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Abstract

Modifications of weights due to calibration, trimming, sometimes in multiple stages,
are very common in survey analysis. It is typical to work with modified as opposed
to design/inverse-inclusion-probability weights, especially in publicly released survey data.
Various weight-smoothing methods (Pfeffermann and Sverchkov 1999; Zheng and Little 2003;
Beaumont 2008) have been proposed to improve the efficiency of the Horvitz-Thompson
(HT) and Generalized Regression (GREG) estimators of survey totals. These methods de-
pend on correctness of model relationships between the survey attribute Y, covariate X,
and Y and the given weights w. There has been little systematic study about the impact
of treating modified weights as design weights, when the model assumptions connecting x,
y, w might also be misspecified. It is, therefore, important to evaluate the performances of
these three methods under different modified weights and misspecified models. In this sim-
ulation study, we generate finite frame populations from superpopulation models, simulate
misspecified models, and quantify mis-calibrations of the weights to compare GREG and
HT results with estimators based on the three weight-smoothing methods.

Keywords: sampling theory, superpopulation models, design-based estimates, model-
based estimates.

1 Introduction

We consider probability sampling designs where a random sample S with elements Yi is drawn
from the finite population according to the inclusion probabilities πi, i = 1, . . . , N . The main
interest is to estimate the population total of the outcome variable Y , defined as tY =

∑N
i=1 Yi.

The HT estimator is a design-unbiased estimator of tY with unequal probabilities of inclusion
πi, defined as

t̂HTY =
∑
i∈S

Yi
πi
. (1)

This universal unbiased property does not depend on any correctness of distributional model
assumption of survey measurement Yi and covariates Xi. When the outcome variable and the
inclusion probability are weakly related, the HT estimator could be very inefficient. Generalized
regression estimator (GREG), given by Eq. (2) is also design-consistent utilizing the association
between covariate Xi and outcome Yi when the total

∑N
i=1Xi is known. Here Ŷi is based on a

simple weighted linear regression of Yi on covariates.

t̂GREGY = t′Xβ̂
PS , Xi = (1, X ′i)

′. (2)

A concern that often is ignored is that the survey professionals often do modify the sample
weights in multiple stages. Common modification procedures include calibration, trimming,
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etc. Before any smoothing method is applied, the weights {di}Ni=1 have been modified through
calibration already, sometimes in multiple steps. When releasing the final data sets to the public
and making microdata available to users (e.g. applied statisticians and epidemiologists), all the
black-box style of massaging the sampling weights are masked to public users and we all treat
the modified weights as if they were the true sampling weights. Misspecification happens when
we calibrate on wrong totals or on wrong covariates. It will be different from (Ybarra and
Lohr 2008) who discussed measurement error in auxiliary information in small area estimation
models.

1.1 Brief Review of Weight-Smoothing Methods Considered in Simulation

Different smoothing methods have been proposed to improve the efficiency by modifying the
survey weights (Pfeffermann and Sverchkov 1999; Zheng and Little 2003; Beaumont 2008).
Pfeffermann and Sverchkov (1999) considered smoothing the weights by a function of covariates
and then applying the weighted least squares. We consider only the semi-parametric estimation,
denoted by t̂PSY = tXβ̂

PS . The estimated coefficient vector has the form

β̂PS =

(∑
i∈S

qiXiX
′
i

)−1(∑
i∈S

qiXiYi

)

where qi =
di

Ê(di|Xi, Ii = 1)

(3)

and Ê(di|Xi, Ii = 1) is obtained by regressing di against Xi. Here di = 1/πi denotes the working
weights.

Zheng and Little (2003) considered smoothing the outcome variable by modeling Y against
the inclusion probability using a p-spline function, defined in Eq. (4). One has to decide how
delicate the p-spline model is by choosing the degree p, number of knots m, and the exponent
k. Usually k = 0, 1/2 or 1. Zheng & Little suggested using random-effect terms as coefficients
βp+1, . . . , βp+m. To simplify, fixed effects were considered in this study.

Yi = β0 +

p∑
j=1

βjπ
j
i +

m∑
l=1

(πi − κl)p+ + εi

where εi ∼ iid N(0, π2ki σ
2
ε)

(4)

Assuming πi is only known for the sample S, the estimated population total is given by

t̂ZL1Y =
∑
i∈S

Ŷi/πi. (5)

If πi are known for the whole population, the estimated population total could be given by

t̂ZL2Y =
∑
i∈S

Yi +
∑
i/∈S

Ŷi/πi. (6)

In both Eq. (5) and (6), Ŷi = Ê(Yi|πi) based on Eq. (4).
Beaumont (2008) dealt with the inefficiency of the HT estimator by smoothing weights

against the outcome variable. Estimated smoothed weights d̂i could be obtained by regressing
log(di − 1) on vector hi which is a known function of Yi. Then the smoothed estimator of
population total could be given by

t̂BY =
∑
i∈S

d̂iYi. (7)
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2 Probabilistic Models of Weight Misspecification

