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Abstract 
As nonresponse continues to increase, weighting adjustments increasingly rely on 
implicit (or explicit) mathematical models for explaining nonresponse. Although it is 
crucial to understand this relationship and its impact on survey estimates, the literature 
that describes the different weighting adjustments is dispersed and sometimes 
contradictory. In this research, we explore a more unified approach for understanding 
these relationships. We begin by proposing an expression for nonresponse bias for 
estimates computed using weights that incorporate nonresponse adjustments. We explain 
why this revised expression may be preferred for examining adjusted survey statistics 
under the Total Survey Error conceptual framework. Starting with this expression, we 
determine the common characteristics and relationships among the different types of 
weighting adjustments. We argue that weighting for nonresponse should be seen as an 
estimation task, and once the statistical models have been identified, classical statistical 
tools such as goodness of fit and model diagnostics can be used to evaluate the quality of 
nonresponse adjusted weights. This approach may enable us to evaluate the effect of 
model misspecification from incorrect functional forms or omitted variables in the 
models on survey estimates. 
 
Key Words: Nonresponse, nonresponse weighting adjustment, Total Survey Error, 
response statistical model, model misspecification, weighting 
 

1. Bias in Unadjusted Estimates of Ratio Means 
 
We begin with the expression for the nonresponse bias in estimates of unadjusted ratio 
means in the presence of nonresponse under the stochastic model described by Oh & 
Scheuren (1983) and Lessler & Kalsbeek (1992). The expression of the relative bias of an 
unadjusted ratio mean is 
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where Y is the population mean of the variable of interest (i.e., { }1,.., Ny y  such as

/ii U
Y y N

∈
= ∑ ), yσ  is the population standard deviation of Y , iφ  is the propensity to 

respond for the i-th member in the frame (i.e., { }1,.., Nφ φ ), /ii N
Nφ φ

∈
= ∑  is the 

population mean of response propensities, φσ  is the population standard deviation of φ ; 

and yφρ  is the correlation between φ  and Y .  
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Equation (1) is based on a stochastic response model that assumes each element in the 
frame has a positive propensity to respond, i.e., 0iφ >  (Bethlehem, 1988). In other words, 
each person is potentially a respondent or nonrespondent and the decision to participate is 
the realization of a stochastic process. Under this view, response is a random variable 
with an assumed probability mass function. Although the specific outcome cannot be 
predicted with certainty, its behavior can be observed through repeated sampling. As any 
statistical model, the values of the parameters (in this case, the response propensities siφ ) 
are not known but can be estimated for the observed data. Bethlehem imposes the 
conditions in the model that 0iφ >  for all members in the frame; however, in practice, 
there will be a fraction of hard core nonrespondents who never answer the survey (Kott, 
1994).  
 
The expression (1) has been cited in numerous articles when describing the impact of 
nonresponse on the quality of survey estimates (see Brick, 2013; Groves, 2006; Brick & 
Montaquila, 2009; and Kreuter & Olson, 2011). Groves (2006) presents a simplified 
version of this formula in describing nonresponse bias in household surveys. This 
expression is also presented when reporting response rates in surveys (California Health 
Interview Survey, 2011). This expression is used for explaining the bias of estimates due 
to nonresponse, one of non-observational errors within the survey cycle within the Total 
Survey Error (TSE) framework (Groves, et al., 2009). 
 
The stochastic expression (1) is useful for understanding when nonresponse becomes an 
important source of bias in estimates of unadjusted means. Most of the literature focuses 
on the relationship between the magnitude of the bias and the correlation between the 
response propensity and the dependent variable. This relationship or association is 
represented by the correlation yφρ  between y , the variable of interest in the survey, and 

φ , the propensity to respond. The correlation yφρ  measures the extent to which the two 

variables fluctuate together. Larger absolute values of yφρ  result in larger bias in the 
unadjusted estimates of the mean of Y . In the extreme case, when the correlation of the 
response propensity and the variable of interest is zero ( 0yφρ = ), the unadjusted mean is 
unbiased. Although unlikely, it is possible to compute unbiased estimates of means 
without any nonresponse adjustment in this situation.  
 
There are other factors that affect the size of the bias, which are not generally cited in the 
literature but can be inferred from expression (1). For example, for a fixed correlation, 
the bias also depends on the coefficient of variation of the response propensities, or 

( )CV /φφ σ φ= . The bias can be large if the response propensities are highly variable 

even for small values of yφρ . This condition may occur in some adaptive designs where 
variability of the response propensities is sometimes induced on purpose by selecting 
specific subsets of nonrespondents to follow. 
 
