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Abstract 
Surveys concerned with substance use or the etiology of medical conditions often want to 
have larger samples of persons who are in specific subpopulations, while maintaining the 
ability to monitor transitions from one subpopulation to another. We consider optimal 
survey design using a two-phase sample, in which persons are selected for the first phase 
using a screening instrument that misclassifies some individuals, and the second-phase 
sample is selected using a more accurate classification instrument. We discuss software 
that can be used to solve the optimization problem with constraints, and illustrate with an 
example. 
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1. Introduction 
 
Studies of social and medical trends over time often entail obtaining a representative 
sample of persons in specific subpopulations. The National Longitudinal Study of 
Adolescent to Adult Health (Add Health), for example, follows a sample of adolescents 
over time in order to study social mechanisms associated with health and high-risk 
behaviors (Boonstra, 2001). This was a two-phase survey in which students from sampled 
schools answered a brief questionnaire in the first phase; in the second phase, after 
parental consent was obtained, more extensive interviews on a subsample were taken at 
the students’ homes on topics such as sexual activity and substance use. The original 
interviews were conducted during the 1994-1995 school year, and follow-up interviews 
were conducted in 1996, 2001-2001, and 2008-2009, with Wave V data collection 
planned for 2016-2018 (Harris, 2007; Harris et al., 2015; Carolina Population Center, 
2015). 
 
For some surveys it is desired to have larger samples of persons who are in specific 
domains of interest (subpopulations), while maintaining the ability to monitor transitions 
from one domain to another. In Add Health, while the core sample was essentially self-
weighting, supplemental samples were taken of students in specific domains based on 
race/ethnicity, multiple birth status, adoption status, disability, and parental education 
(Harris, 2007). The National Survey on Drug Use and Health (NSDUH; Morton et al., 
2013) used higher sampling rates for persons ages 12 to 25 and persons in smaller states. 
A longitudinal study in psychiatry may oversample persons who meet clinical standards 
for depression in the baseline interview. A survey intended to study diabetes risks and 
management may oversample persons with diagnosed diabetes, undiagnosed diabetes, 
and pre-diabetes. 
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In these studies, persons to have a higher probability of selection cannot be identified 
from the sampling frame, and an accurate classification may be expensive. To reduce 
costs, a two-phase sampling procedure may be used, in which an inexpensive screener 
instrument provides a preliminary classification and an instrument used in the second 
phase gives a more accurate classification. 
 
In a household survey, one household member might provide the initial classification for 
all adults in the household. The household respondent might not know the substance use 
of other household members. Often, an initial screener instrument is briefer than the 
follow-up instrument, so the household respondent might initially provide an incorrect 
classification for his or her own substance use—for example, a respondent might report 
that he does not use marijuana in the screener interview but the answers to more detailed 
questions might classify him as a marijuana user. Context effects associated with the 
setting of the first-phase screener might also lead to misclassification through reporting of 
responses that are considered to be more socially desirable. 
 
In a psychiatric study, a screener instrument may give an initial classification but an in-
depth interview or test may result in a different classification. Persons with undiagnosed 
diabetes or pre-diabetes are often unaware that they have the condition, so some 
individuals are misclassified if a questionnaire is used to screen participants. A follow-up, 
more accurate screening would use blood glucose or HbA1c to determine diabetes status. 
 
The focus in this paper is on surveys that have the following common features: 
 

• The population can be separated into mutually exclusive sampling strata whose 
union is the entire population. 

• Information on sampling stratum membership is not present on the sampling 
frame. 

• In some cases, there are no accurate estimates of the population percentage in 
each sampling stratum before the survey is fielded. 

• An initial screening instrument provides sampling stratum membership but 
misclassifies some individuals. This instrument is used to determine which 
persons are selected in the first-phase sample. 

• The persons selected in the first-phase sample are administered an instrument 
that provides a more accurate classification. The first- and second-phase 
classifications are used in the second phase of sampling to select persons for 
participation in the study. 

