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Abstract 
 
The Annual Survey of Public Employment & Payroll (ASPEP), conducted by the U.S. 
Census Bureau, provides statistics on the number of federal, state, and local government 
civilian employees and their gross payrolls. Empirical Best Linear Unbiased Predictor 
(EBLUP) offers a big improvement in the estimation of the ASPEP data with the use of 
auxiliary information from the preceding Census of Governments. In this paper, we use 
our EBLUP model to estimate the mean square error.  In order to evaluate the method, we 
replicated 1000 samples from the frame using the production design.  For each replicate, 
we generated 200 samples (parametric bootstrap samples) given by the EBLUP model.  
Then we compared the Relative Root Mean Square Error (RRMSE) produced by 
parametric bootstrap with the simulated true MSE. 
 
Keywords: Government Units, Monte Carlo Simulation, Parametric Bootstrap, EBLUP 

1. Introduction 
 
Over the last few decades, the U.S. Census Bureau has pioneered in developing 
innovative small area methodologies in different programs. In one of the most cited 
papers in small area estimation (SAE) literature, Fay and Herriot (1979) developed a 
parametric empirical Bayes method to estimate per-capita income of small places with 
population less than 1,000 and demonstrated, using the Census data, that their method 
was superior to both direct design-based and synthetic methods. More recently, 
researchers at the U.S. Census Bureau implemented both empirical and hierarchical 
Bayes methodologies in the context of Small Area Income and Poverty Estimates 
(SAIPE) and Small Area Health Insurance Estimates (SAHIE) programs; see Bell et al. 
(2007) and Bauder et al. (2008). 
 
Besides the Census Bureau’s well-known SAIPE and SAHIE programs, researchers in the 
ESMD are actively pursuing state-of-the-art small area estimation techniques to 
improve the current estimation methodologies for small areas. Some results on the 
ASPEP estimation were presented at 2013 SAE conference in Thailand, and 2014 SAE in 
Poznan, Poland, and 2015 SAE in Chile. There is a large number of small area estimators 
available in the literature. These estimators typically use either implicit or explicit models 
to combine survey data with different administrative and Census records. The properties 
of such estimators are usually studied using the model used to derive the estimator. 
However, the design-based properties of small area estimators, which are most appealing 
to the survey practitioners, are largely unknown. In this paper, we show a method 
(parametric bootstrap) to estimate the mean square error of the estimates produced by the 
EBLUP estimator in different small areas (29 function codes). The model used the 
ASPEP data and auxiliary information from the preceding Census of Governments. The 
universe is the intersection of the two census data, 2007 and 2012. We developed a 
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design-based Monte Carlo simulation experiment in which we draw repeated samples 
(1,000 of them) from the universe using the ASPEP sampling design and then generated 
200 samples using the EBLUP model, called parametric bootstrap samples.  In total, we 
have 1,000 replicates, each has 200 bootstrap samples, and each bootstrap sample 
contains 29 small areas.  The average of the RRMSEs from 1,000 replicates was 
compared with simulated true RRMSE for each small area. 
 
U.S. Census Bureau conducts Censuses of about 90,000 state and local government units 
every five years in order to collect data on the number of full-time and part-time state 
and local government employees and payroll. Between two consecutive Censuses 
(years ending with 2 and 7, e.g., 2002, 2007, and 2012), U.S. Census Bureau also 
conducts the Annual Survey of Public Employment and Payroll, a nationwide sample 
survey covering all state and local governments in the United States, which include 
five types of governments: counties, cities, townships, special districts, and school 
districts. The first three types of government are referred to as general-purpose 
governments, because they generally provide multiple government activities. Activities 
in ASPEP are designated by function codes (see Appendix). School districts cover only 
education functions. Special districts usually provide only one function, but can provide 
multiple functions, like Natural Resources, or Sewerage. ASPEP is the only source of 
public employment data by program function and full-time and part-time break. Data 
on employment include the number of full-time and part-time employees and gross 
pay as  w ell as  hours paid for part-time employees. All data are reported for the 
government’s pay period covering March 12. Data collection begins in March and 
continues for about seven months. For more information on the survey, we refer to 
http://www.Census.gov/govs/apes. 
 
