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Abstract 
 

Low response may render a probability sample behave like a nonprobability sample. Achieving high 
weighted response rate after a small nonresponse follow-up survey may be misleading due to instability in 
the resulting estimator. Release of many reserve replicate samples helps in reaching the target sample size 
but relies heavily on correct specification of the nonresponse model so that units from response-prone 
domains are appropriately weighted. Use of ad hoc substitution by similar units to offset nonresponse is 
subject to selection bias due to lack of correct selection probabilities. As an alternative, a random 
replacement strategy for unbiased estimation with appropriate selection probabilities along with a 
nonresponse model is proposed based on the idea of reserve samples of size one which can be viewed as 
follow-ups for nonresponding units. It is a take-off from the random group method of Rao, Hartley, and 
Cochran (RHC, 1962) for probability-proportional-to-size (PPS) sampling where each stratum is randomly 
split into groups, and then a single unit is drawn within each group. In the proposed method, each stratum 
is partitioned further into zones formed after sorting for the purpose of implicit stratification so that values 
of nonresponse predictors used as sorting variables are well distributed over zones. The number of zones is 
about half the allocated sample size. Each zone is randomly split into groups as in RHC within which 
replicate samples of size one are selected in order to obtain a responding unit. This way responding units 
from almost all zones are obtained and then weighted estimates from all responding groups are combined 
after adjustments for nonresponding groups as well as zones. The nonresponse adjustment is made through 
a one-step calibration for nonresponse and post-stratification as the usual two-step approach is not 
applicable because in addition to the information about model covariates for the rejected units, the first step 
for nonresponse adjustment requires selection probabilities for each given sequence of nonresponding units 
before obtaining a responding unit within a group, and these probabilities are not known.  Due to relatively 
well distribution of responding units over the range of covariate values, the calibration for nonresponse is 
expected to provide robust estimation with respect to nonresponse bias even if the model is misspecified. 
The unit level response rate remains low and is not altered by the new design, but the notion of a group 
response rate becomes meaningful which can be made high by choosing suitably the number of replicate 
release within the data collection time frame and the budget allowed.  Simulation results are presented to 
illustrate the nonresponse bias reduction property of the proposed estimator and the robustness of its mean 
squared error under misspecified models. 
 
Key Words: Random group method; Reserve Sample Replicates; Unit vs. Group Response Rates; 
Weighted Response rate; Nonresponse follow-up surveys. 
 

1. Introduction 

 
High nonresponse is quite common in many surveys (especially with telephone and mail) and there is 

the growing concern among survey practitioners that a probability sample may behave like a 
nonprobability sample. This problem can be mitigated only marginally using innovations in questionnaire 
design, interview protocol, and use of incentives. In practice, there are three major approaches to the 
nonresponse problem listed below along with their limitations: 
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(i) Use of a Nonresponse Follow-Up Survey (NRFUS) to increase the weighted response rate but it 
may be misleading because of the high variability of sampling weights resulting from the fraction 
of the follow-up subsample being small due to budgetary constraints. This, in turn, makes the 
estimator quite unstable. 

(ii) Release of many reserve replicate samples helps in reaching the target sample size but it puts a lot 
of burden on model-based adjustment for nonresponse bias because the respondents may be 
concentrated more in response-prone domains and not well dispersed over the range of values of 
auxiliary variables used in the model. 

(iii) Use of ad hoc substitution by similar units to offset nonresponse is subject to selection bias 
because the choice of units for substitution is not based on any random mechanism designed for 
unbiased estimation.  

In view of the above concerns about ways to reach the goal of meeting the target number of completes, 
there is clearly a need for an alternative to the traditional method of inflating the released sample size to 
compensate for ineligibility and nonresponse which is typically followed up by release of reserve replicates 
when faced with a lower number of completes than expected. NRFUS is also generally not a viable option 
due to cost constraints. A natural option is to develop ways in which substitution for nonrespondents by 
similar units can be justified.  Clearly, there is need to substratify strata into zones (or deep strata) by good 
anticipated nonresponse predictor variables in addition to the variables used for explicit stratification so 
that each zone is represented in the sample of completes. These zones can be created by using the additional 
nonresponse predictors as sorting variables for implicit stratification in systematic sampling. Both explicit 
and implicit stratification variables are deemed to be correlated with the outcome as well as response 
indicator variables. Within each zone, we can use rejective sampling by repeated random draws with 
replacement to obtain a desired sample size of distinct respondents. Here we reject nonrespondents in favor 
of a respondent in the sense that since we don’t know in advance the subpopulation of respondents for 
sampling, we sample from the larger known population (of respondents and nonrespondents) and resort to 
rejection as and when necessary. However, in practice, draw by draw selection to find an allocated number 
of responding units in each zone would be an onerous task and impractical due to time and budgetary 
constraints in data collection. Moreover, this will not be conducive for unbiased variance estimation in 
general. Alternatively, the rejective sampling strategy can be relatively easily implemented with samples 
of size one where replicates correspond to reserve releases. This is where the method of random groups 
comes in; see Rao, Hartley, and Cochran (1962, RHC for short) and Cochran (1977, pp. 266). 