• Domains of interest are combinations of mutually exclusive sampling strata. 
• It is desired to achieve predetermined precision levels (and possibly minimum 

sample sizes) for specific domains of interest as well as for the population as a 
whole. This requires higher sampling fractions in some sampling strata. 

• Individuals may be followed over time and may transition to different domains in 
later interviews. If persons who are selected in the second phase of sampling at 
time 1 are periodically reinterviewed over time, it may be desired to achieve 
predetermined precision levels for individuals in specific domains later in the 
study. 

 
The disparate goals require compromises in the sample allocation. Proportional allocation 
would be most efficient for estimates pertaining to the whole population, but would not 
give the precision needed in small domains. On the other hand, disparate sampling 
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fractions lead to weight variation which increases the variance for estimates (Kish, 1992; 
Kalton et al., 2005). The misclassification may also lead to weight variation within the 
domains of interest: if persons who are unaware they have diabetes are sampled at a 
much lower rate in the first phase, even if they are sampled with certainty in the second 
phase they may still have much higher weights than persons who are accurately classified 
as having diabetes in the first phase. If design parameters such as the population 
percentages in each sampling stratum or the misclassification probabilities are unknown 
before the survey commences, then the procedure used to assign selection probabilities in 
the first phase and second phase must be flexible in order to allow the design goals to be 
met. 
 
In this paper, we describe nonlinear programming methods that may be used to optimize 
the first- and second-phase sample sizes in different sampling strata in order to meet 
multiple objectives and constraints. Section 2 describes constraints that may be used for 
longitudinal surveys with misclassification, and formalizes the goals as an optimization 
problem. It also describes steps taken to ensure that the design is flexible and can be 
modified to adapt to updated estimates of the misclassification probabilities and 
population sizes for the first-phase sampling strata. Section 3 describes software that may 
be used to optimize the survey design and presents an example for a hypothetical survey 
using Microsoft Excel® and SAS® software, and Section 4 discusses the results. 
 

2. Goals and Constraints for the Sampling Design 
 
2.1 Information Supplied by User 
The overall goal of any sampling design is to collect information on the population of 
interest as efficiently as possible. For the types of surveys considered in this paper, the 
user needs to provide the following information: 
 

• Mutually exclusive first-phase sampling strata that together comprise the entire 
population. In a survey on diabetes, these might be cross classifications of age 
(under 50, or 50+), race/ethnicity (Native American or Alaska Native, Hispanic, 
white non-Hispanic, African American non-Hispanic, other), and diabetes status 
(diagnosed diabetes, diagnosed pre-diabetes, undiagnosed diabetes, undiagnosed 
pre-diabetes, no diabetes). Individuals are assigned to these strata based on the 
classification from the first-phase screener instrument. 

• Mutually exclusive second-phase classifications, from the second-phase 
instrument that has more accurate information. For example, these might be 
cross-classifications of the same age, race/ethnicity, and diabetes status grouping 
used at the first phase, but are based on the information from the second-phase 
instrument. 

• Estimates of population sizes for the first-phase sampling strata and of the 
misclassification probabilities. Denote the estimated probability of 𝑃𝑃(second-
phase classification is 𝑘𝑘 | first-phase stratum is 𝑖𝑖) by 𝑝𝑝𝑖𝑖𝑖𝑖. 

• Anticipated response rates to the second phase for persons selected at the first 
phase. 

• Composition of the domains of interest, which can overlap, based on the second-
phase classification. In a survey on trajectories of diabetes, domains might 
include persons under age 50, persons ages 50 and over, African Americans, 
Hispanics, Native Americans or Alaska Natives, Hispanics under age 50, persons 
with diabetes, persons under age 50 with pre-diabetes, and the entire population. 
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We include the entire population as one of the domains to ensure that all 
population members are assigned a nonzero inclusion probability. 

• Desired minimum precision (and possibly minimum sample size) in each domain 
of interest. 

• An objective function to be minimized. This might be a weighted average of the 
estimated variances for the domains, or, if the variances are specified, a measure 
of total cost. In the example presented in this paper, we use a weighted average 
of standard errors for the domains. 