From now on let di be the design weight or original weight for unit i in the finite population,
which is the weight before any modification. Then π0i = P (i ∈ S) = 1/di is the inclusion
probability. Let wi be the weight for unit i after some modification procedures including weight
trimming, calibration, etc. Let πFi = 1/wi represent the reciprocal of the modified weight. In
general,

di 6= wi, (8)

or equivalently πFi 6= π0i . One might think that πFi could be viewed as a function of Xi and thus
can be written as P (Ii = 1|Xi). Then if the propensity model were correct and known, this
conditional propensity factor would cancel out of the expression for the expected weighted total
and still the resulting estimator would be design unbiased. But if this conditional probability is
misspecified, then wi and π0i would not cancel out when taking conditional expectation of the
HT estimator. To develop a simulation structure and study the possible consequences of (8),
we introduce first, as a misspecification model in Section 2.1, a random variable η accounting
for the random modification processes, satisfying that

wi = diηi, where ηi ∼ iid Fη, E(ηi) = 1

so that we still have unbiased HT estimator

E
(
t̂HTY

)
= Ep

(
Ed

(
N∑
i=1

IiwiYi | F

))
=

N∑
i=1

Ep(Yi) (9)

where F is defined as the entire finite population of {Y1, . . . , YN} of attributes, Ed(·) denotes
the average over all samples possible under the design for the finite population F while Ep(·)
denotes the expectation with respect to the superpopulation model, following Isaki & Fuller’s
notation (Isaki and Fuller 1982).

2.1 Three Misspecification Models

There are three models of misspecification that are considered in this study. The first is that
the misspecification is purely random, independent of (Yi, Xi, X

∗
i , di), where X∗i are additional

covariates that will be introduced below as observable surrogates for an unobservable Xi. This
represents the case when the modification procedures mainly bring in purely random noise which
does not depend on any covariate or outcome variable. In this case, the anticipated variance of
HT using misspecified weights will be inflated by a multiplied factor 1 + V(η). It is expected
that the more noisy the modification process is, the more the variance of HT would be enlarged.

E
[
V
(
t̂HTY |F

)]
= E

[
V

(
N∑
i=1

IidiηiYi

∣∣∣F)] =

(
N∑
i=1

(di − 1) E(Y 2
i )

)
· (1 + V(ηi)) (10)

The second model is that the misspecification is related to the covariates Xi through

ηi = exp {b(Xi) + a(Xi)ζi} (11)

where ζi iid ∼ Fζ is independent of (Yi, Xi, X
∗
i , di) satisfying

exp{b(Xi)} = {mζ(a(Xi))}−1 .

Here mζ(·) denotes the moment generating function of ζi. The misspecification model (11) still
results in unbiased HT estimates, since E(ηi |Xi, Yi) = 1.

The third model arises in any setting where conditional inclusion probabilities (propensities)
P (i ∈ S |Xi) models could be correctly specified, but Xi is for some reason not properly
observable and is replaced by a surrogate (a “wrong covariate”) X∗i which is conditionally
independent of Yi given Xi. In this study, we used (11) and replaced X∗i with Xi.
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2.2 Quantifying Misspecification

In the literature, there are several choices to measure the distances of two sets of sampling
weights (Deville and Särndal 1992; Deville et al. 1993). There are also other natural metrics to
measure the magnitude of modification such as

∑N
i=1 |di − wi|. In single modification stage, a

practitioner may avoid large changes in single unit weights by requiring that the proportion of
the relative changes exceeding certain value among sample would be bounded, that is

1

|S|
∑
i∈S

I

{∣∣∣∣wi − didi

∣∣∣∣ ≥ q} ≤ K.
In this study, q = .2 and K = .5 will be considered as well-controlled modifications, indi-

cating that no more than half of the units would have relative weight changes exceeding 20%.
q = K = .5 would be considered as a mild level of modification, with no more than half of the
relative weight changes exceeding 50%.

3 Simulation Study

3.1 Superpopulation Parameters

In this simulation study, we are interested in a scalar outcome variable denoted by Y . Along
with Y , we will also collect some covariates X and X∗. To simplify, let the dimension of X and
X∗ to be 1 in this study. {(Yi, Xi, X

∗
i , π

0
i )}Ni=1 are independent with identical distribution G,

where N is the finite population size. The finite population, denoted by F , has five strata with
equal stratum sizes, where the stratum label for unit i is denoted by Li ∈ {1, 2, 3, 4, 5}.

