambulatory Medical Care Survey. 
 

1. Introduction 

 Multiple imputation (MI) has become the most popular approach in dealing 
with the missing data (Carpenter and Kenward 2013; Rezvan et al. 2015). However, 
not all data collectors and users are convinced that it is worthwhile to adopt MI due to 
inconsistencies in its effectiveness. Many have reported that MI effectively reduced 
bias (Dohoo 2015; Walani et al. 2015), but others found that MI had little effect (Pan 
and Shimizu 2009; White and Carlin 2010; Twisk et al. 2013). This paper studies 
how different analyses on the same MI and the same data may affect the impact of the 
MI on the final result.  

Many researchers pointed out that MI must be compatible with analysis 
(Kontopantelis et al. 2017; Ludtke et al. 2017; Rawlings et al. 2017). This 
compatibility between MI and analysis, however, should not be interpreted as being 
that one can perform a unique analysis only for a particular MI. In fact, the complete 
datasets generated from the same MI may be legitimately analyzed in many different 
ways (Cattle et al. 2011; van Buuren 2012, section 2.3.4). This is particularly true for 
large national surveys such as National Ambulatory Medical Care Survey (NAMCS). 
Once the data of these surveys are released to the public, they are subject to many 
different analyses by various data users all over the world.  
 In general, the application of MI technique is made up of three steps as 
follows (van Buuren 2012, section 6.4):  
                                                 

1 The findings and conclusions in this report are those of the authors and do not 
necessarily represent the official position of the National Center for Health 
Statistics, Centers for Disease Control. This work was performed under 
employment by the US federal government; the authors did not receive any 
outside funding. 
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Step 1. Imputation: Impute the missing data for m times, resulting in m 
complete datasets, where m is the number of imputations of the MI.  

Step 2. Analysis: Analyze each of the m datasets.  
Step 3. Pooling: Integrate the m results into the final result.  

Step 1 attracts the most researches because people want to know how MI should be 
properly carried out for various data situations. To date little research has been 
published on the relationship between data analysis, i.e. step 2, and the impact of MI 
on the final results.  
 Rubin’s rule for pooling the m results to form the final result is represented 
by the following three equations (Rubin 1987): 
 𝐵 =

1

𝑚−1
∑ (𝑄𝑖 − 𝑄)2𝑚
1        (1) 

 𝑈 =
1

𝑚
∑ 𝑈𝑖
𝑚
1         (2) 

 𝑇 = 𝑈 + (1 +
1

𝑚
)𝐵       (3) 

where B, U, and T are the between-, within-, and total variances, respectively, Q is 
the quantity of interest, and the subscript i stands for the ith imputation of the MI. The 
expected value of U is not affected by a proper MI (Rubin 1987). The gain from MI 
as compared to the single imputation (SI) is that MI makes it possible to estimate B 
whereas it is impossible to estimate B in SI. Therefore the impact of MI can be 
measured by the size of B relative to U and T. In this paper, IMI, the ratio of 
percentage B/T in standard error unit was used as the measure of the impact of MI: 

 𝐼𝑀𝐼 = 100√𝐵 𝑇⁄        (4) 

For the same data and the same MI, the difference in IMI would be possible only if 
step 2, the analysis of the data, has differentiated effects on B and U, which was what 
we found and are reporting in this paper. The results from this research may help data 
programs to decide whether it is worthwhile to adopt MI. 

2. Methods 

 
 MI trials were carried out using the data of the 2012 Physician Workflow 
Mail Survey (PWS), a supplement of NAMCS. Descriptions of PWS and NAMCS 
are available in Jamoom et al. (2012), Lau at el. (2016) and in the NAMCS webpage 
https://www.cdc.gov/nchs/ahcd/index.htm. The study had four treatment factors, 
namely the imputation variable (ImpV), the missing data percentage (δ), the 
imputation covariant variable (ImpCoV), and the analytic variable (AnaV). ImpV is 
the variables whose missing values were imputed. ImpV had three values, SIZE5, 
SIZE20 and SIZE100. They were the variables of the physician’s practice size in 
different scales. The values of SIZE100 ranged from 1 to 100. SIZE5 was derived 
from SIZE100 by recoding the values into five levels, and SIZE20 was derived from 
SIZE100 by top-coding the > 20 values into 20.  
 Treatment factor δ had two values, 4% and 29%. The 2012 PWS had 29% 
missing data due to item nonresponse for SIZE100. The 4% missing level was 
obtained after the missing values were replaced with the nonmissing values available 
in the 2011 PWS for the same physician. SIZE5 and SIZE20 had the same missing 
data profile as SIZE 100. Treatment factor ImpCoV refers to the variables that were 
used as covariates in imputation, and treatment. Both ImpCoV and AnaV had the 
following four values: CK (the control), REGION (RG) (region where the physician’s 
office was located), PRIMEMM (EM) (the physician’s primary employment type), 
and DERIVED (DR) (a 3-value derived variable that was highly correlated with the 
ImpV). For ImpCoV, CK was the MI without a covariate, and for AnaV, CK was the 
analysis without an analytic variable. The quantity of interest (Q) was the mean of the 
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physician’s practice size for the nation or for a specified sector (e.g. REGION 1) as 
represented by the scale of SIZE5, SIZE20, or SIZE100.  
 Hot deck imputation (Siddique and Belin 2008; Andridge and Little 2010) 
was used for the MI trials. The nonmissing portion of the δ = 4% datasets were used 
as the donors for imputing both δ = 4% and 29% missing values in the imputation. 
The m values chosen for the MI trials was 60. Twenty MI replicates were conducted 
for each treatment combination. Unweighted data were used in analyses. All 
estimates were for research purpose only. 

