
Calibration Weighting for Nonresponse with Proxy  
Frame Variables (So that Unit Nonresponse Can  

Be Missing Not at Random) 
 

Phillip S. Kott 
RTI International, 6110 Executive Blvd., Rockville, MD 20852 

 

Abstract 
When adjusting for unit nonresponse in a survey, it is common to assume that the 
response/nonresponse mechanism is a function of variables known either for the entire 
sample before unit response or at the aggregate level for the frame or population.  Often, 
however, some of the variables governing the response/nonresponse mechanism can only 
be proxied by variables on the frame while they are measured (more) accurately on the 
survey itself.  For example, an address-based sampling frame may contain area-level 
estimates for the median annual income and the fraction home ownership in a Census block 
group, while a household’s income category and ownership status are reported on the 
survey itself for the housing units responding to the survey.  A relatively new calibration-
weighting technique employed by the WTADJX procedure in SUDAAN® 11 allows a 
statistician to calibrate the sample using proxy variables while assuming the response/ 
nonresponse mechanism is a function of the analogous survey variables. We will demon-
strate how this works with data from the Residential Energy Consumption Survey National 
Pilot, a nationally representative web-and-mail survey of U.S. households sponsored by 
the U.S. Energy Information Administration.   
 
Key Words:  Model variable, Weight-adjustment function, Selection bias.   
 

1. Introduction 

 
Calibration weighting is a useful tool for treating unit nonresponse in a survey.  It can 
implicitly estimate the probability of response given a known form the response model.  
Moreover, the resulting weights tend to more efficient than the weights produced using 
maximum-likelihood methods to estimate the response model (Kim and Riddles 2012).     
 
Deville (2000) has shown how calibration weighting can be used to treat unit (element-
level) nonresponse that can be either missing at random (MAR) or missing not at random 
(MNAR).  The former means that nonresponse is a function entirely of variables with either 
known population totals of known values for the entire sample, while the latter allows 
nonresponse to be at least partially a function of variables known only for responding 
sampled elements.  Unfortunately, there is no statistical way to determine whether or not 
nonrespondents are missing at random (Molenberghs et al. 2008).   As a result many have 
argued that techniques like Deville’s are best suited for sensitivity analyses.  See, for 
example, National Research Council (2010). 
 
There are some situations, however, where unit nonresponse can logically be inferred to be 
not missing at random.  In a survey of housing units (HUs), for example, unit nonresponse 
may be a function of whether or not the HU is owned by the household residing in it and 
by the income of that household.  This information can be collected on the survey itself 
(assuming no item nonresponse), but can only be proxied for the sample as a whole.  Such 
proxies are useful because Deville’s method requires that there be variables on which to 
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calibrate the respondent sample so that the weighted sum of those variables among 
respondents equal a known population total or a weighted total computed from the full 
sample (including nonrespondents).  A potential source for proxy variables in the US is the 
American Community Survey, which makes available estimates at the Census-block-group 
level of the average median annual income and the fraction of owned HUs.    
 
This paper looks at data from the 2015 national pilot of the Residential Energy 
Consumption Survey (RECS) which was conducted my mail and web.  It compares results 
of calibration weighting assuming nonresponse is missing at random using some proxy 
variables available on the frame among its arguments with results of calibration weighting 
where survey variables replace the proxy variables.  
 
Section 2 will review the underlying theory of calibration weighting assuming (for 
simplicity) a logistic response function.  Section 3 will describe the RECS National Pilot 
and how it is being weighted for nonresponse assuming that unit respondents are missing 
at random.  Section 4 compare some estimates and their estimated standard errors using 
the National-Pilot method and then alternative methods that assume nonresponse is not 
missing at random.  Section 5 offers some concluding remarks. 
 

2.   An Overview of Calibration Weighting Assuming a Logistic Response 

Function  

 
To simplify matters, let us assume that there is only one type of unit nonresponse, and it 
takes place at the element level, denoted by the subscript k.  Moreover, there is no coverage 
problems with the sampling frame nor is their any item nonresponse among element 
respondents.  
 