The RHC method was originally developed for providing a simplified PPS selection in which primary 
sampling units (PSUs) in a stratum are split into random groups of about equal size. The number of groups 
corresponds to the desired number of sampled PSUs, and one PSU is drawn at random from each group. It 
is also useful for replacing retiring PSUs with new ones in rotating partially overlapping panel surveys. By 
analogy between a retiring unit and a nonresponding unit, RHC can be adapted to replace nonresponding 
units with responding units. The purpose of this paper is to generalize RHC under the full sample case (i.e., 
no nonresponding PSU) to the case of a respondent subsample (which may come from single stage design 
with no PSUs) in order to obtain an unbiased estimate under a quasi-randomization model where 
nonrespondents are replaced at random by respondents. This problem arose in the context of education 
surveys where schools are typically stratified by school type, urbanicity, enrollment size, and percentage of 
Native Americans; and each stratum is further implicitly stratified by sorting variables such as % white 
non-Hispanic, and % eligible for free or reduced lunch among others. Here, in the first phase, schools are 
PSUs which are selected using PPS with student enrollment as size measures, and can be nonrespondents. 
The second phase units are students or teachers within selected schools. In some education surveys, 
nonresponding schools are substituted by neighboring schools in the sorted list within each stratum, and the 
corresponding selection probabilities are adjusted in an ad hoc manner by the new enrollment sizes. The 
substitution and the associated weight adjustment do not have any theoretical justification but do reflect the 
selection probabilities had the substituted unit been drawn in the first place. This ad hoc substitution may 
not be serious if the nonresponse rate is low but in recent times, surveys are experiencing high nonresponse.  
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The proposed method termed randomly split zones (RSZ) for samples of size one partitions each 
stratum into approximately equal sized zones via implicit stratification where the number of zones is set 
equal to half the allocated stratum sample size. Random groups of about equal size are then created within 
zones (or deep strata) and one unit is drawn at random from each group along with replacements if 
necessary. In Section 2, a brief review of the RHC method is presented along with a motivation for the 
proposed RSZ method. Section 3 contains a description of RSZ followed by Section 4 on point and variance 
estimates when response probabilities are assumed to be known and under the more realistic scenario when 
response probabilities are unknown and estimated from the sample under a nonresponse model. Empirical 
results based on a simulation study are presented in Section 5 where equal probability selection methods 
(simple random sample, systematic random sample, and RSZ) are compared under a single stage 
unstratified design. Finally, Section 6 contains concluding remarks and a new application of RSZ for 
controlling the sample overlap among multiple cross-sectional surveys. 

 
2. Background Review and Motivation 

 
We first review briefly the RHC method for a simplified PPS selection of PSUs. For our purpose, instead 
of splitting strata into random groups, it is better to split zones into random groups where zones (or 
substrata) partition the strata via implicit stratification. Also for illustrating RHC, it is sufficient to consider 
a single zone i (out of a total of H zones or substrata) which is randomly split into approximately equal-
sized groups of PSUs; the number of groups being 𝑛𝑖, the size of the sample. Let 𝑁𝑖 be the size or the 
number of PSUs for zone i and let 𝑁𝑖𝑗 be the size or the number of PSUs for the jth random group (j=1 to 
𝑛𝑖), and 𝑥𝑖𝑗𝑘 be the PPS size measure for the kth PSU in the jth random group of the ith zone. Now to draw 
a PPS sample of 𝑛𝑖 PSUs from the ith zone, one PSU (denote by 𝑘𝑖𝑗) is selected using PPS from each group. 
The ith zone population total 𝑇𝑦𝑖 (= ∑ 𝑇𝑦𝑖𝑗

𝑛𝑖
𝑗=1 ) of the study variable y for the ith zone is estimated by 

  𝑡𝑦𝑖 = ∑ 𝑡𝑦𝑖𝑗
𝑛𝑖
𝑗=1 , where 𝑡𝑦𝑖𝑗 = 𝑦𝑖𝑗𝑘𝑖𝑗 (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑘𝑖𝑗 ⁄ ) from the selected PSU 𝑘𝑖𝑗. (2.1) 

