
One- Versus Two-Step Approaches to Survey 
Nonresponse Adjustments 

 
 

Robert E. Fay1, Minsun K. Riddles1 

1Westat Inc., 1600 Research Blvd., Rockville, MD 20817
 

 

 
Abstract 
In a series of papers, Little and Vartivarian (2003, 2005) argued that basing survey 
nonresponse adjustments on propensity to respond could increase the sampling variance of 
the estimates while not reducing bias, if the predictors of response were unrelated to key 
survey outcomes. Applying this idea to a 2014 military workforce survey, RAND 
researchers used machine learning approaches to develop a two-step method for 
nonresponse adjustment. The two step method comprises (1) a model for the key outcome 
variables based on respondents and (2) a response propensity model using the predicted 
key outcome variables as predictors for all sampled units. At the 2016 JSM, we presented 
simulation results assessing the predictive performance of competing machine learning 
algorithms in the first of the two steps. In this paper, we investigate the circumstances 
necessary for the two-step method to outperform nonresponse approaches in common 
practice, most of which can be regarded as single-step methods. 
 
Key Words: machine learning, gradient boosting, generalized boosted models, extreme 
gradient boosting 
 
 

1. Introduction 
 
Most survey researchers recognize the practicality of using weighting adjustments to 
compensate for unit nonresponse in sample surveys, and weighting adjustments enjoy a 
long history of use and application. At the same time, methods for weighting adjustment 
remain an active area of research. Little and Vartivarian (2005) distinguished between 
adjustments based on models targeting the propensity to respond and adjustments focused 
on prediction of key survey characteristics. A high-level conclusion from their work was 
that when models for response propensity incorporate variables with no relation to key 
outcome variables, the resulting adjustments can increase the variance of the survey 
estimates without decreasing response bias. They offered suggestions on weighting 
approaches recognizing this problem (Little and Vartivarian 2003, 2005; Vartivarian and 
Little, 2003), as have other researchers. 
 
With the Little and Vartivarian result in mind, RAND researchers (Morral et al. 2014) 
developed a novel nonresponse approach for a specific survey, the 2014 RAND Military 
Workplace Study (2014 RMWS). The survey was designed to measure key characteristics, 
including the one-year prevalence of rape (penetrative sexual assault), attempted rape, 
sexual assault (non-penetrative), sexually hostile work environment, sexual harassment, 
and sexual quid pro quo. Although the Defense Manpower Data Center in the Department 
of Defense had directed similar surveys previously, Congress mandated that the 2014 
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survey be placed under independent auspices. RAND was selected for this task, and a team 
of researchers revised both the questionnaire and estimation approach. 
 
Like the previous surveys in the series, the 2014 RMWS study yielded a response rate of 
approximately 30 percent for the primary sample of active duty military. Two features of 
the survey were important considerations in designing an approach to nonresponse 
adjustment. First, a relatively large number of variables were available from the sampling 
frame for both respondents and non-respondents—approximately 70 were considered in 
the non-response modeling. Almost all of these variables were categorical, some with as 
many as 20 levels. Second, the survey itself was large, with 145,300 respondents from a 
sample of 477,513 in the active duty military. RAND researchers (principally Andrew R. 
Morral and Terry Schell) developed a two-step approach to weighting for non-response: 
 

1. Using data from the respondents, they used gradient boosting (Friedman 2001, 
2002; Friedman, Hastie, and Tibshirani, 2000) to develop a predictive model for 
each of the six key items, separately for males and females. All of the candidate 
predictors identified from the frame were included. The modeling was performed 
in R (R Core Team, 2017) using the generalized boosted models (gbm) package 
(Ridgeway et al., 2017). Separately by gender, Morral and Schell produced six 
different models for key outcome variables, although one of the models was simply 
the overall proportion for males for an extremely rare characteristic that could not 
be further modeled sensibly. 