• Cost to obtain (1) first-phase screening information, (2) a second-phase screening 
interview/test to obtain correct classification, (3) an extended survey interview or 
medical examination information about the person selected at the second phase, 
and (4) follow-up interviews at later times. These costs should include the costs 
associated with nonresponse. 

• If desired, upper bounds on the coefficient of variation due to weights or on the 
ratio (maximum weight)/(minimum weight) within or across different second-
phase classifications. 

• (If a longitudinal study) estimates of transition probabilities among sampling 
strata over time, and desired minimum precisions for domains at later points in 
time. 

 
In addition, structural constraints need to be considered, such as specifying that all 
probabilities for sample inclusion are between 0 and 1. These constraints are defined 
mathematically in subsection 2.2. 
 
Many of the parameters specified for the design, such as the estimated population sizes 
for the first-phase sampling strata, the anticipated response rates, and the estimated 
misclassification probabilities, may be very rough estimates. As information accrues from 
early data collection in the survey, these estimates can be updated to inform later data 
collection. 
 
It is common practice in surveys to collect data in release groups. For a survey that is to 
be conducted over a one-year period, for example, 1/6 of the sample might be released 
every second month over the survey period. The optimization can be set up so that 
information about misclassification, response propensity, and first-phase stratum 
membership found from the early release groups can be used to refine the selection 
probabilities for later release groups. 
 
2.2 Nonlinear Constrained Optimization Problem 
The goals and constraints for the sample design can be formalized as an optimization 
problem that involves a nonlinear optimization function as well as nonlinear constraints. 
Let 𝐾𝐾 = the number of first-phase sampling strata comprising the population. With the 
more accurate classification using the second-phase instrument, a person in first-phase 
sampling stratum 𝑘𝑘 may be determined to actually have that classification, or he/she may 
be determined to belong to one of the other 𝐾𝐾 − 1  categories. Consequently, when 
selecting persons at the second phase for the extended interview, sampling rates need to 
be determined for each combination of first-phase preliminary classification and second-
phase actual classification, resulting in up to 𝐾𝐾2 possible second-phase sampling strata. 
The parameters to be optimized are the sample sizes 𝜽𝜽 = [𝐧𝐧′ 𝐦𝐦′]′ , where 𝐧𝐧 =
[𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝐾𝐾]′  is the 𝐾𝐾 -vector of first-phase sample sizes and 𝐦𝐦 = [𝑚𝑚11,𝑚𝑚12,𝑚𝑚1𝐾𝐾 ,
𝑚𝑚21, … ,𝑚𝑚𝐾𝐾𝐾𝐾]′  is the 𝐾𝐾2 -vector of second-phase sample sizes, with 𝑚𝑚𝑖𝑖𝑖𝑖  being the 
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second-phase sample size for persons in first-phase stratum 𝑖𝑖  with second-phase 
classification 𝑘𝑘 . The sample size 𝑚𝑚𝑖𝑖𝑖𝑖  depends on the estimated misclassification 
probabilities, with 𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑟𝑟1𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 , where 𝑟𝑟1𝑖𝑖 is the anticipated response rate to the 
second-phase instrument and 𝑎𝑎𝑖𝑖𝑖𝑖 is the subsampling rate in the second phase. With this 
formulation, the second-phase sample size of persons having second-phase classification 
𝑘𝑘 equals ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 . 
 
The 𝑄𝑄 domains of interest, indexed from 𝑞𝑞 = 1, … ,𝑄𝑄, are formed as combinations of the 
𝐾𝐾 mutually exclusive second-phase classifications that together form the population. It is 
assumed that everyone in the population is in at least one of the 𝑄𝑄 domains. This is 
typically achieved by having one of the domains consist of the entire population. 
 