 
Conditional on a given random split (denote the expectation operator under the first phase 

randomization by 𝐸1), 𝑡𝑦𝑖𝑗is unbiased for 𝑇𝑦𝑖𝑗 under the second phase randomization of PPS selection 
(denote the expectation operator here by 𝐸2), and, therefore,  𝑡𝑦𝑖 is unbiased for 𝑇𝑦𝑖 under the two stage 
randomization 𝐸12. Moreover, 𝑉1𝐸2(𝑡𝑦𝑖) = 0. Now using PPS results for samples of size one, we have  

 
 𝑉2(𝑡𝑦𝑖𝑗) =  ∑ (𝑥𝑖𝑗𝑘 𝑥𝑖𝑗+ ⁄ )

𝑁𝑖𝑗

𝑘=1 (𝑦𝑖𝑗𝑘 (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑘 ⁄ ) − 𝑇𝑦𝑖𝑗)2 
    =  ∑ (𝑥𝑖𝑗𝑘 𝑥𝑖𝑗+ ⁄ )(𝑥𝑖𝑗𝑘′ 𝑥𝑖𝑗+ ⁄ )

𝑁𝑖𝑗

𝑘<𝑘′ (𝑦𝑖𝑗𝑘 (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑘 ⁄ ) − 𝑦𝑖𝑗𝑘′ (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑘′ ⁄ ))2      (2.2) 
Since probability of any two units (k, k’) belonging to the same random group j in the ith zone is  
(𝑁𝑖𝑗 𝑁𝑖⁄ )(𝑁𝑖𝑗 − 1 𝑁𝑖 − 1⁄ ), and denoting it by 𝑝𝑖𝑗, we have the unconditional variance 
 
 𝐸1𝑉2(𝑡𝑦𝑖) = ∑ 𝑝𝑖𝑗

𝑛𝑖
𝑗=1 ∑ (𝑥𝑖𝑗𝑙 𝑥𝑖𝑗+ ⁄ )(𝑥𝑖𝑗𝑙′ 𝑥𝑖𝑗+ ⁄ )

𝑁𝑖
𝑙<𝑙′ (𝑦𝑖𝑗𝑙 (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑙 ⁄ ) − 𝑦𝑖𝑗𝑙′ (𝑥𝑖𝑗+ 𝑥𝑖𝑗𝑙′ ⁄ ))2   

                     =(∑ 𝑝𝑗
𝑛𝑖
𝑗=1 ) (∑ 𝑞𝑖𝑙𝑞𝑖𝑙′

𝑁𝑖
𝑙<𝑙′ (

𝑦𝑖𝑙 

𝑞𝑖𝑙
−

𝑦
𝑖𝑙′ 

𝑞𝑖𝑙′
)

2

) 

      = ((∑ 𝑁𝑖𝑗
2𝑛𝑖

𝑗=1 − 𝑁𝑖) 𝑁𝑖(𝑁𝑖 − 1)⁄ ) (∑ 𝑞𝑖𝑙
𝑁𝑖
𝑙=1 (

𝑦𝑖𝑙 

𝑞𝑖𝑙
− 𝑇𝑦𝑖)

2
)         (2.3) 

where 𝑞𝑖𝑙 = 𝑥𝑖𝑙 𝑥𝑖+ ⁄ .  The minimum value is obtained when all the 𝑁𝑖𝑗’s are equal to a common value 𝑁𝑖0. 

Then the V(𝑡𝑦𝑖) is given by the familiar PPS with replacement formula (1/𝑛𝑖) ∑ 𝑞𝑖𝑙
𝑁𝑖
𝑙=1 (

𝑦𝑖𝑙 

𝑞𝑖𝑙
− 𝑇𝑦𝑖)

2
except 

for the reduction factor (1 − (𝑛𝑖 − 1) (𝑁𝑖 − 1)⁄ ). The RHC yields approximate PPS selection probabilities 
if the total group size measures 𝑥𝑖𝑗+ for different groups are approximately equal within a zone i. This slight 
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relaxation in the PPS requirements allows for considerable simplicity. In particular, an important property 
of the RHC method is that V(𝑡𝑦𝑖) admits an exact unbiased variance estimate given by 
 

 𝑣(𝑡𝑦𝑖) =  ((∑ 𝑁𝑖𝑗
2𝑛𝑖

𝑗=1 − 𝑁𝑖) (𝑁𝑖
2 − ∑ 𝑁𝑖𝑗

2𝑛𝑖
𝑗=1 )⁄ ) (∑ (∑ 𝑞𝑖𝑗𝑘′ 

𝑁𝑖𝑗

𝑘′=1
)

𝑛𝑖
𝑗=1 (

𝑦𝑖𝑗𝑘𝑖𝑗 

𝑞𝑖𝑗𝑘𝑖𝑗

− 𝑡𝑦𝑖)