One drawback of equation (1) is that it only describes the bias for unadjusted means and 
is not useful to examine the bias for other estimators such as totals. Totals and domain 
totals are also important statistics as many surveys are conducted to determine the sizes 
of special subpopulations or domains. The relative bias for unadjusted estimates totals is 
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Unlike equation (1), the expression of the relative bias for totals is exact. Unadjusted 
estimates of totals are always biased including the case when the unadjusted mean is 
unbiased. 
 
The simplicity of the stochastic model in equations (1) and (2) is a contributing factor to 
its extensive use for modeling response. Estimating the response propensities based on 
this model has motivated the development of numerous methods for adjusting sampling 
weights for nonresponse (Brick & Kalton, 1996; Da Silva & Opsomer, 2004; Little, 1986; 
Schouten & de Nooij, 2005; and Buskirk & Kolenikov, 2015). However, some basic 
assumptions behind the model may no longer hold in practice as new data collection 
modes and innovative sample designs are implemented. We describe the impact of some 
of these developments on the assumptions of the model and bias of unadjusted estimates.  
 
• The value of the response propensities depends on the data collection mode. For 

example, the propensity of a unit i to respond on a telephone survey is kφ′  while for a 
mail survey it is kφ′′ , and k kφ φ′ ′′≠ . In some multimode surveys, where different modes 
are used in different parts of the sample, respondents may have different propensities 
increasing the variability of φ  or ( )CV φ . This variability also increases when the 
same potential respondents are presented different modes in sequential data 
collection designs. On the other hand, the variability in the overall propensities can 
be reduced in some adaptive designs if high propensity modes are used in low 
propensity cases and low propensity modes with high propensity cases to reduce 
variability in the overall propensities (Schouten, Calinescu, & Luiten, 2013). 

 
• The value of the response propensities may change within the same mode during data 

collection. Survey practitioners have some influence on the response propensity 
values, by varying the contact procedures, offering incentives, or shortening the 
questionnaire. Although the influence on nonresponse in general is limited (for 
example, procedures such as incentives increase the likelihood to respond by some 
percentages points), these procedures may increase the variability to response 
propensities if they are only applied to parts of the sample. On the other hand, in 
some adaptive designs, incentives are only offered to low propensity cases in an 
effort to equalize the propensities reducing the variability. 

 
• The value of response propensities may change during data collection. In the 

stochastic model, response is the result of a trial or stochastic realization based on a 
model with a parameter, or propensity, iφ . However, in many surveys, a second 
contact attempts is made to elicit response (i.e., a second callback, subsequent mail-
out, etc.). Based on the model, the observed respondent is the result of a second 
stochastic trial. In this case, the overall response probability to respond in two 
attempts when the sampled case refuses at the first attempt is * (1 )i i i iφ φ φ φ= + −  
assuming that the response propensities remain unchanged after the first contact for 
all units in the population. In this case, the overall response rate is 1.0 if an infinite 
number of attempts are made. This is proven by noticing that the limit of the sum of 
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the sequence of the number of completes as the number of contact attempts increases 
is  
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This result provides a justification for making repeated attempts to increase both the 
response rate and the number of completed interviews. However, only a fixed 
number of contact attempts are made in practice. The main reason is that the response 
propensities are likely to change or decay after each attempt, including taking values 
of 0 after a few attempts (i.e., some will never respond to the survey). In other words, 
the conditional response propensities are not constant across multiple contact 
attempts, a fact which is not reflected in the stochastic model. As an example of the 
former situation in an adaptive design where a subsample of nonrespondents is 
contacted for a second attempt, the propensity to respond is 

( )* (1 ) 2 1i i i i i iφ φ φ φ φ φ= + − = −  while the response propensity remains iφ  for the 
remainder of the sample. On the other hand, if the response propensity changes after 
the first attempt, then the response propensity after the second attempt is 

*
1 1 2(1 )i i i iφ φ φ φ= + −  where 1iφ  and 2iφ  are the response propensities in the first and 

second attempts respectively. In both situations, the data collection procedures and 
the sample design increase the variability of φ  and  

( )CV φ . If the variable of interest is correlated to those cases that received additional 
contact attempts, then the estimates may be biased if these cases are not weighted 
properly. 

 
Similar issues to those discussed above are raised by Brick (2013), who advocates the 
inclusion of the relevant data collection activities in the definition of propensities when 
the data are weighted. Unbiased estimates of the response propensities can be used to 
adjust the sample for nonresponse with this information. Despite these observations, the 
stochastic model is still valid but could be adapted to reflect the impact on the response 
propensities from the new contact protocols and innovative survey designs.  
 

