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Abstract
This is a summary of the discussion for the invited paper session “Statistical Inference with Clus-

tered Data in Survey Sampling” at the 2016 Joint Statistical Meetings. The session was sponsored
by the Survey Research Methods Section of the American Statistical Association and cosponsored
by Statistics Without Borders. It was organized by Jae-kwang Kim and chaired by Zhengyuan
Zhu, both from Iowa State University. The focus was on two-stage statistical survey models with
clustering of primary sampling units.
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1. Introduction

Session 101 at the 2016 Joint Statistical Meetings was an invited session on “Statistical
Inference with Clustered Data in Survey Sampling” for which I was the discussant. Here I
will summarize the pertinent points from the talks and give my comments and questions. I
will do so in the order presented which was as follows:

1. Inference with Cluster Data Under Informative Sampling
(Statistical inference using generalized linear mixed models under informative clus-
ter sampling)

2. Bayesian Analysis for Cluster Sampling

3. H-Likelihood Method for Analyzing Clustered Survey Data

2. Inference with Cluster Data Under Informative Sampling

Jae-kwang Kim of Iowa State University was the presenter. His coauthors were Seunghwan
Park and Youngjo Lee, both of Seoul National University. The basic model they treat has
two levels with randomness at each of the levels.

Basic model:

yij |vi ∼ f1(yij |xij , vi;θ1), j = 1, . . . ,Mi

unit or “student” level

vi ∼ f2(vi|zi;θ2), i = 1, . . . , N

cluster or “school” level
They describe how such models are treated computationally when there is no informa-

tive sampling within clusters.
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• With independent and identically distributed (i.i.d.) sampling, the EM algorithm
finds the maximum likelihood estimator (MLE). It maximizes

ℓ(θ) =
N∑
i=1

ℓi(θ).

• With sampling only at cluster level, the EM algorithm finds the pseudo-MLE. It
maximizes

ℓp(θ) =
∑

i∈A(1)

wiℓi(θ)

where A(1) is the set of indices for the sampled clusters.

• But how do we use the EM algorithm with informative sampling within clusters?

Brief summary of presented solution:

1. “Pretend” the cluster-level random errors vi are fixed but unknown parameters.

2. Estimate the vi by pseudo-MLE weighted by wj|i. Call these v̂i.

3. Now do the EM algorithm conditioning on v̂i. But we need to know the conditional
distributions given v̂i or an approximation.

4. The conditional distributions can be computed if we let

v̂i(θ̂1)|v1 ∼ N(vi, V {v̂i(θ̂1)}).

5. Use the classical variance estimator for V {v̂i(θ̂1)}.

Discussion of this talk:

In response to this interesting presentation, I had some questions and a suggestion:

• Does this algorithm converge monotonically, at least approximately?

• Did the presenter ever encounter convergence problems?

• Has the presenter tried examples where the mi are not all equal, i = 1, . . . , n?

• The paper proposes a method to account for θ̂1 being an estimate in computing
V {v̂i(θ̂1)}. Has this been tried on data?

• Of course, more simulations and real data examples would be welcome!

3. Bayesian Analysis for Cluster Sampling

Susanna Makela of Columbia University presented. Her coauthors were Yajuan Si of the
University of Wisconsin–Madison and Andrew Gelman of Columbia University.

I will begin by giving some advantages of Bayesian approaches that are a blend of what
was presented and my own views.

Advantages of Bayesian Approaches

• Sometimes we really do have prior information
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• Results are not dependent on asymptotics (large sample theory)

• Principled and unified procedures

• Ironically, computational feasibility (they used to be hard to compute)

• In my opinion, the somewhat nonparametric Bayesian approaches should be less
troubling to design-based people.

The presenter described the “existing Bayesian approach,” that is, the one prior to the re-
search of the presentation.

“Existing Bayesian Approach”

• Consider a single-stage probability proportional to size (PPS) sample of n units out
of a population of N units with outcome yi and size measure Mi, i = 1, . . . , n.

• Assume the total population TM =
∑N

i=1Mi is known.

• Factor likelihood for outcome y, size M , and inclusion indicator I .

• Use methods like splines, Bayesian bootstrap, or Dirichlet process priors to model
the likelihood factors.

• See, e.g., Zangeneh, Keener, and Little (2011).

New in this Work

• Cluster size measures Mi and cluster population sizes Ni are only known for clusters
i in the sample.

• Sometimes the assumption is made that Mi = Ni for all clusters i.

• Introduces negative binomial model for cluster size measures Mi.

Negative Binomial Model

• Model cluster size M by f(M |k, p) ∼ NegBin(k, p).

• Then probability of observing in the sample a cluster of size

Mj ∼ 1 +NegBin(k + 1, p)

(Patil and Rao, 1978).

• We estimate k + 1 and p from sample. How?

• How do we determine if the negative binomial model fits the data?

Other Matters

• Also we must model outcomes yi. In examples, yi is normally distributed with mean
depending on parameters, constant variance.

• I recommend considering models where yi > 0 and variance increases with yi. Com-
mon in establishment surveys.

• Lots to be explored!
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4. H-Likelihood Method for Analyzing Clustered Survey Data

Donghwan Lee of the Ewha Womens University was the presenter with coauthor Youngjo
Lee of Seoul National University. This presentation had some similarity to the first one, but
differs in treating models having a multivariate error structure allowing correlated clusters.
There is less emphasis on computational methods.

Population Model

• N clusters indexed by i.

• Mi units or elements in cluster i indexed by j.

• Two stage cluster sampling:

yij |vi ∼ f1(yij |vi; θ1)

v ∼ f2(v; θ2).

• Often assume v ∼ N(0,Σ) where Σ is a non-diagonal covariance matrix that may
depend on θ2.

Goals of Inference

1. Estimate θ = (θ1, θ2).

2. Predict v.

Problem to Solve

• If the sample design for clusters and units within a cluster is known, the problem can
be solved by “H-likelihood method” (hierarchical likelihood).

• Suppose we only know wi = 1/πi for clusters i and wj|i = 1/πj|i for units j within
cluster i.

• Basic idea (very simplified) is that the log-likelihood can be written as the sum of
two terms:

hw(θ,v) =
∑
i

wi

∑
j

wj|i log f1(yij |vi; θ1) + log f2(v; θ2).

Questions and Suggestions

• Real data examples would be welcome.

• I originally asserted: “Often clusters are selected one per stratum (or perhaps 2 or 3)
so correlated clusters may be less common than suggested.” I came to realize during
the presentations that from a model-based viewpoint, correlations are the rule rather
than the exception.

• Any comments on computing algorithms, convergence, run times, etc.?

• Software availability?
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5. In closing. . .

I am especially indebted to the organizer, Professor Jae-kwang Kim, for organizing and for
choosing me to be the discussant for this interesting session. I also thank the chair Professor
Zhengyuan Zhu, the other participants, and the audience.

mpcohen@juno.com mcohen@air.org
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