2

)        (2.4) 

where 𝑞𝑖𝑗𝑘 = 𝑥𝑖𝑗𝑘 𝑥𝑖++ ⁄ and is identical to 𝑞𝑖𝑙 if 𝑗𝑘 corresponds to the index variable l, where 𝑘𝑖𝑗 is the 
randomly selected PSU from the group 𝑖𝑗. The above results for a single stage design can be generalized to 
multi-stage or multi-phase designs. 
 We need to generalize RHC to the problem of finding random replacements for nonrespondents 
within zones (or deep strata) where units are similar with respect to explicit and implicit stratification 
variables—these are deemed to be good predictors of nonresponse. Here the underlying design could be 
unequal probability (PPS) or equal probability design as provided by RHC but there is the additional goal 
of being able to draw alternate units from the random group with known selection probabilities to serve as 
replacements. It is natural to look for respondents within a random group as replacements because units 
within a zone are similar. This does not imply that nonresponse adjustments would not be needed because 
although units are similar, they still would have differential response probabilities. To this end, we will 
assume a population response model as in Fay (1991) in which a response indicator 𝑅𝑘 is assigned to each 
unit k in the universe U which takes the value of 1 with probability  𝜑𝑘 when the unit is respondent and 0 
when nonrespondent. It is also assumed that given known auxiliary variables (deemed good predictors for 
response), the 𝑅𝑘′𝑠 are independent of the study variables 𝑦𝑘’s and that units respond independently. Thus 
under the joint 𝜋𝜑 −randomization where 𝜋 denotes the random sampling mechanism with selection 
probabilities 𝜋𝑘 for inclusion of the kth unit in the sample, and 𝜑 denoting the random response mechanism, 
we have the standard estimator ∑ 𝑦𝑘𝑘∈𝑈 𝑅𝑘𝐼𝑘/𝜑𝑘𝜋𝑘 based on the respondent subsample as an unbiased 
estimator of the population total 𝑇𝑦. 

Now for the proposed generalization of RHC to RSZ, we need to specify the number of equal-sized 
zones partitioning each stratum and the number of groups per zone. The number of zones is set equal to 
half the allocated sample size to the stratum so that there are at least two random groups per zone needed 
for variance estimation. The number of random groups per zone depends on the inflated sample size based 
the anticipated response rate at the sample design stage so that the total number of sample cases released in 
stages (the initial stage and through replicate release) within the data collection time frame match the total 
number of cases in one stage in traditional designs. This is determined using a geometric series formula as 
shown below. For an unstratified design, let 𝑛0 the target number of completes, q the anticipated completion 
rate reflecting unit eligibility and interview response, and R the number of replicate release per group 
including the initial release, then the constant number 𝑛𝑖 of groups per zone is given by 
    𝑛𝑖𝐻(1 − (1 − 𝑞)𝑅/𝑞 = 𝑛0/𝑞    
or           𝑛𝑖 = 𝑛0/𝐻(1 − (1 − 𝑞)𝑅)                        (2.5) 
 In practice, some rounding up would be needed to obtain an integer value for the number of groups. 
It may be remarked that the feature of random replacements for nonrespondents within each group under 
RSZ leads to the concept of group response rate which can be made higher depending on the number of 
replicate release. This is in contrast to the traditional unit level response rate whose level is not under control 
of the sampler. With this motivation, the proposed RSZ design is illustrated in detail in the next section. 
 

3. RSZ: The Proposed Design 

 
RSZ(R) can be described in the following steps where R is the number of stages of release. 

Step I: Partition the universe U into strata and allocate sample to each stratum. 
Step II: Partition each stratum further into equal-sized zones after sorting. The number of zones is 
set equal to half the allocated stratum sample size. 
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Step III: Specify the total number R of release (e.g., R=5) and define equal number 𝑛𝑖 of groups 
per zone within a stratum using the relation 𝑛𝑖 = 𝑛0/𝐻(1 − (1 − 𝑞)𝑅). 
Step IV: Stage-wise release of new reserve samples of size one from remaining nonresponding 
groups from each stage. 