2. Total Survey Error and Nonresponse Adjusted Estimators  
 
Within the Total Survey Error (TSE) context, where all sources of errors in the survey 
cycle and the effect of their accumulation on estimates are studied, a more suitable 
mathematical expression for the bias in estimates should include the effect of 
nonresponse adjustments made to the weights after the data have been collected. After 
all, most analyses are conducted using nonresponse-adjusted weights. This adjustment is 
made during weighting and is the last opportunity that survey statisticians have to 
implement procedures that mitigate the effect of both nonresponse error and other errors 
accumulated during the life cycle of the survey. Examining response rates or studying 
expressions of bias of unadjusted estimates such as those presented in the previous 
section only inform about the quality of the data originally collected. However, these 
expressions do not provide any insights about the quality of the adjusted estimates, 
adjustment factors, or what elements have a large influence on the bias and errors of 
adjusted estimates.  
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For example, it is possible for a survey to achieve a high overall response rate with a 
positive correlation between the response propensity and the variable of interest, but with 
very small achieved sample sizes in some domains due to low propensities in those 
domains. In this example, equations (1) and (2) do not reflect the very large adjustments 
needed to reduce the bias. 
 
Groves, et al. (2009) identifies the adjustment error or the error associated with the 
adjusted mean within the TSE framework. The adjustment error is the bias of the 
adjustment mean computed as 
 
 ( )rw rwB Yy y= − , (3) 
 

where rwy  is the adjusted sample mean computed as * *
i i irw i r i r

w y wy
∈ ∈

= ∑ ∑  and *
iw is 

the nonresponse-adjusted weight. Although TSE provides a name and an expression for 
the error for adjusted means, equation (4) is not informative because it does not give us 
any insights about the bias in adjusted estimates in the same way as equations (1) and (2) 
do for unadjusted estimates.  
 
The need for a more informative expression for studying the adjustment error is not new. 
Brick & Jones (2008) have proposed expressions of the bias for several estimators 
adjusted for nonresponse using poststratification. However, in this article we take a more 
general approach and examine the adjustment error for any type of adjustments. 
 

3. Need for a More Unified Approach to Nonresponse Adjustments 
 
One goal of this article is to explore a more unified framework for the study of 
nonresponse. Ideally, this framework could be used to explain the conditions where the 
different methods used for adjusting for nonresponse are successful at reducing bias. As 
mentioned before, many methods for adjusting for nonresponse have been proposed in 
the literature, and although these methods share the same objective of removing the bias 
in the estimates, there are important differences in the assumptions behind them. 
Furthermore, there is no clear consensus in the literature on how to choose the best 
method for a specific survey. 
 
Many researchers have empirically studied different nonresponse adjustment methods 
through simulation studies (Iachan, Lee, & Peters, 2014; Kreuter & Olson, 2011; Little & 
Vartivarian, 2003; Sukasih, Jang, Vartivarian, Cohen, & Zhang, 2009; and West, 2009). 
However, simulation studies of artificial populations are limited because their results 
depend on the simulated data, making it difficult to generalize their findings. Another 
type of empirical study used to evaluate nonresponse involves comparisons of estimates 
from the same survey produced by different nonresponse adjustment methods (Rizzo, 
Kalton, & Brick, 1996; and Yang & Wang, 2008). One disadvantage of this approach is 
that the theoretical value or “gold standard” is not known. As a result, these studies are 
limited to reporting statistics related to the differences of estimates produced by the 
different methods, which cannot be generalized to other surveys. 
 
Since most of the research on nonresponse adjustments has been focused on simulation 
studies or empirical comparisons, there are still several open questions and issues that 
could be better addressed with more appropriate statistical tools. We illustrate these 
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issues with two examples. First, some researchers advocate the use of unweighted 
response rates for adjusting for nonresponse using weighting classes (Little & 
Vartivarian, 2003). With the appropriate tools, we could determine the conditions when 
this approach is best. This justification would be based on examining the characteristics 
of an appropriate response model instead of generalizing results from limited simulations 
based on specific conditions. Furthermore, several articles compare weighting classes to 
methods that compute response propensities, either with or without sampling weights, 
without describing the rationale and assumed response model that justifies either type of 
analysis (Grau, Potter, Williams, & Diaz-Tena, 2003; Ekholm & Laaksonen, 1991; and 
Lohr, Hsu, & Montaquila, 2015). Either weighted or unweighted adjustments need to be 
justified by an appropriate theoretical framework.  
 
