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Abstract
The development and evaluation of a hierarchical multinomial model is presented. By limiting

this type of model to include constraints at a higher geographic level, many of the design-based
characteristics retained by a multinomial may still be retained while borrowing strength from a
higher geographic-level model. An evaluation using data from the National Health Interview Survey
(NHIS) to make estimates of access to care for the counties in States that border Mexico is presented.
Here, the model uses sample segments as the unit-level and accounts for the differential selection
of segments within PSU strata. Covariates available from the U.S. Census Bureau’s ”American
Factfinder” are used in the county-level model. In addition, a brief evaluation of using a uniform
model at the unit level, instead of a multinomial model, is made.

Key Words: Nonparametric Bayes

1. Introduction

The following provides a mulitnomial-type model that avoids the need to assume that the
design-based small area estimates are asymptotically Normally distributed with estimated
covariances assumed to be without error. These two assumptions both require a large sam-
ple size within a small area when the very nature of the problem is that the sample sizes
are too small. Errors in these assumptions can affect the amount of borrowing from the
larger model, as borrowing is both a function of the within small areas variances and the
assumed within small area distribution. The constrained multinomial distribution used to
model the within small area outcomes is based on an extension of the Bayesian bootstrap
model (Rubin, 1981). Using only the Bayesian Bootstrap model will result in estimates
and estimated variances of the small areas that are comparable to design-based methods. By
modifying the underlying Bayesian bootstrap model by adding a constraint at a higher level
level, many of the characteristics of the Bayesian bootstrap distribution are retained while
still borrowing strength from a higher geographic-level model. Essentially, the asymp-
totic assumptions of Normality with fixed variances are replaced by a constrained Bayesian
bootstrap model. In addition, the usefulness of specifying uniform models, with unknown
boundaries as a substitute for a multinomial is briefly evaluated.

In related work, Malec (2005) proposed using a multinomial model with support based
on the observed data but, instead of relying on the more nonparametric Bayesian Bootstrap
model, a fully parametric hierarchical model was placed on each parameter of the multi-
nomial. See Malec (2005), also, for further references to other earlier work in this area.
The device of using models that assume the population support is the same as the sample
support was introduced to survey sampling by Hartley and Rao (1968) who assumed the
population is distributed as a multiple hypergeometric distribution with support equal to the
unit level sample outcomes. Malec et al. (1999) use this approach to account for the effects
of PPS sampling by assuming that the support of the sampled, sample selection probabili-
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ties is equal to the unavailable support of the population selection probabilities.

Section 3 outlines the multinomial model with hierarchical constraints. Section 4 de-
scribes the estimation and algorithms used. Section 5 demonstrates estimation using an
NHIS delayed medical care outcome for counties in four States and compares estimates
with those using a Normal approximation within a small area. Section 6 contains a brief
evaluation of using a uniform models within small areas, compared to using a multinomial
model.

2. Background of National Health Interview Survey (NHIS)

The use of the Bayesian bootstrap model is best explained and illustrated through the ap-
plication to outcomes from an actual survey. Although the method is general, the design-
levels and instances in which the Bayesian Bootstrap is applied are design dependent. The
2006-2015 NHIS design and accompanying data will be used for illustration.

2.1 Salient features of the 2006-2015 NHIS

The following provides just enough information to enable the explanation of the model and
the implementation of small area estimates. For a detailed description of the design, see
Parsons et al. (2014).

The entire U.S. population of the civilian non-institutional population is split into a
certainty part, where the first level of sampling begins within county, and a non-certainty
part, where the first level of sampling begins at the county-level. The first two levels of
sampling within the non-certainty strata are 1) sampling PSUs proportional to population
size within strata, where PSUs are defined by a county or a group of contiguous counties
and strata are defined by metropolitan status within State and 2) sampling of segments
with equal probability within Minority Density Strata (MDS), where segments are defined
by clusters of 8 - 16 nearby housing units and Minority Density Strata, are defined by
grouping census blocks according to similar minority characteristics. Only the first level of
sampling within the certainty part is needed to implement the model. In the certainty part,
the Minority Density Strata are defined separately within each certainty county. Segments
are defined and sampled in an analogous manner as in the noncertainty part.

