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Abstract

The missing pattern of data fusion implies that the variables that are specific to the
data sets are never jointly observed. When applying standard imputation techniques, inde-
pendence conditioned on the common variables is implicitly assumed. In general, however,
this assumption does not hold; consequently, the estimated correlations between the fused
specific variables are usually biased toward zero. We argue that in the absence of further
information, a correlation lying well within the bounds of the conditional independence
assumption (CIA) and one specific measurement error model is a significantly more sensi-
ble assumption. This argument is derived from a simple trivariate model and empirically
supported by data from various fields.
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1. Introduction

Data fusion can be regarded as a missing data problem (Little & Rubin, 2002, p.
5) and has been thoroughly treated in textbooks (Raessler (2002), D’Orazio et al.
(2006)). Two data sets with specific variables Y measured in the first set and
Z measured in the second set are being combined through common variables X.
Specifically, Y and Z have not been jointly observed.

Figure 1: Fusion of two data sets with a common variable X and specific variables Y and Z never
jointly observed

Consequently, the correlation ρyz is not identified. Nevertheless, the correlations
with X, namely ρxy and ρxz, impose some boundaries. In the case of X, Y , and
Z being univariate, the boundaries imposed by ρxy and ρxz on ρyz are set by the
positive semi-definiteness of the correlation matrix Σxyz. Solving det(Σxyz) = 0
yields (Raessler, 2002, p. 10)

ρyz ∈
[
ρxy · ρxz ±

√
(1− ρ2

xy) · (1− ρ2
xz)

]
. (1)
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Consequently, the boundaries are relatively strict only when the absolute values
of ρxy and ρxz are high. In cases where the correlations with X are only moderate,
the range of possible values for ρyz is close to the maximal interval [−1, 1].

Figure 2: Boundaries on ρyz imposed by ρxy and ρxz

This is why, the imputer must essentially base the value of ρyz on assumptions.
The default assumption for estimating ρyz in data fusion is the Conditional Inde-
pendence Assumption (CIA), which implies that E(ρyz|x) = 0 and consequently
ρciayz = ρxy · ρxz. Adopting the CIA is convenient for two main reasons:

1. Standard imputation algorithms (as with distance matching (D’Orazio et al.,
2006, pp. 13, 29, 41) and predictive mean matching (Rubin (1986), Little
(1988)) implicitly produce results based on the CIA.

2. The resulting correlation ρciayz is the midpoint of the theoretically possible
interval. Hence, in the absence of additional information, ρciayz seems to be a
bias-minimizing guess.

In market research, a classical application is the fusion of a TV audience mea-
surement panel (TAM) with a consumer panel (CP) (Wendt, 1986). The objective
here is to estimate ad effectiveness, that is, the return on investment (ROI) for TV
advertisements. Let Y measure ad contact, and let Z measure the purchase of the
respective advertised product. Then, the correlation ρyz is a first indicator for the
ROI. Obviously, it is extremely important for creative agencies to obtain estimates
for ρyz with a low bias. This is especially relevant, as the observed correlations of
Y or Z with X rarely exceed 0.5. In this case, the boundaries according to formula

1 are hardly restrictive. A typical range is ρyz ∈
[
− 0.7; 1.0

]
.

2. Is the CIA Biasing?

Sims (1972) already noted that the assumption of conditional independence is lack-
ing theoretical backing. Indeed, there are several reasons to doubt the CIA’s validity.
For instance, when analyzing a correlation matrix

Σ =

 1 . .
ρ12 1 .
ρ13 ρ23 1


and labeling any of the correlations with ρyz, an estimate based on the CIA will

be the product of the remaining two correlations. Since |ρciayz | ≤ min(|ρxy|, |ρxz|), the
correlations estimated through the CIA ρcia12 , ρ

cia
13 , and ρcia23 will on average contain
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strongly attenuated absolute values compared to the original. This indicates that
the CIA biases the results toward zero because on average the absolute values should
be maintained.

An alternative identifying assumption is given by the proposition that X is an
unbiased but imperfect measure of Y , i.e., X = Y + ε. In this case, a measurement
error model (MEM) can be utilized (Raghunathan, 2015, p. 156), and ρmemyz =
ρxz/ρxy follows. In contrast to the CIA, the MEM will on average always increase
the absolute values of the estimated correlations. This is as implausible as adopting
the CIA unless additional information justifies either of the two assumptions.