Suppose the unit (element) response mechanism can be represented by an independent 
logistic function that depends on a vector of values for each element.  Letting  k be the 
probability that element k responds, and xk the vector of  (response) model variables 
governing that probability, which includes unity or the equivalent (i.e., a linear 
combination of the components of  xk is 1), we have  
                                     
                                    k = (xk

T) = 1/[1 + exp(xk
T)],                                                     (1) 

 
for some unknown vector . 
 
 Calibration weighting begins with the calibration equation:  
 
                                         R dk [1 + exp(xk

Tg)] zk = Tz                                                                                                        (2) 
 
where  R denotes the respondent sample, dk the design (initial sampling) weight of element 
k,  zk a vector of calibration variables, each having either a known population total or a 
total can be estimated from the full sample (including the unit nonrespondents), Tz the 
vector of (estimated) totals for the components of zk.  Finally, g  is a consistent estimator 
for  under mild conditions, determined by solving for it in calibration equation (2) using 
Newton’s method (repeated linearization).    
 
The calibration weight for element k resulting from the solution of equation (2) is  
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                                wk = dk(xk
Tg) = dk[1 + exp(xk

Tg)].                                                 
 
The expression (xk

Tg) is called the weight-adjustment function because it converts the 
design weight dk  into the nonresponse-adjusted or calibration weight wk.  The estimated 
total of a survey variable y using calibration weights is ty = R wkyk.    
 
In most applications, the components of calibration vector zk are assumed to coincide with 
the components of the model vector xk.  This means unit nonrespondents are assumed to 
be missing at random.  When that is the case, the calibration equation in (2) will almost 
always have a solution so long as unit nonresponse is truly a logistic function of the 
components of xk.  When the components of zk and xk do not coincide, the calibration 
equation may not have a solution, especially if a component of xk is linearly independent 
of all the components of zk. 
 
Chang and Kott (2008) generalized the notion of calibration weighting to allow more 
calibration variables than model variables, but Kott and Liao (2016) maintained that a 
prudent approach would be to include in zk all the components of xk for which population 
or full-sample estimates are known.  The rest they called shadow variables, which they 
suggested should be proxies for the model-only variables in xk that could not themselves 
be calibration variables in zk.  
 
In our RECS National Pilot example, some variables, such as whether or not an HU k is in 
an urban area, can be in both the model vector and the calibration vector, while other 
variables, such home ownership (yes or no), are model-only variables in xk.  At the same 
time, a reasonable proxies for each model-only variable, like the fraction of homes owned 
in its Census block group, can be a shadow variables in zk.  
 
When the calibration equation has a solution, it is not hard to show that an asymptotically 
unbiased estimator for the variance of g under mild conditions is  
 
                    Vg  = F var{R dk [1 + exp(xk

T)] zkTz} FT,                                                 (3) 
                                                                          
where F = [R dk exp(xk

Tg)] zkxk
T]-1 , and  var{qTz} is an estimator for variance-

covariance matrix for q as an estimator for Tz .  To compute it, one treats pk = 1/[1 + 
exp(xk

Tg)] as if it equaled k  in equation (1).  
 
An asymptotically unbiased estimator for the variance in  ty  = R wkyk is  
 
                                     vy =  v{S dk[zk

Tb + (xk
Tg)ek]}                                                   (4) 

 
where  ek = yk  zk

Tb, b = [R dj'(xj
Tg) xjzj

T]-1R dj'(xj
Tg) xjyj,  and (xk

Tg) = [1 + exp(xk
Tg)] 

when kR and 0 otherwise is treated as a constant within the probability-sampling variance 
estimator v{.}.  For the variance of my  = R wkyk / R wk , replace yk  by  (yk  my)/ R wj.  

The reader is directed to Kott (2014) for the proofs and further details.   
 