We assume that a simple random subsample is taken of persons within the 𝐾𝐾 first-phase 
and 𝐾𝐾2  second-phase sampling strata. Variance inflation arises because of weight 
variation. The variance of an item with population proportion 𝑝𝑝 among persons with 
second-phase classification 𝑘𝑘 is 
 
 

𝑉𝑉(�̂�𝑝) =  
𝑝𝑝(1 − 𝑝𝑝)
∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

weff𝑖𝑖 (1) 

 
where weff𝑖𝑖 is the design effect due to weight variation in second-phase classification 𝑘𝑘: 
using the formula in Kish (1992), 
 
 

weff𝑖𝑖 =  
∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖2𝑖𝑖

(∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 )2 , (2) 

 
 𝑤𝑤𝑖𝑖𝑖𝑖 =

1
𝑃𝑃(select person in (𝑖𝑖𝑘𝑘) for sample) =

𝑒𝑒𝑖𝑖
𝑛𝑛𝑖𝑖
𝑛𝑛𝑖𝑖𝑟𝑟1𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 

𝑚𝑚𝑖𝑖𝑖𝑖
=
𝑒𝑒𝑖𝑖𝑟𝑟1𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖𝑖𝑖

, (3) 

 
𝑒𝑒𝑖𝑖  is the estimated number of screened persons in first-phase stratum 𝑖𝑖, and 𝑟𝑟1𝑖𝑖  is the 
anticipated second-phase response rate for persons sampled in first-phase stratum 𝑖𝑖. For 
some surveys, the extended interview may immediately follow the second-phase 
screening and it could be assumed that all persons selected will complete the interview. 
In other surveys, the extended interview or test may be separate or burdensome, and there 
may be additional nonresponse for persons selected at the second phase. If desired, 
equations (1), (2), and (3) may be modified to include a response rate 𝑟𝑟2𝑖𝑖𝑖𝑖 to account for 
the anticipated interview response rate for persons sampled in first-phase stratum 𝑖𝑖 with 
second-phase classification 𝑘𝑘. The domain formulas below would be modified similarly. 
 
For domain 𝑞𝑞, we have 
 

𝑉𝑉𝑞𝑞(�̂�𝑝) =  
𝑝𝑝(1 − 𝑝𝑝)

∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑞𝑞
weff𝑞𝑞 , 

 
where 
 

weff𝑞𝑞 =  
(∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑞𝑞 )(∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖2 )𝑖𝑖∈𝑞𝑞

�∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑞𝑞 𝑤𝑤𝑖𝑖𝑖𝑖�
2 . 
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The following constraints are used for the optimization. 
 

1. 1 ≤ 𝑛𝑛𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖. 
2. If 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 then 𝑚𝑚𝑖𝑖𝑖𝑖 = 0. 
3. For each value of 𝑘𝑘 for which 𝑝𝑝𝑖𝑖𝑖𝑖 > 0, 1 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖𝑟𝑟1𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖. 
4. ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀𝑖𝑖 . Each domain achieves a minimum sample size 𝑀𝑀𝑖𝑖  which is 

specified by the user. 
5. Total cost = 𝑐𝑐1 ∑ 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑐𝑐2 ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶 , where 𝐶𝐶  is the total budget for 

interviewing at time 1. 
6. Each domain estimate achieves a predetermined precision. This can be expressed 

in terms of the domain variance or domain standard error. In our example, we 
constrained 𝑆𝑆𝐸𝐸𝑞𝑞(�̂�𝑝) ≤ 𝑆𝑆𝑞𝑞 for 𝑞𝑞 = 1, … ,𝑄𝑄. 

7. In a longitudinal survey, some persons may change domain status over time. For 
example, some persons without diabetes may transition to pre-diabetes status. 
Consequently, the set of persons with pre-diabetes at time 2 will consist of 
persons having different second-phase classifications and sampling weights at 
time 1. This leads to weight variation among the persons with pre-diabetes at 
time 2. If the estimated transition probabilities are known, these can be included 
so that precision bounds for domains at time 2 can be included in the constraints. 
An alternative is to put bounds on the maximum weight variation at time 1, and 
that is the approach adopted in the example in this paper. We specify that max 
𝑤𝑤𝑖𝑖𝑖𝑖 / min 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑠𝑠 for designated sets 𝑠𝑠. For example, 𝑠𝑠 may consist of persons 
having the same second-phase classification but different sampling weights due 
to different first-phase classifications. 