In 2014, a new sample for ASPEP was selected based on the 2012 Census of 
Governments: Employment (CoG:E).  The sample design was changed slightly as 
compared to the 2009 design.  Initial certainty criteria were not used, and more samples 
were allocated to school district strata of small states.  Instead of regular πPS (proportion 
to size without replacement), systematic πPS sampling was performed in all strata after 
sorting by population (for general-purpose governments), enrollment (for school 
districts), and function (for special districts).  In the second stage of the design, we again 
used modified cut-off sampling to select a subsample of small-size units.  The 2014 
ASPEP sample contains about 10,000 units from the 2012 Cog: E frame of about 90,000 
units.  
 
The ASPEP survey is designed to produce reliable estimates of the number of full-time 
and part-time employees and payroll at the national level and for large domains (e.g., 
government functions such as elementary and secondary education, higher education,  
police protection, fire protection, financial administration, judicial and legal, etc., at the 
national level, and states aggregates of  all function codes). However, it is also required 
to estimate the parameters for individual function codes within each state. This 
requirement leads us to explore small area estimation methodology that borrows 
strength from previous Census data instead of collecting expensive additional data for 
small cells. We refer to Rao (2003) and Jiang and Lahiri (2006) for a comprehensive 
account of small area estimation theory and applications. 
  

JSM 2016 - Survey Research Methods Section

3001

http://www.census.gov/govs/apes


2.  Estimation Methods 
 
2.1 EBLUP Estimators (are-level and unit-level models) 
 
In this paper, the variable of interest is the number of full-time employees. Our data is 
skewed; therefore, we transformed the variable in a log scale (see Figure 2).  We 
proposed two models:  area-level model and unit-level on the auxiliary variable (see 
model (2) and model (5) below). 
 
Area-level Model 
 
Let ijy denote the number of full-time employees for the jth governmental unit within the 

ith small area ( 1, , ;i m=  1, , ij N=  ). The small area in this paper we refer to the cell 
(state, function). In this paper, we are interested in estimating the total number of fulltime 

employees for the ith small area given by 
1

iN

i ij
i

Y y
=

= ∑ ( 1, , ).i m=   An estimator of iY  is 

given by:   
 

ˆˆ (1 )EB
i i i i i irY N f y f Y = + −  

           (1)                                     

where  is the sample mean; i i if n N= , iN  and in  are the sampling 

fraction, number of government units in the population and sample for area i, 
respectively; ˆ

irY  is a model-dependent predictor of the mean of the non-sampled part of 
area i ( 1, , ).i m=    

In this paper, we obtain ˆ
irY using the following nested error regression model on the 

logarithm of the number of full-time employees at the government unit level: 
      0 1log( ) log( ) ,ij i i ijy X vβ β ε= + + +                                                  (2) 

                        2~ (0, )
iid

iv N τ and 2~ (0, ),   
iid

ij Nε σ                                               (3)              

where iX is the average number of full-time employees for the ith small area obtained 

from the previous Census; 0β and 1β are unknown intercept and slope, respectively; iv  
are small area specific random effects. The distribution of the random effects describes 
deviations of the area means from values 0 1 log( )iXβ β+ ; ijε  are errors in individual 

observations ( 1,..., ;  1,..., )ij N i m= =  . The random variables iv  and ijε  are assumed to be 
mutually independent. We assume that sampling is non-informative for the distribution of 
measurements ijy  ( 1,..., ;  1,..., )ij N i m= = . A similar model without logarithmic 
transformation can be found in Battese et al. (1988). The logarithmic transformation is 
taken to reduce the extent of heteroscedasticity in the employment data. Similar model 
using unit level auxiliary information was considered by Bellow and Lahiri (2012) in the 
context of estimating total hectare under corn for U.S. counties.  We use the following 

1

1

in

i i ij
j

y n y−

=
= ∑
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model-based predictor of irY : 

                                    2 2
0 1

1ˆ ˆ ˆ ˆˆ ˆexp log( ) ( )
2ir i i iY X vβ β σ δ ≈ + + + +  

                (4)                                

where 2 2
0 1

ˆ ˆ ˆˆ ˆ,  ,  , ,i iv andβ β σ δ (standard error of îv ) are obtained by fitting (2) using 
PROC MIXED of SAS. We obtain our estimate of total number of full-time employees in 
area i using equations (1) and (4). 