It is easy to see that due to calibration  R wkyk  S dkyk = R wkek .  We thus have this 
estimate for the increase in variance due to nonresponse:  
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              var{R dk [1 + exp(xk
T)] ykS dkyk } = R dk

2(1/pk
2)(1 pk)ek

2                                   (5) 
                                                                                                                        = R dk

2 [1 + exp(xk
Tg)] exp(xk

Tg)ek
2,             

 
The estimate assumes the probabilities of element response are independent of each other.  
Again, the reader can consult Kott (2014) for proofs and details.  
 

3. The RECS National Pilot 

 
The RECS National Pilot was an attempt to convert what historically has been an in-person 
interview survey into one conducted by web and mail.  More information on it can be found 
elsewhere (Berry and O’Brien 2016).  For our purposes, the RECS National Pilot (hereafter 
the “National Pilot”) used four randomly-assigned protocols and two randomly-assigned 
incentive levels in data collection from a stratified, two-stage sample drawn using an 
address-based sampling frame with mail invitation and up to six mailings.   
 
The protocols were, 1, web only, 2, choice of web or mail, 3, choice of web or mail but 
with an added $10 incentive to respond via web, and, 4, web in the first mailing followed 
by a choice in subsequent mailings.  The two incentive levels both provided the sampled 
HU $5 initially.  One provided an extra $10 upon completion while the other provided an 
extra $20.  There was a shortened mail follow-up survey (NRFU) for nonrespondents, but 
that does not concern us here   except in a design-weight adjustment to be described 
shortly  nor does the poststratification designed to capture HUs not on the address-based 
sampling frame.   
 
Two issues with the enumerations of the National Pilot do have an impact on our analysis.  
Not all HUs in the sampling frame were occupied, and some were occupied but not primary 
residents.  Only data from primary residents were to be used in making National-Pilot 
estimates.    
 
A latent-variable model (Biemer et al. 2016) has been used to estimate the probability that 
a sampled HU was occupied based on frame characteristics, the disposition of the first three 
mailings, and whether they responded to the survey. Those estimates have been 
incorporated into the design weights (the dk in equation (2)).  Also incorporated into the 
design weights are the inverse of an estimated probability of a non-vacant HU being a 
primary residence.  All responding primary residences had an estimated probability of 1, 
and all HU determined not to be primary residences a probability of 0. The rest have been 
assigned a probability of being a primary residence based on a logistic regression 
conducted among partially or fully responding HUs to either the National Pilot or its NRFU 
survey for which primary residence status could be determined.  
 
Turning to nonresponse adjustment, after investigating a longer list of candidate variables, 
the logistic model used to fit a response model in the National Pilot contains indicators for 
17 geographic area (groups of states),  indicators for the 4 protocols, indicators for the 2 
incentive levels, an urbanicity indicator,  an indicator of whether the HU is a single-family 
dwelling units from the frame, the fraction of HUs owned in the Census block group (CBG) 
containing the HU, and the fraction of HUs in its CBG with annual incomes less than 
$60,000.   The latter two are estimated from the 2010 American Community Survey.  
 
The WTADJUST procedure in SUDAAN®  (Research Triangle Institute 2012) has been 
used to compute the calibration weights for the National Pilot.  The procedure removes the 
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extraneous calibration variables that would cause a singularity in matrix inversion (e.g., 
because the four protocol levels and two incentive levels cannot all define non-singular 
calibration variables).    
 
WTADJUST has also been used to choose the variables for the National Pilot’s missing-
at-random logistic response model, which assumed the components of xk in equations (1) 
and (2) were the same as those in zk.  WTADJUST fits a logistic model very much like 
SUDAAN’s pseudo-maximum-likelihood LOGISTIC (RLOGIST) procedure but with a 
different estimating equation (WTADJUST uses equation (2) to solve for g rather than      
R dkzk = S {dk /[1 + exp( zk

Tg)]}zk).  The output for the estimates of the components of 
g looks the same except that the estimates themselves differ. In fact, their signs will usually 
be reversed (because  pk  = 1/[1 + exp(zk

Tg)] using WTADJUST and 1/[1 + exp( zk
Tg)]  

using LOGISTIC).  The logistic functional form is, in fact, only a special case of the 
weight-adjustment functions fit by WTADJUST, but we restrict our attention to that form 
here until the concluding section.  
 