As a second example, some of the methods used for nonresponse adjustments such as 
weighting class nonresponse weighting seem to be ad hoc procedures. In most cases, the 
classes are formed by simply tabulating response rates for the available auxiliary 
variables (Valliant, Dever, & Kreuter, 2013). In this situation, there is no guarantee that 
the response propensities will be homogeneous within each weighting class as postulated 
by the response model unless the goodness of fit of the model is examined. In other 
words, there is need for diagnostic tools to determine whether the model holds. As shown 
by Flores Cervantes & Brick (2016), when the response model is misspecified, the 
weighting class adjustments produce biased estimates. Checking and evaluating models 
should be part of any statistical analysis, including those analyses based on survey data.  
 
There are other more sophisticated methods for adjusting for nonresponse currently being 
used in practice (e.g., stratification of propensity scores and classification algorithms); 
however, there are some basic issues, such as whether the assumptions behind these 
methods are appropriate that need to be justified within the survey sampling context 
(Brick & Montaquila, 2009). 
 
In summary, there is no methodology in the literature that justifies some of the current 
approaches or provides guidance on how they can be evaluated beyond empirical 
comparisons or simulation studies. However, the existence of numerous articles on 
evaluating and comparing nonresponse adjustments indicates that there is a strong need 
for a more formalized approach within the survey sampling context. 
 
The development of such framework is described in the following sections. Nevertheless, 
most of the discussion is heuristic and based on a close examination of a proposed 
expression for the bias in nonresponse adjusted estimates. These observations will be 
verified and formalized in future articles, including the practical applications of some of 
the presented ideas. 
 

4. Exploring a Parametric Approach to Nonresponse Adjustment 
 
We begin our discussion by differentiating two different types of random processes. The 
first type is the result of unit randomization according to a sample design. The random 
outcomes are the results of how a sample is selected under such design. This “physical” 
randomization or randomization based on permutations is the cornerstone of sampling 
theory (Cochran, 1977). The second type of random variable is the variation result of 
stochastic or probabilistic process. These random outcomes are assumed to have a known 
probability distribution or pattern that can be analyzed statistically. This is the foundation 
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of classical statistics. In the development of parametric approach to nonresponse, we 
explicitly incorporate these two processes in both derivation and evaluation of the 
nonresponse-adjusted estimates. 
 
4.1 Data Generation Under Nonresponse  
We begin by describing the data generation process accounting for nonresponse. Let U
be a finite population or finite collection of N elements with labels { }1,..., ,...,k Nu u u  
where N +∈�  is finite and known. For simplicity, each element in U  is represented by 
its label { }1,..., ,...,U k N= . Let N∈y �  the vector of the unknown variable y  defined as 

( )1,...,
t

Ny y=y , such that iy  is the value y  of i-th element of population U . In the same 

way, define N p×∈X �  as a matrix of auxiliary variables defined for each element in the 
frame. 
 
Consider the set of events for the outcome when an element k U∈  will respond or not, 
then kR  is a discrete random variable result of a realization of a stochastic process with 
an underlying model ζ  that maps these events as  
 

 

1 if unit  responds

0 if unit  does not respondk

k
R

k
=


 . 

 
The probability mass function of the discrete random variable kR  defined by model ζ  is 
 

 
( ) ( )

if 1

1 if 0k

k k
R k k k

k k

r
p r p R r

r
φ

φ

=
= = =

− =


 ,   

 
where kφ ∈�  is the probability (or propensity) to respond such as 0 1kφ< ≤ k U∀ ∈ . Let 

N∈�φ  be the vector with the response propensities for each element in the frame. Since 
we are focusing on a parametric approach, kφ  is the parameter of an assumed (or known) 
probability mass function of kR . As in any other parametric statistical analysis, the 

parameter kφ  is unknown but can be estimated using the observed data by k̂φ . It is 

desirable to compute the estimate k̂φ  such as ( )k̂ kEξ φ φ=  where the operator Eξ  is the 

expected value under the model ξ . 
 