 
Constraints 1, 2, and 3 guarantee that selection probabilities are between 0 and 1, and that 
at least one observation is taken from each non-empty sampling stratum. Some of the 
constraints are “box” constraints and others are linear constraints, but some of the 
constraints (such as 6) are nonlinear functions of 𝜽𝜽 . This necessitates use of an 
optimization algorithm that allows nonlinear constraints to be used. 
 
Finally, an objective function to be minimized must be specified. The objective function 
will usually be related to the anticipated precision in the domains. In this paper, we use 
the objective function 

𝑓𝑓(𝐧𝐧,𝐦𝐦) =  �𝛼𝛼𝑞𝑞𝑆𝑆𝐸𝐸𝑞𝑞(�̂�𝑝)
𝑄𝑄

𝑞𝑞=1

, 

 
where the 𝛼𝛼𝑞𝑞, 𝑞𝑞 = 1, … ,𝑄𝑄 are user-specified constants specifying the relative importance 
of achieving the desired precision in domain 𝑞𝑞. A linear combination of variances for key 
quantities could also be used. 
 

3. Software for Optimization 
 
Many programs are available that can perform constrained nonlinear optimization, 
including implementations in R (R Core Team, 2016), Maple (Pintér et al., 2006), and 
MATLAB (Lopez, 2014). In this paper we concentrate on optimization using the OR 
procedure in SAS® software (SAS Institute Inc., 2015) and the Solver function in 
Microsoft® Excel® 2013. Each procedure has advantages and disadvantages. For 
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nonlinear optimization, both programs use a Newton-type method based on reducing the 
gradient. 
 
Stokes and Plummer (2004) used Excel for sample design problems such as optimal 
allocation for stratification. Although Excel does not have the programming flexibility of 
some of the other languages, it has the advantage of displaying all of the features of the 
design so that the survey designer can immediately see what happens when constraints 
are tweaked. If the desired precisions cannot be met with the available budget, it is easy 
to change the constraints in the spreadsheet until all constraints can be met. 
 
The generalized reduced gradient (GRG) nonlinear method in Excel must be used to 
optimize the nonlinear objective function. Because of the implementation in a 
spreadsheet, Solver computes all derivatives numerically and does not allow use of 
analytical derivatives; the user can specify in the options for the GRG nonlinear method 
whether forward or central differencing is to be used. Fylstra et al. (1998) described the 
algorithms used in Excel Solver. 
 
Some users have reported that Excel Solver does not necessarily converge to a global 
optimum. McCullough and Heiser (2008) found that “Excel Solver has a marked 
tendency to stop at a point that is not a solution and declare that it has found a solution.” 
They reported that Solver in Excel 2007 found the correct solution in 16 of 27 nonlinear 
regression problems tested. For some of the other problems, Solver reported that a 
solution had been found when in fact the gradient was nonzero. Almiron et al. (2010) 
found similar results for the same set of problems, with 16 problems having a correct 
solution with poor starting values, and 18 achieving the correct solution with better 
starting values. Mélard (2014) discussed issues of numerical accuracy with Excel 2010 
Solver, and also interpreted the convergence statements and error messages provided by 
Solver. 
 
For Excel, the Solver method must be set to “GRG Nonlinear” because this is a nonlinear 
optimization problem. McCullough and Wilson (1999) recommended the use of the 
automatic scaling option, which attempts to scale the constraints and objective function 
so that quantities are within limited orders of magnitude of each other, and we 
implemented that in all tests of the optimization. They also recommended using a 
convergence tolerance of 10E-7 rather than the default 10E-4. The user can also specify a 
maximum time limit and maximum number of iterations. 
 