4. Converting Proxy Variables into Model-Only Variables 

 
The response model fit for the National Pilot contains three model variables that logic 
suggests would be better replaced by survey variables:  the frame indicator for a single-
family dwelling unit, the CBG fraction of owned HUs, and the CBG fraction of HUs with 
annual income less than $60,000.   
 
Using the model variables described in the previous section as the calibration variables in 
fitting a missing-at-random (MAR) logistic response model,  Table 1 shows the adjusted F 
values and their associated  p-values produced by the WTADJUST (which uses equation 
(3) to estimate variances by setting DESIGN = WR ADJUST = NONRESPONSE and 
NEST _ONE_).   All the model variables are significant at the .15 level and have an F 
value greater than 2.5.   
 

Table 1. MAR: Model Variable and Calibration Variables are the Same 

                                                      Adjusted       
Variable                                             Wald F           p-value 

GEOGRAPHICAL AREA                    4.63           0.0000 
INCENTIVE                        17.63           0.0000 
PROTOCOL                             8.76          0.0000 
URBANICITY INDICATOR                3.19           0.0741 

  CENSUS BLOCK GROUP  
                            INCOME  60K?               8.44           0.0037 
FRACTION OWNED IN CBG              2.52           0.1128 
SINGLE-FAMILY UNITFRAME       6.95          0.0000 

 
Table 2 show what happens when the three survey variables discussed above replace their 
proxy frame values as model variables but not calibration variables.  This is NMAR1 fit 
using WTADJX. Only annual income less that $60,000 remains significant at the .15 level, 
while the F values of the other two fall below 1.  This partly due to their collinearity.  Table 
3, NMAR2, removes whether the HU is a single-family dwelling unit from the model.  All 
the remaining variable are significant at the .1 level.  It should be noted that estimation 
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treats mobile homes and attached single-family units as single-family dwelling units. 
Removing one of both does not meaningfully change the results however.   
 

Table 2. MNAR1: Model Variables Analogous to MAR Model Variables  

                                                                    Adjusted       
  Variable                                                     Wald F              p-value 

GEOGRAPHICAL AREA                         4.51            0.0000 
INCENTIVE                         14.43            0.0001 
PROTOCOL                             7.37            0.0001 
URBANICITY INDICATOR                     2.71            0.0996 
INCOME  60K?                        3.30            0.0695 
HOUSING UNIT OWNED                       0.28            0.5938 
SINGLE-FAMILY UNITSURVEY            0.00            0.9548 

 

Table 3. MNAR2: MNAR1 with One Insignificant Model Variable Removed 

                                                                      Adjusted       
 Variable                                                       Wald F                   p-value 

GEOGRAPHICAL AREA               4.53    0.0000 
INCENTIVE                                14.89    0.0001 
PROTOCOL                                   7.98       0.0000 
URBANICITY INDICATOR                    2.89       0.0894 
INCOME  60K?                          5.60       0.0179 
HOUSING UNIT OWNED            4.73    0.0297 

 
A fourth fit, NMAR3, is very similar to the previous one and not shown.  It replaces the 
two shadow calibration variables in NMAR2, the CBG fraction of owned HUs and the 
CBG fraction of HUs with incomes less than $60,000, with ordinary-least-squares (OLS) 
predictions of the probability of HU ownership and the probability of having an income 
less than $60,000, as suggested in Kott and Liao (2016).  The regressors in those OLS 
predictions are the two CBG fractions and the frame indicator of the HU being a single-
family dwelling unit.    
 
Tables 4 and 5 displays some estimated means and standard errors computed (using 
SUDAAN with NEST _ONE replaced by NEST STRATUM PSU) first assuming 
missingness is completely at random (MCAR; i.e., unit response does not depend on any 
frame or survey variables), then missing at random as in Table 1, and after that missing not 
at random under the MNAR assumption and using the MNAR methods described above.  
All five methods treat the original sample as a stratified two-stage sample, with the original 
design’s 19 strata collapsed into 17 variance strata to avoid variance strata containing only 
a single primary sampling unit (Census PUMAs).  The adjustments for the vacancies and 
non-primary residences are treated as part of the design weights.  Although this is a 
simplification, it is the same simplification for all nonresponse-adjustment methods.    
 