2.2 Design and estimation simplifications for this initial work

In the noncertainty part, counties are used as if they were the PSUs, even when an actual
NHIS PSU is composed of a group of counties. Segment estimates of totals are assumed
fixed - i.e. weights at the segment level are used but the uncertainty due to screening, miss-
ing data and large-segment subsampling is ignored.
Notation:
Define:
i: State indicator
j: county indicator
k: minority density stratum indicator
`: segment indicator

Within county sample terms:

862



Define:
mij : number of minority density strata in State i, county j.
nijk: number of sampled segments in state i, county j and minority density stratum k
Nijk: total number of segments in (i, j, k) ( will be estimated from NHIS by “up-weighting”)
yijk`: count of number with characteristic, by age x race x sex (within segment missing
value and screening adjustment applied and assumed fixed)
xijk`: count of total (also, after missing value and screening adjustment).
Further define:
y∗ijk` and x∗ijk` one of the observed, sampled pairs, ` = 1, . . . , nijk.

3. The Multinomial Model With Hierarchical Constraints

3.1 The Within County Model

Using the sample segment outcomes, y∗ijk` and x∗ijk`, to define the support of the population
model (as with the Bayesian Bootstrap) define:
θijk`: the probability that a segment takes the values of y∗

ijk`
and x∗ijk`, ` = 1, . . . , nijk

That is, define:
θjk`∗ =prob((yjk`, xjk`) = (y∗jk`∗ , x

∗
jk`∗))), `∗ = 1, . . . , nijk and ` = 1, . . . , Nijk

so that
∑njk

`∗=1 θjk`∗ = 1
The population will be modeled as conditionally multinomial:
Define:
Nijk`: the total number of segments that take values y∗

ijk`
and x∗ijk`

So that, P (N ijk|θijk, Nijk.) ∝
∏nijk

`=1 θ
Nijk`

ijk` .
Substituting srs with replacement for the actual sequential sample,use:

P (nijk|θijk, nijk.) ∝
∏nijk

`=1 θ
nijk`

ijk` .

3.2 The Between County Model

The distribution of the θijk`:
Define, at the county level:

Yij =
∑
k

Nijk.

nijk∑
`=1

θijk`y
∗
ijk`

Xij =
∑
k

Nijk.

nijk∑
`=1

θijk`x
∗
ijk`, and

Rij = Yij/Xij

Note that the values: y∗ijk`’s and the x∗ijk`’s are fixed. A prior for the θijk`’s is chosen
to be informative for the Rij , via a hierarchical model but similar in uninformativeness
regarding the remaining free parameters of the θijk`’s as the Bayesian bootstrap prior is.
Specifically, define µij = ln(Rij/(1−Rij)).

the between county model for µijd is specified as a truncated Normal:

µij ∼ N(Zijβ|σ2), lbij ≤ µij ≤ ubij ,
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where lbij= min
∑

k Nijk.
∑nijk

`=1 θijk`y
∗
ijk`∑

k Nijk.
∑nijk

`=1 θijk`x
∗
ijk`

and ubij= max
∑

k Nijk.
∑nijk

`=1 θijk`y
∗
ijk`∑

k Nijk.
∑nijk

`=1 θijk`x
∗
ijk`

,

where both maxima and minima are over the set of thetas: {{θijk`}
nijk

`=1 }
mij

k=1}.
(Note: these limits can be determined, numerically, using the R library ”alabama“ and rou-
tine: ”constrOptim.nl“).

No further hierarchical model is used for the remaining constrained parameters of the multi-
nomial and the complete, joint prior for the multinomial parameters is specified as:

Pr(θij) ∝
∏
k

∏
`

θ−1ijk` × P (µ
ij
|βij,Γij).

3.3 The Within county Model for counties not in Sample

The definition for the model within a county is explicitly based on the minority density
strata that are defined according to the population demographics within the county in con-
junction with the total number of segments in each stratum; neither of which are known for
counties that haven’t been sampled. In fact, minority density strata are not even constructed
unless a county has been sampled. In order to model the within county distribution for an
unsampled county, a Bayesian bootstrap approach is applied at the county level. That is,
the possible configurations of MDS, their underlying multinomial parameters (apart from
µij) and the distribution of segments is assumed to consists of only the configurations that
have been observed in the counties sampled in the non-certainty part.

Define: ñ to be the number of non-certainty sampled counties. That is, ñ = |{(i, j) :
state i and county j are in the non-certainty sample }|. The probability that any particular
county in the population of non-certainty counties will be the same as the county model
observed for sampled county (i, j)∗ is defined as π(i,j)∗ . (i.e., the individual county-level
models observed in the sampled counties are the only possible models that can occur across
all counties.)