3. A Simple Trivariate Model

The above arguments suggest that both the CIA and the MEM tend to provide
strongly biased estimates unless additional information about the data generating
process indicate that either assumption is appropriate. In the absence of such in-
formation, what might be a low bias assumption for ρyz | ρxz, ρxy? To address this
question, we propose a simple trivariate model as a framework. In this framework,

Figure 3: The framework

all components X, Y , Z, and ε. follow standard normal distributions. Moreover,
all ε. are orthogonal to each other. The observed variables X, Y , and Z are con-
structed by up to four constituents ε that are either unique for the observed variable
(εx, εy, εz), shared by exactly two observables (εxy, εxz, εyz) or shared by all three
observables (εxyz). X is constructed as a linear combination of its constituents, i.e.,

X = axεx + axyεxy + axzεxz + axyzεxyz,

where the respective factors a. have to obey

a2
x + a2

xy + a2
xz + a2

xyz = 1

to ensure the unitary variance of X. This respectively holds for Y and Z as
well. Correlations are determined by the respective factors of the mutually shared
constituents of the model. For instance,

ρxy = axyayx + axyzayxz.
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As there are twelve parameters and only six equations, this framework is clearly
overspecified. Apparently, the model is easily identifiable when a highly simplified
core model (see Figure 4) that is only extended when necessary is used. As a special

Figure 4: The Core Model

case, we focus on the core model without extensions. This simple model is unable
to describe the entire range of ρyz | ρxz, ρxy (see equation 1) but rather is restricted
to

|ρxz · ρxy| ≤ |ρcoreyz | ≤ min

(
|ρxz
ρxy
|, |ρxz
ρxy
|
)
.

Specifically,

|ρciayz | ≤ |ρcoreyz | ≤ |ρmemyz |.
The CIA constitutes the lower bound and the MEM constitutes the upper bound

of the core model’s limited range. To extend beyond these boundaries, exactly
one pairwise component, i.e., either εxy, εxz, or εyz, must be added. As ρyz is the
unknown correlation, εyz seems to be a suitable candidate.

However, as any of the pairwise ε may be added to fill the entire range as given
by equation 1, the core model can be regarded as constituting the ‘center’ of all
the possible configurations. Specifically, although the CIA is at the center of the
interval given by equation 1, it is an extreme case of the core model.

4. Alternatives to the CIA and the MEM

When we accept that the core model is indeed at the center of all possible data
configurations, then an immediate candidate to replace the estimates based on the
CIA or MEM is the mean of the core model’s boundaries:

ρmeanyz = (ρciayz + ρmemyz )/2.

Another candidate results from minimizing the variance of the factors axyz, ayxz, azxy
given the observed correlations ρxy and ρxz via a Lagrange approach, which gives

ρmvayz =
ρxy · ρxz√

(ρ2
xy + ρ2

xz)/2
.
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From Figure 5, it becomes apparent that the range of the possible values for
ρyz (depicted in green) is considerably smaller when restricted to the core model.
Moreover, both ρmeanyz and ρmvayz are placed well within the core model’s range. ρmvayz

is a more conservative estimate than ρmeanyz when the observed correlations are small.
The opposite holds for high observed correlations ρxy and ρxz.

Figure 5: Values of ρciayz , ρmem
yz , ρmean

yz , and ρmva
yz as a function of ρxy and ρxz

5. Empirical Evidence

To assess the plausibility of ρciayz and ρmemyz in a real data situation, a simple analysis
was performed. Three variables were randomly selected out of correlation matrices
from various sources, and one of the three correlations was assigned to ρyz (to not
focus on noise, the absolute value of this correlation had to exceed 0.1). Next, the
estimates ρciayz and ρmemyz were computed based on ρxy and ρxz. Finally, the true
correlation ρyz was positioned relative to the two estimates based on the CIA and
the MEM.

Figure 6: Values of ρyz relative to the estimates based on the CIA and the MEM. The underlying
correlation matrix is derived from the Dow-Jones-30 constituent’s closing-value log returns from 1988 from
Yahoo Finance. The data are provided by the R-package ‘rugarch’, (Ghalanos, 2015), data set ‘dji30 ret’.

Apparently, most of the correlations indeed stay within the range described
by the core model (see Figure 6 based on financial data). In other correlation
matrices of different sources, similar results emerged. Figure 7 is based on data
from psychology (left panel) and education research (right panel).

6. Outlook

Because ρyz is unidentified in the data fusion problem, an assumption is required. It
is still common to choose the Conditional Independence Assumption (CIA), which
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Figure 7: Values of ρyz relative to estimates based on the CIA and the MEM. Left Panel: Correlations
between the Big Five measured on three occasions (Biesanz & West, 2004). Right Panel: Derived from
items for a grade 12 science assessment test (SAT) measuring topics of chemistry, biology, and physics.
Data from the R-package ‘mirt’, (Chalmers, 2012) data set ‘SAT12’.

is most convenient for the statistician but likely to be inappropriate (Sims, 1972).
We propose to learn from other complete data sets instead. Our above empirical
examples show that the vast majority of observed correlations falls in an interval
much smaller than theoretically possible. This interval is covered by the core model
and bounded by the CIA and the measurement error model (MEM) denoted by
X = Y + ε. We thus argue that the CIA tends to underestimate ρyz and that
alternative estimators like ρmeanyz or ρmvayz are more suitable.

Clearly, external knowledge about the data generating process can provide a
solution to the identification problem. It remains to be investigated, though, as
to whether meta-data about the data set at hand contain any information about
the non-identified correlation. Is the expected value of a non-identified correlation,
for instance, larger if the data set contains financial data than if it were to contain
psychological data?
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