We assume only Xi plays a role in Yi, that is, Yi is conditionally independent of all other

covariates and π0i given Xi. Let βk represent the coefficient of Xi among the k
th

stratum. The
conditional expectation of Yi given Xi in stratum k is given by

E(Yi|Xi) = β0 + βkXi, if Li = k. (12)

That is, Xi is the covariate with predictive value for Yi, with Yi and X∗i conditionally indepen-
dent given Xi. One possible situation is that X∗i is an observable covariate related to Xi but
related to Yi only through Xi. One might calibrate on X∗i , the “wrong” variable by mistake,
where the sample values of X∗i and

∑N
i=1X

∗
i are also known. However, this surrogate variable

X∗i is not the right predictive variable for a properly specified regression (12). Jointly, the vector
(Xi, X

∗
i ) is assumed here to follow(

Xi

X∗i

)
= .5 +

(
|X̃i|γ

|X̃∗i |γ

)
, where

(
X̃i

X̃∗i

)
∼ N2 (µk,Σk) , Li = k (13)

Since βk varies across different strata, so the linear relationship of Y and X varies by stratum.
Three different sets of values of βk are used to specify different frame populations, as shown in
Fig. 1. Under finite population 1, Y and X were weakly related in population level; under finite
population 2, Y and X were linearly correlated overall; under finite population 3, Y displayed
a quadratic dependence on X, therefore a linear model on X only would be misspecified.

Inclusion probability π0i for unit i in stratum k is proportional to the size variable Vi
where Vi = plogis(βV + βV ZZi), Zi ∼ N(βZ + βZXXi + βZY Yi, σ

2
Z). One set of values of

(βV , βV Z , βZ , βZX , βZY , σ
2
Z) is used for all three finite populations. But (π0, Y ) and (Y, d) dis-

play different relations according to different finite population settings, as shown in Fig. 2 and
3.

For each set of finite frame population parameters, we first generated B = 25 finite popula-

tions of size N = 10000 with values (Yi, Xi, X
∗
i , di, π

0
i , w

(1)
i , w

(2)
i , w

(3)
i , w

(4)
i ), i = 1, . . . , N , where
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Figure 1: Three simulated populations (N=10,000) X-axis, Xi; Y-axis, Yi

Figure 2: Three simulated populations (N=10,000) X-axis, πi; Y-axis, Yi

w
(k)
i , k = 1, 2, 3, 4 represented the misspecified weights. Independent samples were drawn by

Poisson sampling, where the sample indicator Ii followed a Bernoulli(π0i ) distribution. The
expected sample size was n = 100 where the sample size for each stratum were calculated by
using Neyman allocation. For each sample, a set of six estimators were calculated and compared
under different misspecification situations as follows

• Analysis using (Xi, di) with no misspecification.

• (Xi, w
(1)
i ) with purely random and well-controlled misspecification. Here ηi ∼ iidLN(−τ2, τ2),

τ =
√

log(1.1).

• (Xi, w
(2)
i ) with purely random misspecification at mild level. Here ηi ∼ iidLN(−τ2, τ2),

τ =
√

log(2).

• (Xi, w
(3)
i ) with misspecification related to the right covariates. Here a(u) = (u−15)2/100,

ζi ∼ iidN(, 1.52).

• (X∗i , w
(4)
i ) with misspecification related to the surrogate covariates for Xi. Here again

a(u) = (u− 15)2/100, ζi ∼ iidN(, 1.52).

3.2 Estimators considered

• HT, Eq. (1).

• GREG, Eq. (2).

• Semi-parametric estimation proposed by Pfeffermann & Sverchkov, Eq. (3).

• Zheng & Little’s method, as described in Eq. (5) and Eq. (6) with p = 1 and k = 0, using
5 knots.
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Figure 3: Three simulated populations (N=10,000) X-axis, Yi; Y-axis, di

• Beaumont’s method, Eq. (7) with hi = (1, Yi, Y
2
i , Y

3
i )′.

3.3 Simulation Results

Table 1: Empirical average of log of ratio of MSE with weights wi over MSE with di or N =
10, 000, n = 100 under purely random and strictly controlled misspecifications. HT: Horvitz-
Thompson; ZL1: Zheng & Little’s method assuming πi are only known for sample S; ZL2: Zheng
& Little’s method assuming πi are known for the entire population; B: Beaumont’s method; PS:
semiparametric method proposed by Pfeffermann & Sverchkov; GREG: generalized regression
estimate

Finite Population HT ZL1 ZL2 B PS GREG

1 0.09 0.09 2.09 0.09 0.09 0.09
2 0.10 0.10 0.87 0.10 0.09 0.09
3 0.10 0.10 0.16 0.09 0.09 0.09