As an illustrative realistic but hypothetical example, consider an unstratified design for household 
surveys in the United States with the total number of housing units (HUs) in US the population being about 
131 million. In RSZ, approximately equal sized zones (like deep strata) are created by sorting on implicit 
stratification variables such as census block level information about household income, number of children, 
marital status, age group and housing tenure which can be obtained from a vendor such as CLARITAS Inc. 
Suppose the target sample size of 𝑛0 is 4500 so that the total number H of zones is 2250 and the zone size 
is approximately 58,222 HUs. Next, each zone is randomly split into groups within which replicate samples 
of size one are selected. If there was no nonresponse, then only two random groups are needed per zone to 
meet the target sample size and for unbiased variance estimation. However, the number 𝑛𝑖 of groups per 
zone is inflated to account for the completion rate which is typically a product of the cooperation rate  (such 
as 50%) for the main questionnaire, screener eligibility (such as 33%), and screener response in conjunction 
with the validity of the HU being residential (such as 50%). Thus, for our illustration, the completion rate 
𝑞 is 1/12 or 8.3%. In RSZ, the inflated sample can be released in stages as replicate samples of size one 
from each incomplete random group after interim review of remaining target completes. In practice, the 
number of such release is constrained by the data collection timeframe and cost. Suppose the total number 
𝑅 of replicates including the original release feasible in the timeframe is 5. Then the number 𝑛𝑖  of groups 
per zone can be easily obtained using the formula (2.5) as 5.7 for our example. After rounding up to 6 
groups per zone, the number of HUs per group is about 9704 and the total number of released cases or HUs 
in Stage I is 13,500; see Figure 1 for a schematic representation of RSZ and Table 1 for stage-wise 
distribution of total released cases, expected incompletes and completes.  It also shows the distribution of 
completes and incompletes over the five release stages when the completion rate is reduced by half to 4.2% 
which might happen if the screener response and HU validity rate is reduced to 25%. The value of  𝑛𝑖  in 
this case increases to 10.53 or 11 assuming the same number of stages of release. 

It might be of interest to note that in RSZ, it is advantageous to release random replicate sample cases 
in stages to the extent possible within the timeframe for data collection in order to obtain completes 
essentially from each and every zone and, as a result, making the final sample representative of the 
population like the initially designed sample. Stage-wise release also allows for interim analysis so that in 
the intermediate stages, a random subsample of cases from incomplete groups can be released to reduce 
excess completes. However, assuming the anticipated response rate does not change considerably over the 
collection period, there is no such advantage under the traditional approach because there the sample 
inflation is not governed by zone representation, Therefore, the inflated sample of cases is designed to be 
released in a single stage such that the target is achieved in expectation. This may result in excess or shortage 
of desired completes. If completes are less than desired, reserve replicate samples are released which need 
to be planned in advance so that they can be integrated with the initial sample release for estimation 
purposes.  Under RSZ, however, there is no such need for advance planning of reserve sample release in 
view of readily available replicate samples of size one from each random group.  

 
4. Point and Variance Estimation 

It would be useful to summarize first the key points underlying the RSZ design when dealing with high 
nonresponse. 

1. (No Nonresponse) For unbiased estimation, random sampling is needed to obtain a representative 
sample of the population. For efficient estimation, often stratification (explicit and implicit) is employed 
using auxiliary variables deemed correlated with several outcome or study variables.  In the absence of 
nonresponse; i.e., in the full sample case, and in the absence of noncoverage, there is no bias in the usual 
estimators. However, their efficiency can be further improved by calibration for post-stratification whereby 
sampling weights are adjusted so that sample estimates for post-stratification variables perfectly match the 
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known population totals. This adjustment also has the additional benefit of coverage bias reduction if the 
sampling frame had either over- or under-coverage imperfections. Sampling weight calibration for post-
stratification can be achieved by different methods under the class known as generalized raking such as 
linear, log linear, and their range-restricted analogues (Deville and Särndal, 1992) but they give similar 
results for large samples. 

2. (Low Nonresponse) In practice, nonresponse is almost always present despite incentives. For this 
reason, the target sample size is inflated in light of the anticipated response rate. The realized subsample of 
respondents is likely to be skewed toward response-prone domains defined by auxiliary variables deemed 
correlated with response indicator as well as the study variable. Under a nonresponse model, sampling 
weights are adjusted but the unbiased of estimates under the joint sampling design-nonresponse model 
depends on the correct specification of the model. Although the nonresponse is difficult to validate, the 
nonresponse bias in the estimate is not expected to be serious if the nonresponse rate is low and the model 
has good response predictors. However, if nonresponse is high, the bias could be serious unless the model 
can be correctly specified (Groves, 2006).  

3. (High Nonresponse) RSZ provides a new way of replacing nonrespondents at random by selecting a 
responding unit from each group after several draws if necessary. The unconditional selection probabilities 
for the responding unit in a random group regardless of units rejected before is the same as the selection 
probability at the first draw which is easily justifiable and computable. Although in RSZ, the nonresponse 
problem is considerably reduced by making several attempts to get a respondent from each group, some 
groups are likely to remain nonresponding while units from all responding groups are likely to be skewed 
toward response-prone units because units may have differential response probabilities although they are 
from the same zone. Nevertheless, a relatively higher number of zones would be represented in the 
respondent subsample and therefore after a suitable nonresponse adjustment, RSZ is expected to be robust 
to nonresponse model misspecifications. 