Let ( )p s  be a sample design where the probability that element k is selected in the 

sample s  for such design is defined by iπ  and 1 iπ−  otherwise such as 0 1kπ< ≤
k U∀ ∈ . We draw a sample or subset s U⊂  according to the sample design ( )p s . The 

random variable kI  is the indicator that maps the event for whether the unit k being in the 
sample is in the sample or not, as 
 

 
1 if 

0 if k

k S s
I

k S s
∈ =

=
∉ =





. (4) 
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The probability mass function kI  when the case where the element k  is in the selected 
sample for all possible samples is ( ) ( ) ( )1 Pr

k
k Ss S

p I k S s p s
∈

= = ∈ = =∑  and 

( ) ( )0 1 0k kp I p I= = − =  otherwise or 
 

 ( ) ( )
if 1

1 if 0k

k k
I k k k

k k

i
p i p I i

i
π

π

=
= = =

− =




 (5) 

 
Once the sample is drawn, we only are able to observe data ry  on the subset r s⊂  (i.e., 
respondents). 
 
4.2. Estimation in the Presence of Nonresponse 
Define Y  as the total of the population U as the iU

Y y= ∑ . In the absence of 
nonresponse, an estimate of the total based on the sample s  drawn under the design 
( )p s  defined above is  

 

 ˆ i i i
i i i

s U Ui i

y y I
Y d y Iπ π π

= = =∑ ∑ ∑ , (6) 

 
where 1

i id π −=  is the sample design weight. This estimator is known as the π -weighted 
total of y. In this case, the estimation and inference goes from the sample to the 
population. 
 
In the presence of nonresponse, the unadjusted estimate of the total can be written as 
 
 û k k k k k k

k r U
Y d y d y R I

∈

= =∑ ∑ . (7) 

 
This estimate is biased under repeated sampling because ( )ˆE .u k kU

Y y Yφ= <∑  The 

expected value can be seen as a weighted total of y  where kφ  is the weight (i.e., 

kφ -weighted total). A natural way to remove the bias in the estimate of the total is 
weighting by the inverse of the propensities kφ  as 
 

 ˆ k
k

k r k

d
Y y

φ∈

= ∑ . (8) 

 
However, as mentioned before, the propensities k sφ are unknown and need to be 
estimated from the observed distribution of the observed kR s .  
 
4.2. Estimation of the Response Propensities 
Suppose that there is no sample selection and the complete population is observed. In this 
situation, the only source of random variation is from the response values UR , which are 
stochastic realizations under the model ξ . Any appropriate classical statistical method 
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can be used to not only estimate kφ  by k̂φ  but also to make statistical inferences and 
evaluate the goodness of fit of the model of kφ . 
 
The estimation of the response propensity is more complex when a sample is drawn 
under sample design ( )p s . We not only observe a smaller subset of responses kR , sR , 
but the collected data are correlated. This correlation is the result from the way the 
sample is drawn under the sample design. In this case, the estimation process needs to 
reflect both random processes (i.e., randomization by design and the stochastic process of 
responding). To facilitate the description of the estimation steps, we use a two-step 
process. We first condition on a single realization of stochastic process described by 
model ξ  for kφ  for all elements in the frame. In other words, we observe realized values 

k kR r= , k U∀ ∈  (i.e., fixed values when conditioned on ξ ). Any appropriate classical 

statistical method can be used to compute k̂φ , k U∀ ∈ . In this case, k̂φ  is fixed and is not 
different from any other variable ky  in the population. If we draw repeated samples 
under the same design ( )p s , then each sample can be used to estimate these fixed 
model-based propensities as with any other variable of interest under repeated sampling. 
In this case, the conditional expectation of the estimated propensity k̂φ  is ( )ˆ ˆE p k kφ φ=  

under the sample design ( )p s . In the second step, we remove the conditionality of the 

response propensities on ξ . Any stochastic realization can be used to estimate kφ . In 

other words, the unconditional expectation is ( )ˆE E p k kξ φ φ= 1. Fortunately, there are 

several statistical methods available for computing estimates of parameters of 
distributions such as k̂φ  under both a complex sample design and a stochastic model. 
Two of these approaches are described in Binder (1983) and Chambers, Steel, Wang, & 
Welsh (2012).  
 
4.3. Estimating Totals 
Once the estimates of the response propensities k̂φ  are computed, we can modify the 
expression (9) to estimate the total in the population. The nonresponse adjusted estimator 
of the total based on estimated response propensities is  
 

 1 1ˆ
ˆ ˆa k k k k k k

k r Uk k

Y d y y d R I
φ φ∈

= =∑ ∑ . (9) 

 
Under repeated sampling, the expected value of the estimate of the total is  
 

 ( )ˆ ˆE ˆ
k

p a k k k
U Uk

RY y yτ
φ

= =∑ ∑  (10) 

                                                 
1 One consequence of this approach is that the variance of the estimates includes two terms to 

account for the two sources of variation as  
 

( ) ( )[ ] ( )[ ]ˆ ˆ ˆV V E Ek p k p kVξ ξφ φ φ= +
. 
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where ˆ ˆ
k

k
k

Rτ
φ

=  is the ratio of two random variables, kR , the result of the stochastic 

process described by model ξ  with a distribution with parameter kφ as described above, 

and k̂φ , the result of estimating the parameter of the distribution of kR . Equation (11) is 
the design based expected value of the nonresponse adjusted total or the ˆkτ -weighted 
total of y . 
 