Since the population totals are known for all counties, this additional information can be
used to adjust the unsampled county models to reflect a difference in population from the
counties in sample. This is accounted for by assuming that the total number of segments
in an unsampled county, Nij , given that the county (ij)∗ model is it’s selected model-type
is Nij = N(ij)∗popij/pop(ij)∗ , where pop are the corresponding total county population
counts obtained from the census.

3.4 Prior Distributions

• prior distribution of θjk:
As implied in section 3.2:
pr(θjk|µij) ∝

∏
k

∏
` θ
−1
jk`

- an improper prior both because its parameters are out of scope to be a Dirichlet
distribution and because it does not account for the conditional constraint.

• prior distribution for parameters of regression model (also section 3.2)
pr(β) ∝ constant
σ ∼ half-Cauchy

864



• prior distribution of non-certainty county-level models (section 3.3)
pr(π) ∝

∏
k π
−1
k

4. Posterior Inference and Estimation from the Multinomial Model

Posterior inference is made, numerically, from realizations of the joint posterior distribution
following the Gibbs sampler steps:

1. θij1, . . . , θijmij
, µj |β, σ2, data

2. β|µi,j , σ2

3. σ2|µj , β

4. π|data

Step 3 in the Gibbs sampler chain is implemented using a Metropolis/Hastings step.
Realizations of θij1, . . . , θijmij

, µij , in the Gibbs step 1 above, will be based on the condi-
tional and marginal distributions listed in the following steps:

Additional MCMC steps:

1.1. θi,j1, . . . , θi,jnij |µi,j , data

1.2. µi,j |β, σ2, data

The following, briefly details how these steps were implemented:

4.1 Step 1.1: The Conditional Posterior of θij given µij :

In most situations nijk` = 1, especially when y
ijk`

’s and xijk`’s are complicated. For
simplicity, it will be assumed that nijk` = 1 here. If not, a similar approach may be taken
by coding the sampling based on Adaptive Rejection Sampling (Gilks and Wild, 1992) or
similar univariate methods.

When nijk` = 1 use the ”hit and run” algorithm in the R ”hit and run” library as follows:
The “hit and run” algorithm will draw θi,j,1,1, . . . , θi,j,1,nij1 , . . . , θi,j,mij ,1, . . . , θi,j,mij ,nijmji

)/mij

from a multivariate uniform distribution with the following side constraints:∑nij1

`=1 θij,1,` = 1

...∑nijmij

`=1 θij,mij ,` = 1

µij =
∑mij

k=1

∑nijmij
`=1 Nijk`θijk`y

∗
ijk`∑mij

k=1

∑nijmij
`=1 Nijk`θijk`x

∗
ijk`

One draw will produce the appropriate set of θij from each of the county’s minority density
strata.
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4.2 Step 1.2: The Marginal Posterior of µij

Since the conditional posterior of θij is uniform (when all nijk` = 1):

f(µij |β, data) =

∫
θij∈W (µij)

f(θij , µij |β, data)dθij (1)

∝
∫
θij∈W (µij)

f(data|θij , µij)f(θij |µij)f(µij |β)dθij

∝
∫
θij∈W (µij)

f(µij |β)dθij = |W (µij)| f(µij |β),

where, W (µij) is the set of all θij that satisfy the side constraints given in section 4.1.
Sampling from the marginal posterior of µij is accomplished by, first, numerically ap-

proximating |W (µij)| as a discrete function of µij over its range of values, matching the
resulting discrete values of |W (µij)| to corresponding discrete values of the truncated nor-
mal distribution of µij specified in section 3.2 and, finally, drawing one value from this
discrete compound distribution. |W (µij)| is numerically approximated by drawing each
θi,j,k from a Dirichlet distribution with unit-defined parameters and then counting the rela-

tive frequency of µij =
∑mij

k=1

∑nijmij
`=1 Nijk`θijk`y

∗
ijk`∑mij

k=1

∑nijmij
`=1 Nijk`θijk`x

∗
ijk`

4.3 Step 3: the posterior distributions of β|µi,j , σ2 and σ2|µij , β

In the example below, untruncated Normal distributions were used, instead of the correct
truncated ones. Even though this was done for expediency it, possibly, offers a more direct
comparison between the multinomial model and the model that uses a Normal approxima-
tion (see the next section). This is because the distribution for µij in these two models
are both the same (i.e., not truncated) leaving the comparison between the two unit-level
likelihoods as the only two different parts of the model.

In this case, the conditional posterior of β is also Normal and can be sampled from
directly. The conditional posterior of σ is sampled using a Metropolis/Hasting step where
Jeffrey’s prior is used to form the proposal distribution along with the distribution of µij .