2. They used the models from the first step to predict expected probabilities (or 
“proxy variables”) for each of the six key outcomes for the entire sample of 
477,513, that is, for both respondents and nonrespondents. They then cast the 
problem of nonresponse weighting as analogous to the problem of causal inference 
from observational studies. They used the twang package (Ridgeway et al. 2016), 
which provides a “toolkit for weighting and analysis of non-equivalent groups.” 
The functions in the package call functions from the gbm package to derive 
propensity weights optimizing the balance between respondents and 
nonrespondents with respect to the proxy variables and the set of variables used in 
the final poststratification. 

 
Heuristically, the first step is tasked with finding the best possible prediction of the key 
outcome variables given all of the data from the frame and paradata available for both 
respondents and nonrespondents. The second step allows these modeled outcomes to 
determine propensity weights in combination with the poststratification variables. The 
restricted number of variables used in the second step was aimed at limiting weight 
variation to address the variance concern raised by Little and Vartivarian’s work. Morral, 
Gore, and Schell (2016) presented evidence in favor of their nonresponse approach as 
reducing bias with an acceptable increase in variance. 
 
In this paper, we use computer simulation to assess the degree to which this nonresponse 
strategy may have general merit for other applications. The first step is a problem in 
prediction, so we focus first on the question of finding flexible predictive models, 
especially when several candidate variables are available as in the 2014 RMWS. The next 
section describes gradient boosting models and their implementation in R packages gbm 
and xgboost. At the 2016 JSM, we presented a first set of simulation results evaluating 
generalized boosted methods; the third section reports results from a more extensive set of 
simulations, building on our 2016 results.  
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The fourth section presents a simulation of the two-step approach compared to one-step 
alternatives. The final discussion section highlights the more definitive findings and 
identifies areas for further research.  
 

2. Gradient Boosting 
 
The generalized boosted models implemented in the gbm package generalize Friedman’s 
gradient boosting machine. They are a form of supervised learning where the objective is 
to develop a predictive model for a criterion variable. The models are similar to regression 
trees and random forests, which have been used for unit nonresponse (e.g., Lohr, Hsu, and 
Montaquila, 2015; Toth and Phipps, 2014). While random forests create an ensemble of 
trees and then average their predictions, the gradient boosting machine develops a set of 
simple trees to be summed rather than averaged. In other words, the gradient boosting 
machine develops a number of small tree predictors, �̂�(௞) fitted to the current residuals 𝑦 −

𝑦ො(௞). Starting with an initial estimate, 𝑦ො(ଵ)(𝐱), the predictions at each step are 

𝑦ො(ଶ)(𝐱) = 𝑦ො(ଵ)(𝐱) + 𝜆�̂�(ଵ)(𝐱) 

𝑦ො(ଷ)(𝐱) = 𝑦ො(ଶ)(𝐱) + 𝜆�̂�(ଶ)(𝐱) 

⁞ 

𝑦ො(௧)(𝐱) = 𝑦ො(ଵ)(𝐱) + 𝜆𝚺௜ୀଵ
௧ିଵ�̂�(௜)(𝐱) 

 
As with many machine algorithms, the models incorporate features of both optimization 
and regularization. In general, a greedy algorithm sequentially assembles the set of simple 
trees. At each step, the algorithm identifies the next tree that optimizes the prediction of 
the remaining variation unexplained by the sum of the trees at that point. 
 
The algorithm includes regularization features to avoid overfitting. One of these is to 
employ shrinkage governed by a parameter, 𝜆, generally a positive number less than 1. 
With 𝜆  = 0.01, for example, each simple tree determined by the algorithm has its 
predictions multiplied by 0.01. The algorithm, forced to take small steps, consequently 
constructs a larger and more complex set of trees than if 𝜆 = 1. As another regularization 
feature, each simple tree is constructed with a limited depth of interaction, such as 2 or 3. 
Finally, a stopping rule, such as cross validation, prevents the ensemble of trees from overly 
fitting the observed data to the detriment of its ability to predict for new observations. 
   