4.4. Bias of Nonresponse Adjusted Estimators 
We begin by deriving the expression similar to equation (2) but for the nonresponse 
adjusted estimator of the total. The relative bias of the nonresponse adjusted total under 
repeated sampling is defined as 
 

 ( ) ( )ˆ ˆEˆRB
p a

p a

Y Y
Y

Y

−
= . (11) 

 
Substituting equation (11) and after some algebraic manipulation, it is easy to show that 
the relative bias of the nonresponse-adjusted total under repeated sampling is  
 
 ( ) ( ) ( )ˆ ˆ

ˆ ˆ ˆ ˆRB CV CV 1p YY Yτφ
τ ρ τ τ= + −  (12) 

 
In a similar way, the relative bias of the nonresponse-adjusted mean of y  is 
approximately  
 
 ( ) ( ) ( )ˆ ˆ

ˆ ˆRB CV CVp YY Yτφ
ρ τ≈ , (13) 

 
where the ratio k̂τ  is defined as ˆˆ /k k kRτ φ= . Both expressions are useful for studying 
the effect of the nonresponse adjustment on the relative bias of adjusted estimates of the 
total and means.  
 
When we compare equations (2) and (13) we notice that equation (13) is similar to the 
expression of the relative bias of unadjusted estimate of total of a population except that 
the “response propensity” is defined as k̂τ .2 However, unlike the response propensities 

kφ  in (2), which depends on the population/survey, the value of the ratio k̂τ  depends on 
the method that the statistician uses to estimate kφ . Furthermore, unlike the size of the 
bias described in equation (1), which is very difficult to influence because it requires 
changes in the data collection protocol to affect the values of the propensities kφ , it is 
very easy to change the size of the bias in (13) and (14) by substituting any value of k̂τ  in 

                                                 
2 As a side note, this analogy of regarding the k̂τ  ratios as response propensities is not entirely 

correct because the k̂τ  ratios can be greater than 0. However, this analogy helps the reader when 
examining when the conditions when the adjusted estimators are biased. Values greater than 1 
correspond to adjustments for undercoverage. 
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the equation. Not all k̂τ  values will completely remove the bias of the total; however, 
some will have better properties than others. 
 
There are different methods to compute k̂φ  and these estimates will have a different 
impact on the k̂τ  ratios and ultimately on the relative bias of the estimates of the total 
of y. Those methods have different assumptions for stochastic response models and the 
parameters of the distribution of the model. In the following paragraph, we list some 
observations about expression (13) without focusing on any particular method. Instead, 
we describe what we expect the method to accomplish to reduce the bias. This discussion 
is similar to identifying the conditions when the nonresponse unadjusted estimates are 
unbiased, as presented in Section 1. Although this discussion may only be for purely 
academic interest because we are commenting on unobservable parameters, it provides 
different insights about the conditions when the bias is reduced.  
 
• The first condition when the estimates is unbiased is when k̂ kφ φ= so that ( )ˆ 1kE τ = . 

In other words, the propensities are estimated without error. This condition highlights 
the difficulty of adjusting for nonresponse. Unlike other types of estimation where only 
one parameter is estimated, we need to estimate correctly kφ  for all elements in the 
sample. In practice, it is more likely that propensities kφ  are estimated correctly for 
some domains and not for others. As a result, the estimates will be biased for the 
domains where ( )k̂ kE φ φ≠ .  

When the kφ  are estimated without error, the response mechanism can be modeled as 
Poisson sampling (PO) with known probabilities of selection k kπ φ=  (Särndal, 
Swensson, & Wretman, 1992). Under this design, the estimate of the total is 

/PO k kn
t y π= ∑  with a variance given by  
 

 ( ) 21
V 1PO kU

k

t y
π

= −
 
 
 

∑ . (14) 

 
Särndal, Swensson, & Wretman (1992) warns that the variance of this estimator may be 
unduly large because of variability in the sample size. However, the variance also 
increases if selection probabilities( kπ s) vary and if they are close to 0. The variability of 
the estimate is not the result of the nonresponse adjustment, but the result of the 
variability of the propensities. Even if these were known, the nonresponse adjusted 
estimate may have a large variance. In other words, the variability of the estimates does 
not arise from computing weights and weighting the data. 
 