Summaries comparing MSE’s are reported in Table 1 under purely random and well con-
trolled misspecifications. Here all the entries in the table are the log-scaled ratio of MSE under
modified weights wi to that under design weights di. From the discussion before we know that
the HT estimator remains unbiased. If analyzing based on wi makes no difference from using
di in terms of variance, then this value should be close to 0. From Eq. (10) we know that the
more noisy ηi is, the larger the log-scaled ratio of MSE will be. Since Table 1 corresponds to
well-controlled situation where no more than half of weight changes exceeded 20%, V(η) was
expected to be small. The simulation results showed similar results and all the numbers except
ZL2 were close to 0. ZL2 relies on the assumption that the weights are known for the entire
population F . It is not surprising that ZL2 performed the worst in Table 1. This indicates that
when the misspecification is purely random and well-controlled, analyzing based on modified
weights (except for ZL2, which extrapolates the incorrect weight model to the entire population)
might not harm the results much in terms of variance.

Table 2: Empirical average of log of ratio of MSE with weights wi over MSE with di for
N = 10, 000, n = 100 under purely random and mild level of misspecifications

Finite Population HT ZL1 ZL2 B PS GREG

1 0.67 0.67 2.70 0.67 0.61 0.61
2 0.66 0.66 1.25 0.67 0.60 0.60
3 0.66 0.65 0.37 0.61 0.62 0.63

When the misspecifications are strengthened, by Eq. (10) we would expect that MSE would
be larger even if the misspecifications were purely random. Table 2 summarizes the empirical
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average of log MSE ratios under purely random and mild level of misspecification. Comparing
it with Table 2, we saw all the methods had increased variances. Across different methods,
MSE ratios were about the same except ZL2.

Table 3: Empirical average of log of ratio of MSE with weights wi over MSE with di for
N = 10, 000, n = 100 under mild-level misspecifications related to X

Finite Population HT ZL1 ZL2 B PS GREG

1 1.01 1.01 2.61 0.91 1.02 0.94
2 0.91 0.91 1.09 2.55 1.02 0.95
3 0.87 0.90 0.31 1.52 1.88 1.44

Table 4: Empirical average of (bias/RMSE)2 for N = 10, 000, n = 100 under mild-level mis-
specifications related to X

Finite Population HT ZL1 ZL2 B PS GREG

1 0.26 0.26 0.75 0.13 0.11 0.05
2 0.24 0.24 0.65 0.43 0.09 0.05
3 0.26 0.34 0.35 0.21 0.59 0.26

Table 3 again summarizes log MSE ratio, under misspecifications related to covariates Xi

at mild level. We observed increased MSE with modified weights wi compared to MSE with
design weights di. Since these estimators are all consistent without misspecifications, one could
examine the proportion of MSE that could be explained by bias to check the consistency under
wi. From Table 4 we could see that Beaumont’s method, HT and methods of Zheng & Little
were not consistent under all three finite populations. Pfeffermann & Sverchkov’s method and
GREG borrowed the relationship of Y and X under finite population 1 and 2 and had much
smaller bias. Under finite population 3 when a simple weighted regression of Y on X was
misspecified, Pfeffermann & Sverchkov’s method and GREG also failed to be unbiased.

Table 5: Empirical average of log of ratio of MSE with weights wi over MSE with di for
N = 10, 000, n = 100 under mild-level misspecifications related to X∗

Finite Population HT ZL1 ZL2 B PS GREG

1 1.03 1.03 2.63 0.93 1.08 0.98
2 0.95 0.95 1.19 2.26 1.35 1.27
3 0.89 0.92 0.27 1.51 1.85 1.37

Table 5 and 6 described a similar story while this time the misspecifications were related to
the surrogate covariates Xi.

4 Discussion

This study aims to develop a simulation structure and study the possible consequences of weights
misspecification. By introducing different hypothetical probabilistic weight-misspecification
models, we were able to compare the mean squared error and/or bias uder modified weights
with that under design weights. In summary, we considered three misspecification models. The
results summarized in Table 1 to 6 suggest that we may not lose design consistency when weight
misspecifications are purely random. If the misspecifications are related to the covariates, the
right ones or the surrogate ones, then we might expect systematic inconsistency.

The simulation results implied that defining the “correctness” of sampling weights was nec-
essary. Analysis with modified weights may lead to biases, especially when the outcome model
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Table 6: Empirical average of (bias/RMSE)2 for N = 10, 000, n = 100 under mild-level mis-
specifications related to X∗

Finite Population HT ZL1 ZL2 B PS GREG

1 0.28 0.28 0.76 0.12 0.07 0.04
2 0.27 0.27 0.65 0.38 0.02 0.01
3 0.29 0.37 0.31 0.20 0.59 0.26

is misspecified. Another important issue is that theoretical analysis is needed on the impact of
misspeficied weights in future studies.
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