If the algorithm has found a locally optimal solution, the following message will be 
displayed: “Solver found a solution. All Constraints and optimality conditions are 
satisfied.” The online help (http://www.solver.com/excel-solver-solver-found-solution-
all-constraints-and-optimality-conditions-are-satisfied-0) says this means that Solver has 
“found a locally optimal solution: There is no other set of values for the decision 
variables close to the current values and satisfying the constraints that yields a better 
value for the objective. In general, there may be other sets of values for the variables, far 
away from the current values, which yield better values for the objective and still satisfy 
the constraints.” Other possible messages are described at http://www.solver.com/excel-
solver-solver-result-messages, and include “Solver could not find a feasible solution,” 
which is interpreted as (http://www.solver.com/excel-solver-solver-could-not-find-
feasible-solution-5) “this method (which always starts from the initial values of the 
variables) was unable to find a feasible solution; but there could be a feasible solution far 
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away from these initial values, which Solver might find if you run it with different initial 
values for the variables.” 
 
In SAS, the OPTMODEL procedure performs optimization for linear, quadratic, and 
general nonlinear programming problems. Because of the nonlinearity of the objective 
and constraint functions, the NLP (nonlinear programming) solver must be used. NLP 
employs an interior point algorithm (Forsgren et al., 2002; Akrotirianakis and Rustem, 
2005) to optimize the objective function. If the initial values are on the boundary of the 
constraints, the algorithm moves them to interior points. The interior point algorithm 
allows some of the constraints to be violated in intermediate iterations of the algorithm. 
Equality constraints are incorporated as a scaled quadratic loss penalty in the objective 
function, where the scaling factor approaches infinity as the iterations progress. 
 
For most objective functions and nonlinear constraints that make use of SAS library 
functions, SAS calculates analytic derivatives. For user-defined functions, SAS uses 
numerical differentiation with an option in the PROC OPTMODEL statement to use 
either forward or central differencing. The NLP solver rescales the objective and 
constraint functions dynamically, as needed. 
 
Although SAS does not provide the same level of visibility of the results as Excel, it has 
several advantages for use. The constraints and starting values can be entered as data sets 
which makes it easy to try different values or to keep a record of the output for different 
input parameters. Similarly, the solutions can be output to other SAS data sets. The array 
notation in PROC OPTMODEL allows the same macro to be used for multiple 
optimizations with different values for 𝐾𝐾 and 𝑄𝑄; in Excel, changing the number of strata 
or domains requires the spreadsheet to be changed and all formulas rechecked. The 
iteration log for the SAS NLP solver provides information on constraints that are as yet 
unmet and the optimality error, and various diagnostics are provided when the algorithm 
fails to converge. 
 
Both Excel and SAS allow for multiple starting values to be used. Using multiple starts 
provides some protection against getting trapped in a local minimum for the function. 
 

4. Example 
 
In this section, we describe a hypothetical survey and include screenshots that illustrate 
using Excel Solver (in Excel 2010) or PROC OPTMODEL (in SAS version 9.4) to 
optimize the survey design. An advantage of the Excel approach is that cells can be color 
coded to distinguish different components of the optimization problem. Here we use 
yellow to denote the inputs (e.g., misclassification probabilities, population sizes for the 
first-phase sampling strata, response rates, and costs), orange to denote the constraint 
bounds, green to denote the values that can be changed in searching for the solution (i.e., 
first- and second-phase sample sizes), and black to denote the objective function. Also, 
cell entries can be created to highlight whether or not individual constraints have been 
met using conditional formatting. 
 
The survey involves a first-phase screener where one household member provides 
information about all other members of the household. This information is used to 
classify individuals into one of four first-phase sampling strata (𝐾𝐾 = 4), and an initial 
sample of persons is selected. The second-phase instrument is completed by the selected 
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persons themselves and these responses determine who is retained in the final sample. 
The survey consists of a baseline interview (and assumed follow-up interviews at later 
points in time). 
 