4. (One Step Sampling Weight Adjustment for Nonresponse) With RSZ, traditional methods for 
nonresponse adjustment are not applicable because selection of additional units within a group depends on 
whether the previously drawn unit responds or not and hence their selection probabilities are unknown due 
to unknown response probabilities. However, the calibration method for nonresponse adjustment (Folsom 
and Singh, 2000; see also Kott, 2006 and Särndal, 2007, and Haziza and Lesage, 2016) works with only the 
respondent subsample and population control totals (or their reliable estimates) for the auxiliary variables 
in the model. In this case, since only responding units from each group contribute in the estimating 
equations for model parameters, it is sufficient to work with unconditional selection probabilities for 
responding units from different groups. Thus, if the group response rate for RSZ is not too low, there is less 
dependence on the model for bias adjustment and the fact that the calibration method adjusts weights so 
that the estimator with adjusted weights can reproduce perfectly the known population totals for model 
covariates, the RSZ estimator after nonresponse adjustment is expected to be robust to model 
misspecifications. 

We now can derive expressions for point and variance estimates under RSZ. If the response 
probabilities 𝜑𝑘’s were known, then denoting 𝑦𝑘𝑅𝑘/𝜑𝑘 by 𝑧𝑘, the RSZ estimator after the nonresponse 
adjustment for the total 𝑇𝑧𝑖 for zone i is given by 𝑡𝑧𝑖 = ∑ 𝑡𝑧𝑖𝑗

𝑛𝑖
𝑗=1  and its variance 𝑉𝜋|𝜑 is analogous to the 

expression in  (2.3) when y is replaced by z. The unconditional variance 𝑉𝜋𝜑(𝑡𝑧𝑖) is given by 
𝑉𝜋𝜑(𝑡𝑧𝑖) = 𝐸𝜑𝑉𝜋𝜑(𝑡𝑧𝑖) + 𝑉𝜑(𝑇𝑧𝑖)    (4.1) 

where the first term can be unbiased estimated analogous to (2.4) and the second term is of much smaller 
order if the total number 𝑛𝑖of groups in the zone i is much smaller than the population size 𝑁𝑖 and hence 
negligible.  

The point estimator for the total 𝑇𝑧 and its variance readily follows by summing over all zones. Under 
the more realistic scenario of unknown 𝜑𝑘’s, the estimating equations for model parameters 𝛾 under a 
commonly used inverse logit model 𝜑𝑘(𝛾) = 1 + 𝑒−𝑥𝑘

′ 𝛾 are given by  
∑ ∑ (𝑥𝑘 𝜋𝑘⁄ )𝑛𝑖𝑟

𝑗=1
𝐻𝑟
𝑖=1 (1 + 𝑒−𝑥𝑘

′ 𝛾) =  𝑇𝑥     (4.2) 
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where 𝑛𝑖𝑟 denotes the total number of responding groups within zone i and 𝐻𝑟 denotes the total number of 
responding zones. The above equations are admissible if the sample weighted totals 𝑡𝑥 of x’s are less than 
the population totals 𝑇𝑥. This is needed for the adjustment factors to be greater than 1. In practice, 𝑡𝑥 for 
some x may not be less than 𝑇𝑥 due to extreme initial weights and initial smoothing of weights (Singh, 
Ganesh and Lin, 2013) can be used to overcome this problem as an alternative to weight trimming.  For 
variance estimation, the RSZ estimator with estimated 𝛾 can be Taylor linearized and then the variance 
estimator discussed above for known 𝜑𝑘’s can be used. Alternatively, an improved estimator using a 
sandwich formula (Singh and Folsom, 2000) can be obtained.  
 

5. Simulation Results 

 
A limited simulation study was conducted to test performance of RSZ with a single stratum in 