The results suggest that in all cases, using the MAR method of nonresponse adjustment 
often corrects for part, but not all, of the bias that failing to make any adjustment due to the 
characteristics of the nonrespondents, who tend to have less income and are less likely to 
own their own homes.  The bias is worse for the two model variables: fraction of owned 
housing units and the fraction with annual incomes less than $60,000.    
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Table 4. Estimated Means for Alternative Nonresponse Adjustment Methods 
 
 
Variable 

 
MCAR 
Model 

 
MAR 
Model 

MNAR Models 
Full Dropped 

SFDU 
OLS 

Version 
Bedrooms 2.9096 2.8412 2.8078 2.8084 2.8079 
Fraction of HUs   
with a Dryer 0.8569 0.8344 0.8262 0.8263 0.8261 

Fraction of HUs   
with Central Air 0.6871 0.6750 0.6654 0.6652 0.6651 

Fraction of SFDUs 0.8169 0.7830 0.7778 0.7785 0.7782 

Fraction of HUs 
Owned 0.7134 0.6803 0.6468 0.6451 0.6445 

Fraction of HUs with 
Income < 60K 0.5356 0.5516 0.6181 0.6176 0.6173 

HU – Housing Unit; SFDU – Single-Family Dwelling Unit 
 
Table 5. Estimated Standard Errors for Alternative Nonresponse Adjustment Methods 

 
 
Variable 

 
MCAR 
Model 

 
MAR 
Model 

MNAR Models 
Full Dropped 

SFDU 
OLS 

Version 
Bedrooms 0.0331 0.0346 0.0344 0.0358 0.0345 

Fraction of HUs   
with a Dryer 0.0094 0.0107 0.0113 0.0117 0.0113 

Fraction of HUs   
with a Central Air 0.0136 0.0131 0.0137 0.0134 0.0135 

Fraction of HUs   
with a SFDU 0.0113 0.0130 0.0148 0.0147 0.0134 

Fraction of HUs 
Owned 0.0107 0.0114 0.0419 0.0190 0.0162 

Fraction of HUs   
with Income < 60K 0.0148 0.0144 0.0302 0.0274 0.0270 

HU – Housing Unit; SFDU – Single-Family Dwelling Unit 
 
The mean estimates from using the three MNAR methods are very similar.  The standard 
errors tend to decrease as one goes from using all three model variables through dropping 
single-family dwelling units from the model and the calibration variables and finally to 
using the frame values for single-family dwelling units to create proxy calibration variables 
for the two remaining model-only variables.  In most cases, however, even the final NMAR 
method produced larger estimated standard errors than the MAR and no-model methods.  
Those standard errors, despite evidence and logic to the contrary, assume that the MAR 
model and MCAR models, respectively are correct.  

 

5. Concluding Remarks 

 
In the RECS example, element response was at first modeled as a function of variables 
with known values for the entire sample, where some were of those obvious proxies for 
variables with known values only for respondents.  When those  proxies were replaced by 
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their model-only analogues in a calibration-weighting equation, one was found no longer 
to be a contributor of response.  Still, following Kott and Liao (2016), this variables was 
shown to have value in creating shadow variables for model-only values using  OLS.    As  
Kott and Liao demonstrated, the resulting calibration-weighted estimator retains its near 
quasi-probability-sampling unbiasedness despite the somewhat ad-hoc use of OLS.   
 
It is a simple matter to extend the methodology used in the text to other element response 
functions.  In SUDAAN, the weight adjustment function in equation (2) can be replaced 
by: 
                              (xk

Tg)  = [L + exp(xk
Tg)]/[ 1 + U-1exp(xk

Tg)], 
 

the inverse of which is a truncated logistic response model where the probabilities of 
element response are bound between 1/U  0 and 1/L  1.   Other smooth monotonic 
functions can also be (.), but the user may have to do his/her programming for that.   
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