4.1 Optimization using Excel Solver 
The design challenge is to determine the optimal first- and second-phase sample sizes for 
the start of data collection. In this example, the optimal number of first-phase screeners is 
also determined at the household level. Figure 1 shows the initial assumptions about the 
input misclassification probabilities and population distribution across the first-phase 
sampling strata. In this example, the top row of the misclassification table implies that 
80% of the household members classified in first-phase sampling stratum “1” will be 
classified as “1” at the second phase, while 10% will be classified as “2,” and 5% each 
will be classified as “3” and “4.” Note that some of the anticipated misclassification 
probabilities (𝑝𝑝31,𝑝𝑝32,𝑝𝑝41) are 0, and, for these, the corresponding second-phase sample 
sizes (𝑚𝑚31,𝑚𝑚32,𝑚𝑚41) are set equal to 0. The numbers on the right in Figure 1 provide the 
expected number of household members classified into each first-phase sampling stratum 
for every household with first-phase screening information. 
 

 
 
Figure 1: Misclassification probabilities and population distribution across first-phase 
sampling strata per completed first-phase screener. 
 
Other cells in the Excel spreadsheet capture inputs such as the costs for the different data 
collection phases and constraints in terms of the overall budget, minimum final sample 
size, and maximum ratio of sampling weights across the 13 non-empty second-phase 
sampling strata. In this example, the total budget is $1,700,000, and the costs per 
completed first-phase screener, second-phase instrument, and baseline interview 
(including potential follow-up at later times) are $100, $400, and $600, respectively. The 
first-phase screener cost is at the household level, while the other costs are at the person 
level. The total final sample size must be at least 1,000 and the ratio of the maximum to 
minimum (nonzero) sampling weights across both phases can be at most five. 
 
The goal of the Excel Solver computations is to find values for the number of first-phase 
screeners and for the first-phase and second-phase sample size vectors (n, m) that 
minimize the objective function and satisfy the design constraints. The inputs and results 
of this process are displayed in Figures 2 through 4. The green cells in Figure 2 show 
Solver’s optimal solution for how many first-phase screeners need to be completed 
(2,038) and how many household members to select at the first phase from each sampling 
stratum (2,020 in total). The cells on the right check that the sampling probabilities do not 
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exceed 1. At the bottom of the figure, is another input—the assumed response rate to the 
second-phase screener which is 75% for persons selected at the first phase, regardless of 
sampling stratum. 
 

 
 
Figure 2: Optimal first-phase sample sizes and assumed response rate to the second-
phase instrument. 
 
In this example, the optimal design selects all household members classified in sampling 
strata “1” and “2” at the first phase, and subsamples persons from the other two strata. 
 
Figure 3 shows the results for the optimal number of persons to select based on the results 
of the second-phase instrument; or, more precisely, based on the combined results of the 
classifications at the first and second phases. The third column contains the 
misclassification probabilities (from Figure 1) presented in a list rather than table format. 
The “Base weight” column can be used to reflect survey weights up to the first-phase 
screener stage, but have been set equal to 1 here. The three columns to the right 
respectively reflect the sampling weights due to selection at the first phase, second phase, 
and both phases combined. The last column therefore captures the effects of 
misclassification at the first-phase screener. Not shown are cells indicating whether the 
second-phase sampling probabilities, overall cost, and maximum weight ratio constraints 
are met.) 
 
The optimal design selects all of the second-phase respondents for the final sample from 
many, but not all, of the 16 second-phase sampling strata. The final column in Figure 3 
shows the variation in sampling weights for persons with a given second-phase 
classification, depending on their first-phase sampling stratum. 
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Figure 3: Optimal second-phase sample sizes. 
 
Figure 4 illustrates the domains of interest (𝑄𝑄 = 7 ) and, in orange, their required 
minimum standard errors and sample sizes. In this example, each of the four second-
phase classifications is a domain, along with classifications “1” and “2” combined, 
classifications “3” and “4” combined, and the entire population. The standard errors are 
for a population proportion of 0.5. The inputs in yellow specify the relative importance of 
the different domain precisions and assumed contributions to the weighting design effects 
from clustering of the household survey. The effective sample size column “neff” 
incorporates the cluster effects and the weighting effects (assuming the optimal sampling 
rates are used). The minimized objective function is the importance-weighted sum of 
standard errors for the domains of interest. 
 

 
 
Figure 4: Precisions and sample sizes (required and estimated under optimal allocation), 
and objective function. 
 