If implemented in a production setting, the truncated distribution would need to be
used. A nearest neighbor MCMC may work in this case or, if not, the parameter spaces
of β and of σ could also be discretized and a “Griddy-Gibbs” type algorithm (Ritter and
Tanner, 1992) implemented.

4.4 Step 4: the posterior distributions of π|data

This step is the same as the Bayesian Bootstrap and can be implemented by drawing π from
a Dirichlet distribution with unit parameters.

5. An example Using the NHIS to Predict County-level Access to Care for the States
Bordering Mexico

In this section the Constrained Bayesian Bootstrap model, described above, will be im-
plemented and compared with an alternative model that assumes the county sample rate
is Normally distributed with known variance. As an example, the county proportion of
people who have delayed medical care is estimated in all the counties in the States bor-
dering Mexico. Specific details about which years in the 2006-2015 NHIS design were
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used and how ‘delayed medical care”’ is defined are not described here in order to avoid
any misunderstanding that these estimates can be construed as anything but demonstration
estimates. However, estimates such as these could be of use for targeted studies that do
not want to “borrow” data from the entire U.S. For example, estimates of the health of the
population along the border may be of adjunctive interest to the La Paz Agreement (see
https://www.epa.gov/sites/production/files/2015-09/documents/lapazagreement.pdf). Esti-
mates for other parts of the country focused on specific populations may also be of interest
in future applications of small area methods (see https://www.hhs.gov/about/agencies/iea/regional-
offices for on overview of the HHS health regions).

The basic unit used is the segment. Missing housing units within segments planned to
be completely enumerated were imputed using the in segment-level weight: wtfa/(basewgt/10000)
as were unsampled housing units, where within segment subsampling occurred. These seg-
ment totals (i.e. the total persons who delayed medical care and the total population) were
treated as the complete data within a sampled segment with no within segment variation.

The segment totals, for sample segments, along with corresponding county-level infor-
mation is the input into the model. As specified above, an MCMC approach making use of
the “hit-and-run” algorithm is used for posterior inference.

5.1 Selection of County-level Covariates

Covariates for the linear regression of the µij were selected using design-based estimates
of µij . The covariates under consideration were collected at the county level and ob-
tained from the U.S. Census Bureau’s “American Faultfinder” website. Decennial census,
ACS and Economic Census values were all considered. Specifically the following covari-
ates considered were:%white, %African American, %Asian, %American Indian Alaskan
Native, %urban %poverty %Hispanic, latitude, longitude, metropolitan status, land area,
shortest distance to Mexico, population density, the density of ambulatory care facilities
per square miles and the density of ambulatory care facilities per persons.

As this is a demonstration and evaluation project, a detailed model was not considered.
If small area estimates were actually needed, variable selection procedures such as “rpart”
in R and the SAS procedure “Apaptivereg” could be useful. For this demonstration, an
estimate of the county poverty rate obtained from the ACS was used as the single covariate.
Poverty rate looked to be one of the important predictors based on a quick analysis.

5.2 County Estimates of the Proportion who Delayed Medical Care

Following the model and procedures outlined above, the county proportions who delayed
medical care were sampled from their posterior distribution. Figure 1 provides a map of
the posterior mean of the proportion of persons who delayed medical care. This map is
a demonstration that the method can work. However, the algorithm is slow, taking about
18 hours of computation time to run for 1500 iterations. In addition, the sampled counties
with more than forty segments were based on a Normal approximation to avoid an even
lengthier computation time.

867



0 − 0.076
0.076 − 0.084
0.084 − 0.093
0.093 − 0.107
0.107 − 0.168

Figure 1: Posterior Means of the Proportion Who Delayed Medical Care: The Constrained
Multinomial Model

5.2.1 A Posterior Predictive Check of the Model

The unit-level model allows one to create a new, posterior predicative sample that can be
used to assess how well the model can replicate selected, observed sample quantities. In the
following, posterior predicted samples of segments were created and county-level, design-
based estimates and their corresponding design-based estimate of variance were calculated.
Using these repeated predicted samples, 95% credible intervals can be made for both the
design-based estimates and their variances or standard errors.