Cross validation divides the entire sample into a number of groups. For example, if 16 
groups are formed, the values for observations in each of the 16 groups can be predicted 
from models fitted to the other 15 groups. As the number of trees, 𝑡, increases, cross-
validation will generally initially show an improvement in predictive accuracy, but the 
gains eventually reverse when overfitting outweighs any reduction in bias from adding 
additional trees. 
 
In the simulations, we assessed the performance of two implementations of gradient 
boosting, the gbm package in R used in the 2014 RMWS and the xgboost package (Chen 
and Guestrin, 2016; Chen, He, and Benesty, 2017). Both are written in a combination of R 
and C, with the R source setting up the problem and selection of options and the C code 
implementing the parts of the algorithm where processing speed is critical. There is a 
similar implementation of xgboost callable from Python.  
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3. Simulation of Step 1  
 
In the two-step approach, then, the first step uses data from respondents to create 
predictions of key survey outcomes for both respondents and nonrespondents. In the 
simulations we measured predictive accuracy with both mean square error and a loss 
function based on the log likelihood for the logistic. The two loss functions gave essentially 
the same conclusions, and we report only the mean square error results. 
 
We simulated nine simulated populations comprising both random predictor variables and 
a random binary outcome variable. For population 1, three predictors were created: 𝑋ଵ and 
𝑋ଶ as independent draws from two independent uniform (0, 1) random variables, and 𝑋ଷ 
taking values -1, 0, 1, and 2 with probability .25 each.  Consider first a 0-1 Bernoulli 
random variable, 𝑌, created with expected values, 𝑝଴, with 
 

logit(𝑝଴) = sin(3𝑋ଵ) − 4𝑋ଶ + 𝑋ଷ. 
 
The expression is almost a generalized linear model in 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ except for the effect 
of the sine function on 3𝑋ଵ. The resulting distribution of 𝑝଴ has a median of about .3 but 
can yield observations above .9.  
 
Instead, population 1 is based on a rescaled version 
  

logit(𝑝ଵ) = .5(sin(3𝑋ଵ) − 4𝑋ଶ + 𝑋ଷ) − 1.5 
 
with a median for 𝑝ଵ of about .13 and no values above .5.  The rescaling matches more 
closely the some outcome variables from the 2014 RMWS; most other outcomes were at 
lower rates. Variables 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ were the eligible predictors in the model. 
 
Population 2 is based on the same distributions for 𝑝ଵ, 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ, but it includes an 
additional predictor, 𝑋ସ, in the model. 𝑋ସ was generated as a categorical variable with 20 
levels with equal probability. 
 
Population 3 again uses 𝑋ଵ, 𝑋ଶ, 𝑋ଷ, and 𝑋ସ as predictors in the model but allows 𝑋ସ to 
affect the distribution of 𝑌 through 

  
logit(𝑝ଷ) = .5(sin(3𝑋ଵ) − 4𝑋ଶ + 𝑋ଷ + .5𝑚𝑜𝑑(𝑋ସ, 4) − .75) − 1.5 

 
Population 4 returns to the distribution of 𝑌 from populations 1 and 2, but adds two 20-
level predictors 𝑋ହ and 𝑋଺ to the model in addition to 𝑋ସ. Population 4 is a more extreme 
version of population 2 to illustrate the effect of including candidate categorical variables 
with little or no predictive power. 
 
Population 5 increases the number of predictors in the model to 16 by creating 4 
independent versions of population 2, and combining the 4 predicted logits through 
 

logit(𝑝ହ) = .5(𝑙𝑜𝑔𝑖𝑡ଵ + 𝑙𝑜𝑔𝑖𝑡ଶ + 𝑙𝑜𝑔𝑖𝑡ଷ + 𝑙𝑜𝑔𝑖𝑡ସ) + 1.918 
 
By involving more predictors, this population begins to mimic the approximately 70 used 
for the 2014 RMWS. 
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Population 6 uses the same elements as population 5, but it converts each of the four 𝑙𝑜𝑔𝑖𝑡௜ 
outcomes into the corresponding proportions and averages them. 