The variance of the estimate under PO sampling in (15) is minimized if k kyπ ∝ . 
Translating these observations to the response propensities, we expect a reduction in bias 
and variance when the estimated propensities are highly correlated with ky  as reported in 
the literature (see Little & Vartivarian, 2005). 
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• In the second situation we consider, k̂φ  is an estimate such that ( )ˆE k kφ φ=  with an 

associated error, or ( ) 2ˆV k kφ σ= . When this is the case, the expected value of k̂τ  is 

biased since 
 

 ( )
( )
( )

E
ˆE E 1ˆ ˆE

kk
k

k k

RR
ξ

ξ

τ
φ φ

= ≠ =
 
 
 

. (15) 

 
 Using the Taylor expansion approximation, we can approximate the expected value as 
 

( )
( )
( )

( )
( )[ ]

( ) ( )
( )

( ) ( )
2 3 2 2

ˆ ˆˆ ˆE V VE COV . COV .
ˆE E 1ˆ ˆ ˆ ˆE E E

k k kk k k k kk
k

k k k kk k

RR R RR ξ ξ ξξ ξ ξ

ξ

ξ ξ ξ

φ φφ φ
τ

φ φ φ φφ φ
= ≈ − + = − +

 
 
    

. (16) 

 
We expect that the last two terms in (17) will become smaller as the sample size increases 
when computing k̂φ . As a result, some of the methods compute adjustments only with 
some minimum number of respondents. A more detailed analysis is beyond the 
observations made in this paper; however, equation (17) is a starting point for studying 
the effect of small sample sizes on the bias of the adjusted estimate. 
 
• As in any modeling exercise, the response model can be misspecified, that is 

( )ˆE k k kbφ φ= +  where 0kb ≠  or where the different models have different fits when 

1̂kφ  and 2̂kφ  are estimated using two different models but where ( ) ( )1 2
ˆ ˆV Vk kφ φ> . In 

these cases, ( )ˆE 1kτ ≠  and the bias becomes smaller as the sample size increases. 
Flores Cervantes & Brick (2016) illustrated the bias in stratified designs with 
misspecified models. 

 
• Equation (13) highlights the “Achilles’ heel” of this approach for adjusting for 

nonresponse. Since in the ratio k̂τ  where the estimates k̂φ  can take values close to zero 

including zero, the k̂τ  ratio becomes very unstable. This and the variability of k̂φ  have 
a large impact on ( )ˆCV τ . A possible approach is to restrict the value of the ratios for 
the domains where the ratios are unstable while maintaining the remaining adjustments 
as estimated in domains where the model is good. This approach will not produce 
biased estimates for all those domains where the ratio is stable. Some of the methods 
used to adjust for nonresponse do not use this approach. 

 
The discussion so far has been on the conditions where the adjusted estimates are 
unbiased. We expect that a similar expression to (13) can be derived for the variance of 
adjusted estimates. Such expression may be useful to study the “estimated weights” 
paradox; that is, using estimated weights rather than known weights reduces variance 
(Kim & Kim, 2007 and Lumley, Shaw, & Dai, 2011). 
 
4.5. Auxiliary Variables 
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In the previous paragraphs we examine the bias in the estimates in general. In practice, 
we rely on auxiliary variables for computing k̂ sφ . In other words, we build a model for 

kφ based on auxiliary variables, kx  which should be available for respondents and 
nonrespondents. Before exploring the role of the auxiliary in the estimation of kφ , we 
examine another approximation for the bias of the estimates. Assuming that ( )ˆE 1τ ≈  

and ( )ˆCV 1τ ≈ , and if we focus on the numerator term of the correlation between k̂τ and 

ky , an approximation of the bias of the estimates is 
 
 ( ) ( )( )ˆ

ˆ ˆRB 1p k k
U

Y y y
φ

τ∝ − −∑ . (17) 

 
Expression (18) is similar to the expression of the near bias in Särndal & Lundström 
(2005); although the expression of near bias is a function of response propensities and not 
the k̂τ ratios. 3  Similar conclusions for unbiased estimates presented in the previous 
section can be drawn examining equation (18). 
 