Figure 2 displays these intervals for the counties in sample, excluding those large coun-
ties in which a Normal approximation was used instead of using the constrained multino-
mial. The county estimates are ordered by the number of sampled segments in each county
and presented on an ordinal scale to be able to view each county clearly. As can be seen,
most observed values lie within the intervals predicted by the model.
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Figure 2: 95% Bayesian posterior predicted intervals of the design-based sample county
proportion who delayed medical care by county sample size

Figure 3 presents the corresponding results for the sample design-based standard errors
of the estimates and their corresponding observed values. Perhaps not surpassingly, the
predicted sample standard errors do not do cover the observed values very well when there
are only around two segments sampled per county.
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Figure 3: 95% Bayesian posterior predicted intervals of the design-based standard errors
estimates of the sample county proportion who delayed medical care by county sample size

5.3 Comparison of Estimates from the Constrained Multinomial Model with a Nor-
mal Approximation Model

As mentioned in the introduction, usually design-based estimates constructed at the small
area-level are assumed to be Normally distributed with known variance and then used as
the input into a small area model. Using the exact same model at the county level, the
two approaches are compared. Figure 4 plots the posterior mean of µij based on the two
methods for all counties in the four states, both in and out of sample. Although the estimates
fall close to the line of equality, they do deviate from model-to-model and the deviations
follows a pattern. This example demonstrates that there is an effect of using the Normal
approximation as opposed to using a multinomial. Further work would need to be done in
order to evaluate whether one approach is better than another.
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Figure 4: posterior means of µij

Figure 5 presents a similar comparison using the posterior standard error of µij . Again,
there is a pattern suggesting that the choice of within small area model can have an effect.
Note that the right side of the figure, where the constrained multinomial model exhibits
larger standard errors than the approximate normal model, consists of the counties that
were not in sample.
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Figure 5: posterior standard errors of µij

6. An Evaluation Between Using a Uniform Model within small areas, compared to
using a multinomial

The following evaluates the possibility of using a uniform model, with unknown upper
and lower bounds as a possible way to model the sample distribution within MDS strata.
The uniform distribution has the advantage over the Bayesian-bootstrap-type multinomial
model in that its distributional range can be extended beyond the sample range. As a quick
check, models only at the county level were used for comparison. A multinomial model
without county-level constraints is specified within each MDS within county and used to
compare to a uniform model, also without county constraints. The multinomial model can
be shown to replicate the design-based sample means and variances since the sample of
segments is considered SRS within minority density stratum.

• Simple Multinomial model used:
- For each ` within MDS i, j, k, prob((yijk`, xijk`) = (yijk`∗ , xijk`∗)))=θijk`∗
-pr(θijk) ∝

∏
` θ
−1
ijk`

• Uniform model used:
- (yijk`/xijk`) ∼ U(arijk, brijk), 0 < arijk < brijk < 1
- (xijk`) ∼ U(axijk, bxijk), 0 < axijk < bxijk
- all independent
- p(arijk, brijk, axijk, bxijk) ∝ constant

Figures 6 and 7 show the respective 95% credible intervals of the predicted sample
prevalences of delayed care for the simple multinomial model and for the uniform model,
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along with the observed sample prevalences. It is clear that the uniform model (fig. 7)
is a poor choice as evidenced in the non-coverage of the observed sample prevalences
for counties with a large sample. This is because the posterior predicted mean from the
uniform model is based on the midpoints of its ranges. So, even though the population
range is extended beyond the sample range, the effect of a sample modes are not accounted
for.
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Figure 6: prediction of the design-based sample county proportion who delayed medical
care by county sample size using simple multinomial model
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Figure 7: prediction of the design-based sample county proportion who delayed medical
care by county sample size using uniform model

7. Summary

It was shown that a constrained multinomial model that combines the nonparametric bene-
fits of the Bayesian Bootstrap with the a hierarchical model for small areas can be success-
fully implemented. Based on the preliminary model fitting experience with implementing
this approach in the estimation of delayed medical care from the National Health Interview
Survey, it is shown that the model adequately fits the observed sample, in terms of being
able to replicate the county sample prevalence and estimated sample variances success-
fully, when the sample sizes are not too small. A possible remedy to correct problems in
adequately modeling the variability in small areas with very small sample sizes could be
to extend the hierarchical model of the constrained multinomial distribution across small
areas via a relatively non-parametric distribution.

The “hit and run” algorithm can be computationally very slow with decreasing speed
as the sample size increases. Substituting a large sample Normal approximation could be
adequate for the counties with large sample but doing so, precludes the ability to make unit
level predictions and unit level model checks for those counties that are approximated.

Using a uniform distribution in place of a multinomial distribution, as a way to extend
the population range, did not work. Using the data example as a check, the ranges were
extended but the predictive model checks were poor. A possible improvement may be
to replace the multinomial model with a continuous discrete distribution, with uncertain
boundaries between observations but with constant probabilities inside any given boundary.
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