 
𝑝଺ = .25(𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡ଵ) + 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡ଶ) + 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡ଷ)

+ 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡ସ) ) 
 
Population 7 uses essentially the same elements as population 6, but it takes the minimum 
value of the four 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡௜) rather than their average. 
 
Population 8 uses the same logit equation as population 3 to determine four values of 
𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡௜) and then again takes the minimum of the four similar to population 7. 
 
Population 9 forms four values of 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡௜) in the same manner as population 7, 
but then uses 𝑚𝑜𝑑(𝑋ସ, 4) + 1 to select one of the four 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡௜) to generate the 
observation. Thus, 𝑋ସ interacts with 𝑋ଵ, 𝑋ଶ, and most of the other predictors. 
 
At the 2016 JSM, we presented simulation results in which we compared the performance 
of the two gradient boosting implementations with logistic regression and with the 
functions ctree() and cforest() in the R package party. The functions implement 
regression trees and random forests, respectively. Previously, Lohr, Hsu, and Montaquila 
(2015) reported favorably on their performance, but our 2016 simulation results based on 
a sample size of 10,000 showed ctree() and cforest() to be not competitive with 
gradient boosting for these populations, however. 
 
For the new simulations, we refined our application of gbm and xgboost in three respects. 
First, for each simulation sample, we used the same 16 groupings of observations for cross-
validation for each method. This required minor modification of R code in some gbm 
functions. Second, we noticed that xgboost began with an initial estimate of the logit 
𝑦ො(ଵ)(𝐱) = 0, equivalent to a probability of 0.5, while gbm began at the overall proportion. 
We modified xgboost to also start at the logit of the overall proportion. Third, we 
observed that although gbm has a default bagging fraction (bag.fraction) of 0.5, we 
obtained somewhat better predictions by setting this parameter to 1.0, effectively 
eliminating bagging. With the default bagging fraction, each new tree was determined 
based on a random half of the data. Although bagging may improve the performance of 
some algorithms such as random forests, gradient boosting appeared better without it in 
our populations. This change also allowed a larger choice of 𝜆. In general, decreasing this 
parameter improves prediction but increases running time, finding a sufficiently small 
value of 𝜆 below which improvements are negligible can require experimentation. Without 
bagging, gbm produced equally good or better results with a 𝜆 about 3 times as large as 
required with the default value of bag.fraction = 0.5. In the simulations, we report 
results for gbm based on 𝜆 = 0.01, but checked that there was negligible improvement 
relative to 𝜆 = 0.03; for xgboost this parameter, called eta, was set to 0.03 but checked 
against results from 0.1. 
 
Although the modifications appeared to bring the performance of the two gradient boosting 
methods closer, gbm and xgboost differ in the treatment of unordered categorical 
predictors of more than two levels. In building the model, the former considers all possible 
splits of a categorical variable at each step, while the latter begins by creating indicator 
variables for each of the possible levels. In some applications gbm may be more effective 
in discovering an effective grouping of levels of a categorical variable, but it has the bias 
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that Loh (2014) and others have studied of favoring categorical variables with multiple 
levels. 
  
For each population, logistic regression was compared to gbm and xgboost, each with 
interaction depth set at 2 and at 3. Cross-validation was used to estimate the prediction 
error for each, including for logistic regression, using the same 16 grouping of 
observations. The results are based on 100 simulated populations. This relatively small 
number for a simulation study was adequate for comparisons between methods, and 
observed differences were all statistically significant except for the smallest ones. We 
report results for three different sample sizes, 1,500, 2,000, and 10,000. These sizes 
correspond to the number of respondents in the first of the two steps, not to the total sample 
sizes, so they are illustrative of two relatively small surveys and a somewhat larger one. 
 