For the analysis of auxiliary variables and as a way to simplify the analysis, we assume 
that the auxiliary variables kx  are uncorrelated 4, that is ( )Cor , 0ki kjx x =  i j∀ ≠  and 

{ }, 1,..,i j p∈ . Suppose that there is a model that generates the population response 

propensities such as ( )f t
k kφ = λx  where ( )0 f 1t

k< ≤λx . Based the model presented 
before, we focus only on two forms of model misspecification: incorrect functional form 
and omitted variable5 (Asteriou & Hall, 2011).  
 
In the first form of misspecification, the functional form of the model generating kφ  is 

not identified correctly. That is when ( )f t
k kφ = λx  is not approximated well by  

( )ˆ ˆg t
k kφ = λx , that is

( )
( )

f
ˆ 1

ˆg

t
k

k t
k

τ = ≠
λx

λx
. For example when ( )f t t

k k=λx λx  and 

( )expiˆ ˆt t
k kφ = λx . That is, the propensities are linear t

kx  while the fitted function is a 

sigmoid function on t
kx . The bias in the estimates in this case depends on how dissimilar 

are the functions f  and g . There are several statistical methods and techniques to 
determine whether the adopted functional form is a good fit for the observed data. 
 

                                                 
3 Särndal & Lundström, (2005) mention that the near bias expression is not based on a model, 

unlike what is described in equation (18). 
4 In practice, this can be done by replacing the original vector of auxiliaries with a principal 

components or principal factors. 
5 Other forms of misspecification are overfit or the inclusion of irrelevant variables, simultaneity 

bias where the dependent variable is part of a system of simultaneous equations, and 
measurement errors in the independent variables. These misspecification forms can also be 
studied in these response models. 
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In the second type of misspecification, important auxiliary variables are omitted or 
excluded in the model. For example, suppose that estimated response propensities are 
estimates using the correct functional form ( )*ˆ ˆf t

k kφ = λx  for ( )f t
k kφ = λx  but where an 

important variable *
ok kx ∉x  is omitted or excluded in the model for k̂φ . The estimates k̂φ  

will be biased if the omitted variable okx  is a determinant of the response propensity kφ  

(i.e., ok jkλ λ� ) and correlated with the response propensity (i.e., ( )COV , 0ok kx φ ≠ ). 
Omitted variable bias is one of the most common problems in linear regression and 
current methods for dealing with it may not be readily applicable to binary regression 
used for response modeling. Additional theoretical development may be needed to handle 
this situation. In the worst case scenario, there may be some variables that should be in 
the model but are not found in the set of auxiliary variables. In this situation, the 
estimates are expected to be biased. Unfortunately, this may be the usual situation. 
 
All these previous observations provide a good starting point for describing the 
relationships between response model, auxiliary variables, and dependent variables, and 
the conditions when the adjusted estimate is unbiased. In addition to the pedagogical 
value, it helps us make predictions when different nonresponse adjustments reduce the 
bias in adjusted estimates. This is important in simulation studies because we can predict 
whether estimates will be biased based on how the response models are created in the 
simulations. Unexpected results of simulations in published articles are incorrectly 
attributed to extraneous reasons, when in reality these anomalies are the result of 
unintended interactions among the response model, auxiliary variables, and dependent 
variables in the simulation. 
 

5. Final Comments 
 
There is a need to evaluate nonresponse adjustment methods to use beyond empirical 
approaches such as simulations and comparison of estimates produced using different 
weighting methods. We develop an expression for the relative bias for nonresponse 
adjusted totals and means. The expression can be used as a pedagogical tool since it 
provides insights on how the nonresponse adjustments work. We discuss the conditions 
when the bias is minimized based on relationships between the model, response, and 
auxiliary variables. Based on these observations, we are able to determine the desired 
properties of the methods for reducing bias in adjusted estimates. Starting from this 
analysis, we begin investigating the use of a parametric approach for nonresponse 
adjustments that reflect both randomization from the sample design and the stochastic 
process and random draws from probability distributions. This approach let us take 
advantage of classical statistical tools such as statistical tests for parameters and goodness 
of fit of the response model for determining the best way to adjust for nonresponse. The 
main goal is to develop a framework where nonresponse can be seen as an estimation 
exercise based on statistical methods such as exploratory analyses, variable selection, 
model evaluation, and checking assumptions. 
 
The proposed parametric approach has been used in nonresponse adjustments based on 
weighting classes and the results look promising. We will continue developing this 
approach for more nonresponse adjustment methods. However, one of the main obstacles 
is the development of specialized software. Current results and further developments in 
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addition to the formalized observations described in this article will be presented in future 
articles. 
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