Finally, Figure 5 shows the Solver dialog window. The cell containing the objective 
function is referenced in the top box (along with an indication that the value is to be 
minimized). The green cells whose values are to be determined are entered into the next 
box. The orange constraints are entered into the large box; not all are visible in the 
screenshot. The GRG algorithm is selected due to the nonlinear nature of the optimization 
problem. 
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Figure 5: Example of Solver dialog window. 
 
4.2 Optimization using SAS PROC OPTMODEL 
Using SAS, the dimension of the design problem, along with several of the input 
parameters, can be declared using macro variables. As mentioned in Section 3, a 
significant advantage of this approach over Excel is the ease with which the optimization 
can be rescaled if, for example, the number of first-phase sampling strata needs to be 
increased. In Excel, this would require restructuring the spreadsheet’s rows/columns and 
editing cell formulas, including those in the Solver specification. In SAS, the number of 
mutually exclusive first-phase sampling strata and the number of domains are macro 
arguments that can easily be changed. These parameters define the array sizes for the 
first- and second-phase sample sizes and misclassification probabilities. Using the current 
example, other inputs such as the costs, budget, assumed response rate the second-phase 
instrument, and maximum weight ratio can be similarly declared (or set using global 
parameters). 
 
Other input values such as the misclassification probabilities, number of persons expected 
in each first-phase sampling stratum, mapping of sampling strata to domains, minimum 
desired domain precisions, and minimum desired domain sample sizes are entered using 
DATA steps. The READ statement can be used to load these data sets into the 
OPTMODEL procedure. 
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The sample sizes to be optimized are declared using VAR statements where starting 
values can be specified. Implicit variables such as the sampling weights 𝑤𝑤𝑖𝑖𝑖𝑖, weighting 
effects weff𝑞𝑞, and standard errors 𝑆𝑆𝐸𝐸𝑞𝑞(�̂�𝑝) are defined using IMPVAR statements, and the 
cost, precision, sample size, and weight ratio constraints are entered using 
CONSTRAINT statements. Finally, the MINIMIZE statement is used to request that the 
objective function 𝑓𝑓  be minimized, and SOLVE WITH NLP tells SAS which 
optimization solver to use. 
 
Figures 6 and 7 show relevant parts of the SAS listing when PROC OPTMODEL was 
used on the example given in this section. The results are similar, though not identical, to 
those obtained using Excel Solver. 
 

 
 
Figure 6: Details of the optimization process from SAS PROC OPTMODEL. 
 

 
 
Figure 7: Optimized sample sizes using SAS PROC OPTMODEL. 
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5. Discussion 
 
There are many issues to consider when designing longitudinal studies subject to 
misclassification. Misclassification rates affect the final yield in domains of interest and 
potentially lead to weight variation. The possible transition of study members between 
domains of interest at different times also leads to a desire to control weight variation at 
time 1. Both SAS PROC OPTMODEL and Excel Solver proved to be useful tools for 
addressing the sample design as an optimization problem. Each program has advantages 
that might make it more suitable for a particular survey design. PROC OPTMODEL is 
more flexible and is easier to use when the number of sampling strata or the number of 
domains may change during the survey development. The SAS program log and listing 
files provide valuable information on the iteration history and diagnostics for the 
optimization process. In practice, PROC OPTMODEL converged to a solution more 
often than Excel Solver when given “poor” starting values, and having two different 
approaches was helpful in this regard. However, being able to visualize the design 
assumptions, inputs, constraints, and solution in Excel Solver aids in understanding how 
all the design features come together, and does not require a programming background in 
SAS. 
 
Many surveys are exploring the use of responsive designs in which results from the early 
release groups are used to modify the design for the later release groups. This is often 
done in order to improve survey cost efficiency and reduce bias (Groves and Heeringa, 
2006). Similarly, the programs used in this paper can be re-run with updated estimates for 
inputs such as the misclassification probabilities and response rates based on survey 
information that has accrued. The sample design is adapted in an effort to meet desired 
precision objectives for persons in domains of interest and other survey goals. 
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