Table 1 compares the results for the five approaches. Each row of the table has one 
(possibly more) values of 0 representing the observed lowest average mean square error of 
prediction averaged over the 100 simulated populations, with the other entries in each row 
giving the percent above the lowest value. A sixth approach, denoted “c.v. best” in the 
table, was based on cherry picking the best estimator based on the cross-validation results 
for the given sample, without knowledge of the overall simulation results. Thus, c.v. best 
represents the outcome of selecting a method based on a cross-validation analysis of the 
one available sample.   
 

Table 1: Comparison of Mean Square Prediction Errors for Samples of Size 𝑛 =1,500 
(Each entry reports the percent above the lowest value in the row) 

 

Population c.v. best logistic 
gbm gbm xgboost xgboost 
2-level 3-level 2-level 3-level 

1 29 0 115 140 145 193 
2 15 28 27 54 0 18 
3 21 0 19 33 15 27 
4 13 208 55 84 0 16 
5 6 88 24 35 0 7 
6 6 319 10 11 0 3 
7 5 451 0 1 1 1 
8 4 426 2 2 0 2 
9 2 79 3 3 0 1 
       

 
Although none of the simulated populations are in exact agreement with a logistic model 
based on the set of predictors, logistic regression performed the best for populations 1 and 
3, where the number of predictors was small and only relevant predictors were included. 
Its performance for population 2 was also reasonably acceptable. In most other cases 
logistic regression performed considerably worse than any gradient boosting alternative. 
 
Overall, xgboost performed somewhat better than gbm, but not consistently so. For 
populations 7 through 9, the four gradient boosting versions perform almost identically. 
 
The results for c.v. best are quite good. Even though it is never optimal for any one 
population, it gives generally acceptable answers for each. Scanning down each column, 
its maximum percentage over the optimum is 29%. All of the other options are in excess 
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by 100% at least once. But if population 1 is excluded, the performance of 2-level xgboost 
is particularly good. 
 
Table 2 shows similar results for 𝑛 = 2,000. The overall pattern of results is quite similar 
to table 1. The c.v. best estimator again performs well. 
 

Table 2: Comparison of Mean Square Prediction Errors for Samples of Size 𝑛 =2,000 
(Each entry reports the percent above the lowest value in the row.) 

 

Population c.v. best logistic 
gbm gbm xgboost xgboost 
2-level 3-level 2-level 3-level 

1 31 0 95 114 121 161 
2 20 22 28 48 0 17 
3 22 0 26 46 29 48 
4 5 178 47 76 0 14 
5 7 65 19 36 0 9 
6 6 236 19 22 0 5 
7 2 299 6 6 0 1 
8 3 280 5 5 0 2 
9 2 54 4 4 0 0 
       

 
In table 3, when the sample is increased to 10,000, the overall pattern changes. For 
example, in populations 5-9 the relative performance of logistic regression improves. 
Because there would be essentially no change in the bias for logistic regression with 
changes in sample size, the improvement may be interpreted as the effect of a decrease in 
variance. For population 9, gbm outperforms xgboost; review of the individual results 
indicates that the increased sample size substantially lowered the mean square error of gbm 
estimates, with much less of a parallel improvement from xgboost. Here again, however, 
the c.v. best estimator performs well. 
 
Table 3: Comparison of Mean Square Prediction Errors for Samples of Size 𝑛 =10,000 

(Each entry reports the percent above the lowest value in the row.) 
 

Population c.v. best logistic 
gbm gbm xgboost xgboost 
2-level 3-level 2-level 3-level 

1 12 0 26 33 28 51 
2 12 25 25 35 0 19 
3 10 0 27 44 55 89 
4 7 117 43 62 0 22 
5 10 0 10 28 15 30 
6 3 39 14 27 0 9 
7 2 36 8 12 0 1 
8 3 26 5 9 0 1 
9 1 72 3 0 55 52 
       

 
In summary, no method studied is uniformly superior, although xgboost with an 
interaction depth of 2 was the apparent winner in the largest number of situations studied. 
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The protection provided by c.v. best, although not optimal for any one population, appears 
to be an effective practical strategy. 
 