relation to simple random sampling (SRS) and systematic random sampling (SYS). Using the Common 
Core of Data (CCD) School District Finance survey School Year 2012-13, we considered the total federal 
funding (in millions) for a school district as the study variable y and the total district enrollment ((in 
thousands) as the auxiliary variable x. The CCD has 15471 school districts with positive values of y and x. 
Due to skewed nature of distributions of y and x, we consider the log transformation and assume that the 
joint distribution of log y and log x is bivariate normal for generation of the finite population. The mean 
and standard deviation of log y and log x were obtained respectively from CCD as (-.302, 1.665) and 
 (-.124, 1.560) and the correlation as .853. This completely specifies the bivariate normal distribution and 
hence the linear regression of log y on log x. First 10000 values of log x were generated and then the 
corresponding values of log y using the regression model and normal errors. With 10000 pairs of values 
of (y,x), the target parameter 𝑇𝑦 is 31435.29 in million dollars and the control total 𝑇𝑥 is 31606.80 in 
thousand students. The nonresponse was induced via Poisson sampling with response probabilities given 
by a logistic model using x as a covariate. The slope parameter was set to 1 while the intercept was set 
empirically to obtain mean response rates q of .2, .4, .8 respectively for three scenarios of low, medium 
and high response rates. For each of the three sampling designs, SRS, SYS, and RSZ, three sample sizes 
n=100, 200, 400 were considered which correspond to the total number of released cases. Thus, with q 
=.20, the target number of completes is 20, 40, and 80 respectively for n=100, 200, 400. For RSZ, we 
considered two versions: RSZ(5) which allows for 5 releases and RSZ(U) with unrestricted number of 
releases within each group. The nonresponse adjustment was performed under three misspecified models: 
(i) Simple Hajek-ratio adjustment to ensure sampling weights of respondents sum to N, (ii) Linear 
regression model for the adjustment factor which does not ensure the adjustment factor is positive, and 
(iii) Log linear model for the adjustment factor which ensures the adjustment factor remains positice.  
 None of the nonresponse model is correctly specified but model (iii) comes closest except that it 
is not logit linear and has both intercept and slope parameters unknown. Model (ii) comes next except that 
it is linear and model (i) ranks last in terms of being close to the true nonresponse model because it does 
not even depend on x. With 1000 simulated samples from the same finite population, it was found that 
RSZ estimator was quite robust in terms of bias and MSE with respect to misspecified models but the 
other two methods SRS and SYS were quite sensitive being worst for model (i) but quite well for model 
(iii); see Tables 2(a,b,c), 3(a,b,c) and 4(a,b,c). 
 

6. Concluding Remarks and a New Application of RSZ 
 

In this paper, a generalization of the RHC method for random replacement of nonrespondents in the 
presence of high nonresponse was developed which was different from the original purpose of RHC. 
Nonresponse adjustments to RSZ for nonresponding groups and nonresponding zones were suggested via 
calibration. It was found based on a limited simulation study that RSZ was quire robust with regard to 
model misspecification in comparison to SRS and SYS in terms of bias and MSE. It is remarked that RSZ 
can also be used for sampling on successive occasions by using Keyfitz (1951) for updating random groups.  
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It may be of interest to consider a possible new and important application of RSZ for controlling sample 
overlap. With multiple cross-sectional surveys that are also repeated over time, a natural question to 
consider is how to select PSUs (such as schools in education surveys) at the first phase in a coordinated 
manner across different surveys such that the overlap of PSUs can be controlled cross-sectionally and also 
over time. Having such a control would help in distribution of workload in an equitable manner across 
PSUs (schools) and in reducing response burden on any given school in that a school can be given the 
option of time out after having participated in a number of surveys. Also with any repeated survey over 
time, having a partially overlapping design is especially useful in an efficient estimation of trend. The 
problem of overlap control in sampling, also known as collocated sampling, is difficult in general even for 
simple random samples because suitable random selection for each survey needs to be maintained for 
unbiased point and variance estimation after collocation; see Ernst, Valliant, and Casady (2000) and 
Ohlsson (2000).  However, it turns out that with RSZ, overlap control of schools can be easily implemented 
by considering the analogy between nonresponding units and units already in use by other surveys. The 
basic idea can also be extended to the second phase of second stage of units within PSUs such as teacher 
selection within selected schools.  It is planned to investigate further the application of RSZ to the problem 
of sample overlap control. 
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Figure 1: A Simplified Schematic Representation of the Proposed RSZ Design 

( 𝑁 = 131 × 106, 𝑛0=4500, 𝑅 = 5, 𝑞 = 1/12, 𝑛𝑖 = 6)   
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Table 1: Distribution of Number of Released Cases, Expected Incompletes and Completes 

Stage 𝒒 = 𝟏/𝟏𝟐 𝒒 = 𝟏/𝟐𝟒 

 # Released # Incompletes  # Completes # Released # Incompletes # Completes 

1 13500 12375 1125 24750 23719 1031 

2 12375 11344 1031 23719 22731 988 

3 11344 10399 945 22731 21784 947 

4 10399 9532 867 21784 20876 908 

5 6750 6188 562 15750 15094 656 

Total 54368 49838 4530 108734 104204 4530 

 
 
 
 
 

 

 Construct  𝑛0 2⁄  zones after sorting on implicit stratification variables. Each zone size 
is ~58222 HUs. 
 