3. Results and discussion 

3.1 Differentiated effects of analyses on B and U 

 For the same data and MI, the square root value of B or U from the analysis 
with no AnaV (i.e. AnaV = CK) are compared to the mean of the square root values 
of B or U, i.e. B1/2 and U1/2, from the analyses with AnaV = RG, DR, or EM. The 
results for ImpV = SIZE5 were presented in Figure 1, and those for ImpV = SIZE20 
were presented in Figure 2. Each of Figures 1 and 2 has four graphs, which were 
labeled as aB, aU, bB, and bU. Graphs aB and aU were the B1/2 and U1/2 data, 
respectively, for δ = 4%, and graphs bB and bU were the B1/2 and U1/2 data, 
respectively, for δ = 29%. 

 

 
Figure 1. Effect of AnaV versus no AnaV in analysis on square root of B and square 

root of U for SIZE5 
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 How the data were analyzed discriminately affected B and U. Take graphs aB 
and aU of Figure 1 for example. B1/2 value for the “with AnaV” treatment was 3 to 5 
times higher than that for the “no AnaV” treatment. But for the same data (ImpV = 
SIZE5, δ = 4%) and the same MI (ImpCoV = CK, DR, EM, or RG), U1/2 for the “with 
AnaV” treatment was just one seventh to one nineteenth of that for the “no AnaV” 
treatment (Figure 1 aB and aU). The B1/2 and U1/2 change patterns were similar for 
ImpV = SIZE5 and δ = 29% (Figure 1 bB and bU).  
 The B1/2 and U1/2 change patterns of SIZE20 were somewhat different from 
those of SIZE5. For ImpCoV = CK, both B1/2 and U1/2 increased as the analytic model 
shifted from “no AnaV” to “with AnaV” (Figure 2), which was quite different from 
SIZE5 (Figure 1). Even though both B1/2 and U1/2 were higher for “with AnaV” than 
for “no AnaV” for ImpCoV = CK, the percentage increase was much higher for B1/2 
than for U1/2 (Figure 2). Therefore, the statement that analysis differentially affects B 
and U still holds true for SIZE20 for ImpCoV = CK. For rest ImpCoV values, i.e. 
ImpCoV = DR, EM, or RG, B1/2 increased but U1/2 decreased as the analytic model 
shifted from “no AnaV” to “with AnaV” (Figure 2), a change pattern similar to that 
of SIZE5 (Figure 1). Data of SIZE100 were not shown to avoid redundancy because 
the message from SIZE100 data was very similar, as being indirectly suggested by 
the IMI data in graphs a and b of Figure 3.  

 

 
Figure 2. Effect of AnaV versus no AnaV in analysis on square root of B and square 

root of U for SIZE20 
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3.2 Effect of analysis on IMI 

 The IMI data for SIZE100 and SIZE5 were presented in Figure 3. Each of the 
four graphs in Figure 3 represents one particular data set constituted by a specific 
ImpV-δ combination. Four different MIs as defined by the four ImpCoV values were 
included in each graph. All together there are 16 data-MI combinations whose data of 
the IMI comparison between the two types of analyses , “no AnaV” vs. “with AnaV”, 
are presented in Figure 3. For the same data and MI, IMI was always substantially 
greater for “with AnaV” than for “no AnaV” for all 16 data-MI combinations (Figure 
3). The IMI data of SIZE20 are not presented to avoid redundancy. As indirectly 
suggested by the B1/2 and U1/2 data in Figure 2, the IMI change pattern for SIZE20 is 
very similar to that for SIZE5 and SIZE100. 
 The standard error (SE) for making the statistical inferences (e.g. 
constructing a confidence interval) is the square root of T (Rubin 1987). IMI can be 
interpreted as the percentage change of SE caused by B. Let’s say that a <1% IMI 
value as indicating an ignorable impact of the MI, a 1%≤ IMI≤ 5% value as indicating 
a borderline impact of the MI, and a ≥5% IMI value as indicating a substantive impact 
of the MI. In two of the 16 data-MI situations in Figure 3, i.e. ImpCoV = CK and RG 
for SIZE5 and δ = 29%, the impact of MI was ignorable in one analysis and 
substantive in another for the same data and MI (Figure 3 d). In one data-MI 
situations, i.e. ImpCoV = DR for SIZE5 and δ = 4%, the impact of MI was ignorable 
for both analyses (Figure 3 c). In the remaining 13 data-MI situations, the impact of 

 

 
Figure 3. IMI comparison between the analysis with AnaV and that without AnaV 
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MI was ignorable in one analysis and not ignorable in another for the same data and 
the same MI (Figure 3). 

4. Conclusions 

 The results of MI trials performed on PWS12 data suggest that data analysis 
can discriminately affect B and U. For the same data and the same MI, IMI can be 
very different in different analyses. The impact of MI may be too small to cause any 
meaningful change in the statistical conclusions in one analysis but can be large 
enough to cause substantive changes in the conclusions in another analysis. 
Therefore, where different analyses are possible by different data users, one cannot 
conclude that the MI would not be worthwhile just because of a small IMI in his or her 
analyses. 
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