4. Simulating Two-Step Nonresponse Weighting 
 
As an overview, simulating the two-step approach to nonresponse adjustment comprised 
the following steps: 

1. generate a set of predictor variables for the total sample, the expected values of the 
key dichotomous outcome variables conditional on the predictor variables, and a 
random value for each key outcome variable drawn according to the expected 
values; 

2. identify nonrespondents under an ignornable response model, where the 
probability of response depends on predictor variables but not the values of the key 
outcome variables; 

3. perform step one of the two-step approach by modeling each of the outcome 
variables for the respondents based on the predictors, and then use the resulting 
models to produce proxy variables for the entire sample; 

4. model the propensity to respond based on the proxy variables, and form 
nonresponse adjustments as the reciprocals of those probabilities; and 

5. compare the nonresponse adjusted weighted means for each of the outcome 
variables to the unweighted means in the full sample.   

 
At the last step, the comparison is to the full sample rather than the parameters of the 
population because the goal of a nonresponse adjustment should be to represent what the 
full sample would indicate in the absence of nonresponse. Additionally, the comparisons 
used the expected values for each nonresponding unit rather than the random selection from 
that distribution, for a modest increase in efficiency. 
 
In more detail, 24 predictors were generated by adding 8 categorical variables of 20 levels 
each to the variables X1 – X16 defined for populations 5-9. The response probability was 
determined from X1 – X16 as in population 6, but X1-X24 were used to model the response 
probability. Four key outcome variables were created, Y1 based on population 3 using X1-
X4; Y3 also based on population 3 using X5-X8; Y2 based on population 2 using X1-X3; 
and Y4 created using population 3 but variables X1, X6, X3, and X8. The outcomes thus 
depended on only a third of the available X variables that were included in the models in 
order to simulate a situation in which the nonresponse adjustment must isolate important 
predictors from multiple candidates. 
 
In one simulation, a complete sample of size 10,000 was created first, then approximately 
1,500 respondents were randomly selected according to the response probabilities. The 
respondents were divided into 16 groups for purposes of cross-validation. Step one was 
performed for each of Y1-Y4, using X1-X24 as candidate predictors. The resulting four 
models were used to create four proxy variables for all 10,000 in the full sample. 
 
With the preceding setup, 8 possible combinations to adjust for nonresponse were initially 
considered. The combinations arise from the following 3 factors: 

1. conduct the modeling of the response probability using either xgboost or logistic 
regression. 

2. use a two-step approach with the 4 proxy variables or revert to a one-step approach 
by modeling response based on X1-X24. 
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3. use the standard logistic regression loss function or one based on the accuracy of 
the reciprocal value of the estimated proportion. 

 
To explain the last factor, for the logistic model 
 

log(𝑝௜ (1 − 𝑝௜)) = 𝑿𝒊.𝜷⁄  
 
the standard estimating equations based on the binomial likelihood are 
 

෍ 𝑥௜௞(𝑟௜ − �̂�௜) = 0

௜

 

 
which corresponds to the loss function (LL) 
 

− ෍(𝑟௜𝑿𝒊.𝜷෡

௜

+ log(1 − �̂�௜)) 

 
As an alternative, consider the estimating equations (Kott, 2006; Kim and Riddles, 2012) 
 

෍ 𝑥௜௞ ቆ
𝑟௜ 

�̂�௜
− 1ቇ = 0

௜

 

 
and the alternative loss function (PW) 
 

෍ 𝑟௜(1 − �̂�௜)/�̂�௜

௜

+ (1 − 𝑟௜)log(�̂�௜/(1 − �̂�௜)) 

This approach can be implemented as a modified form of logistic regression or in  
xgboost. 
 