 
Zone i:                                                …………………………………………..                               
 

 Split each zone at random into 6 groups. Thus there are 13500 groups in all and each 
group size has about 9704 HUs. 
 

 
Random Group j:                                            ……………………….                               
 
 

 One HU is selected at random from each group at each stage of release. 
 
Housing Unit k:                                                                                                                                                      
 
 
 
 
 
 
 
 
 

i=1 i=2 
222
===
2 

i=2250 

 j=1 j=2 j=6 

𝑘𝑖𝑗

=1 
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Table 2(a): Comparison of Estimates for Population Totals (q=.20, Model (i)) 
 

Evaluation 
Criterion 

Expected 
Samp. Size 
(released) 

Sampling Scheme 

 
SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 2.431 2.472  -0.095 0.052 

200 2.411 2.478  -0.096 0.014 

400 2.483 2.464  -0.099 0.019 

RRMSE 

100 2.975 2.971  0.610 0.829 

200 2.672 2.693  0.534 0.516 

400 2.632 2.571  0.344 0.370 

 
 

 

Table 2(b): Comparison of Estimates for Population Totals (q=.20, Model (ii)) 
 

Evaluation 
Expected 
Sample 
size 

Sampling Scheme 

 
SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.230 0.239  0.128 0.047 

200 0.341 0.272  0.112 0.039 

400 0.308 0.353  0.120 0.028 

RRMSE 

100 1.060 1.017  0.625 0.501 

200 0.890 0.931  0.449 0.387 

400 0.770 0.765  0.429 0.269 

 
 

 

Table 2(c): Comparison of Estimates for Population Totals (q=.20, Model (iii)) 
 

Evaluation 
Expected 
Sample 
size 

Sampling Scheme 

 
SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.090 0.075  0.083 0.048 

200 0.102 0.104  0.081 0.037 

400 0.098 0.100  0.082 0.027 

RRMSE 

100 0.342 0.325  0.413 0.511 

200 0.254 0.256  0.279 0.389 

400 0.183 0.186  0.211 0.270 
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Table 3(a): Comparison of Estimates for Population Totals (q=.40, Model (i)) 
 

Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 1.057 1.076  -0.026 0.024 

200 1.039 1.073  -0.029 0.006 

400 1.084 1.076  -0.010 0.002 

RRMSE 

100 1.381 1.349  0.483 0.557 

200 1.200 1.190  0.324 0.346 

400 1.176 1.139  0.238 0.234 

 
 

Table 3(b): Comparison of Estimates for Population Totals (q=.40, Model (ii)) 
 

Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.071 0.074  0.040 0.030 

200 0.152 0.135  0.043 0.025 

400 0.145 0.160  0.041 0.014 

RRMSE 

100 0.211 0.221  0.307 0.359 

200 0.329 0.345  0.233 0.278 

400 0.300 0.299  0.164 0.194 

 
 

Table 3(c): Comparison of Estimates for Population Totals (q=.40, Model (iii)) 
 

 
 

  Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.068 0.067  0.039 0.028 

200 0.084 0.082  0.040 0.025 

400 0.081 0.082  0.038 0.014 

RRMSE 

100 0.207 0.215  0.306 0.361 

200 0.174 0.168  0.231 0.280 

400 0.130 0.131  0.160 0.195 
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Table 4(a): Comparison of Estimates for Population Totals (q=.80, Model (i)) 
 

Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.202 0.203  0.007 -0.007 

200 0.188 0.205  -0.006 -0.003 

400 0.209 0.207  0.000 0.002 

RRMSE 

100 0.503 0.454  0.359 0.326 

200 0.364 0.331  0.225 0.222 

400 0.311 0.277  0.158 0.156 

 
 

Table 4(b): Comparison of Estimates for Population Totals (q=.80, Model (ii)) 
 

Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.038 0.025  0.026 0.024 

200 0.040 0.046  0.015 0.021 

400 0.037 0.038  0.004 0.007 

RRMSE 

100 0.224 0.211  0.282 0.260 

200 0.163 0.161  0.194 0.194 

400 0.119 0.112  0.136 0.133 

 
 

Table 4(c): Comparison of Estimates for Population Totals (q=.80, Model (iii)) 
 

Evaluation 
Expected 
Sample size 

Sampling Scheme 

SRS SYS  RSZ5 RSZU 

Relative 
Bias 

100 0.037 0.027  0.026 0.024 

200 0.035 0.043  0.015 0.021 

400 0.034 0.035  0.003 0.007 

RRMSE 

100 0.220 0.214  0.284 0.262 

200 0.159 0.158  0.195 0.194 

400 0.113 0.108  0.136 0.133 
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