Combining the alternative loss function with logistic regression and a one-step approach 
using all 24 predictor variables produced occasional issues of convergence and was 
dropped. Table 4 presents the results for the remaining seven approaches, based on 1,000 
simulations. The simulations largely show an advantage to the two-step approach, with the 
best results from a hybrid strategy using the alternative loss function with logistic 
regression. The alternative loss function does not benefit gradient boosting in the second 
step, however. The two-step methods using the standard loss function are statistically tied 
between gradient boosting and logistic regression. 
  
Table 4: Comparison of Mean Square Prediction Errors by Nonresponse Adjustments 

for an Initial Sample of 10,000 and Approximately 1,500 Respondents 
(Each entry reports the percent above the lowest value in the row.) 

 

Variable 
Gradient boosting (xgboost) Logistic regression 

two-step one-step two-step one-step 
PW LL PW LL PW LL PW LL 

1 10 6 52 31 0 10 - 20 
2 5 2 38 21 0 10 - 14 
3 22 17 66 45 0 9 - 23 
4 14 10 64 41 0 7 - 20 
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A second simulation involved samples of size 70,000 with approximately 10,000 
respondents. Again, 1,000 simulations were performed. For the sake of computer time, 
both one-step versions using gradient boosting were dropped, along with the one-step 
version of logistic regression with the alternative loss function. Gradient boosting with the 
two-step version of the standard loss function does best, although the alternative loss 
function produces results that are close but statistically different from the standard loss 
function. The two-step version using logistic regression is only competitive for the 
alternative loss function, which in turn is approximately tied with one-step logistic 
regression with the standard loss function. 
 
Table 5: Comparison of Mean Square Prediction Errors by Nonresponse Adjustments 

for an Initial Sample of 70,000 and Approximately 10,000 Respondents  
(Each entry reports the percent above the lowest value in the row.) 

 

Variable 
Gradient boosting (xgboost) Logistic regression 

two-step one-step two-step one-step 
PW LL PW LL PW LL PW LL 

1 3 0 - - 2 16 - 2 
2 4 0 - - 2 19 - 5 
3 3 0 - - 18 49 - 10 
4 4 0 - - 6 23 - 14 
 

 
The simulation was designed to be favorable to the two-step approach, but the results 
showed mixed success. Somewhat surprisingly, a hybrid strategy performed well by 
combining step one based on gradient boosting with a step using logistic regression and 
the alternative loss function.  
 

5. Discussion 
 
The original goal of the research was to identify conditions under which the two-step 
approach to non-response adjustment is advantageous. The previous section ends without 
a general answer to this question, but reviewing what has been shown about each of the 
steps is a way to summarize the contributions of the research. 
 
Machine learning methods can be acknowledged to require large samples, but the 
simulations of step one illustrate that even for samples as small as 1,500, they may perform 
competitively in predicting a dichotomous survey outcome. Of course, related methods 
such as random forests and CHAID are already in use on applications of this size. 
 
Cross-validation appeared to perform well as an approach to choose a predictive model 
from a set of competitors. Cross-validation based on the given sample may not always 
select the one method that is unconditionally best over possible samples, but the simulation 
results show that it must often be selecting a good one. The research also tentatively 
identified minor methodological improvements in gbm and xgboost that could be further 
evaluated. 
 
The research on step one could be usefully expanded. Because the populations for the 
simulations can be regenerated, it is possible to consider extending the comparisons to 
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alternatives that are more familiar, such as random forests and CHAID. Our 2016 
simulations included a start on this, but the effort could be expanded. 
 
Additional simulations could add a broader set of populations. Populations 1-8 had largely 
additive effects without purposeful interactions. Population 9, which introduced 
interactions, presented interesting challenges and suggest that additional populations with 
interactions should be investigated.  
 
Step two addressed the problem of translating predictions into weights. The simulations 
were more resource intensive than those in step one so that in effect our research covered 
only a single population setup with two different sample sizes. Tentatively, the two-step 
approach does perform reasonably well, but not so well as to eliminate from consideration 
a one-step logistic propensity model. Here, further simulations would be desirable. 
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