Unit-level Model 

Besides area-level (model 2), we also performed the unit-level ( ijX ) model as below. 

0 1log( ) log( ) ,ij ij i ijy X vβ β ε= + + +                                   (5) 

2~ (0, )
iid

iv N τ and 2~ (0, ),   
iid

ij Nε σ               (6) 

After estimating the models parameters, the estimate will be obtained by two different 
ways: simple back transformed, and log-normal back transformed given as follows: 

 
Simple 

𝑌𝑌�𝑖𝑖𝐸𝐸𝐸𝐸 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝑆𝑆 + ∑ exp (�̂�𝛽0 + �̂�𝛽1 log�𝑋𝑋𝑖𝑖𝑖𝑖�+ 𝑣𝑣�𝑖𝑖) i∉S  (simple) 

Log-Normal Back Transformation 

𝑌𝑌�𝑖𝑖𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑖𝑖(fiy�i + (1− fi)𝑌𝑌��𝑖𝑖𝑖𝑖 , where 

𝑌𝑌��𝑖𝑖𝑖𝑖  = 𝛼𝛼�𝑖𝑖𝑖𝑖exp (𝑣𝑣�𝑖𝑖 + 1
2
�𝜎𝜎�2 + �̂�𝛿𝑖𝑖2�),and 𝛼𝛼�𝑖𝑖𝑖𝑖 = (𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑖𝑖)−1∑ exp(�̂�𝛽0 + �̂�𝛽1 log�Xij�)𝑖𝑖∉𝑆𝑆𝑖𝑖  

  
2.2 Parametric Bootstrap 

As mentioned above, the universe is the intersection of the 2007 CoG: E and 2012 CoG: 
E. One thousand samples (sample replicates) were drawn from the universe using the 
2014 ASPEP sample design.  From each replicate, 200 samples (parametric bootstrap 
samples) were generated from the EBLUP model. There are 29 small areas (29 function 
codes-see Appendix) in each bootstrap sample. As a result, we have the average of 
relative root mean square errors being compared with simulated true root mean square 
error.  The steps of the analysis are described as below. Hereafter, the notations for the 
indices are: 

𝑘𝑘 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑖𝑖, 𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑖𝑖𝑡𝑡ℎ,𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑓𝑓𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑓𝑓𝑠𝑠𝑠𝑠 𝑏𝑏𝑡𝑡ℎ,𝑠𝑠𝑛𝑛𝑎𝑎 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑢𝑢𝑛𝑛𝑖𝑖𝑟𝑟 𝑗𝑗𝑡𝑡ℎ   
Step 1 
Create 1,000 sample replicates, 𝑆𝑆1,𝑆𝑆2 , … ,𝑆𝑆1000 using production sample design 
 
Step2 
 
With each 𝑆𝑆𝑘𝑘 run a mixed model to generate the estimates of the parameters denoted as  
𝜃𝜃�𝑘𝑘,𝑖𝑖 = (�̂�𝜏𝑘𝑘2 ,𝜎𝜎�𝑘𝑘2, �̂�𝛽𝑘𝑘,0 , �̂�𝛽𝑘𝑘,1 ,𝑣𝑣�𝑘𝑘,𝑖𝑖).  �̂�𝜏𝑘𝑘2 ,𝜎𝜎�𝑘𝑘2 ,�̂�𝛽𝑘𝑘,0 , �̂�𝛽𝑘𝑘,1 are sample dependent, 𝑣𝑣�𝑘𝑘,𝑖𝑖 is sample and 
function code dependent.   
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Step 3 
 
For each 𝑆𝑆𝑘𝑘 using   𝜃𝜃�𝑘𝑘,𝑖𝑖 = (�̂�𝜏𝑘𝑘2,𝜎𝜎�𝑘𝑘2 ,�̂�𝛽𝑘𝑘,0 ,�̂�𝛽𝑘𝑘,1 ,𝑣𝑣�𝑘𝑘𝑖𝑖)generate B (B= 200) parametric 
bootstrap samples 𝑆𝑆𝑘𝑘,1 ,𝑆𝑆𝑘𝑘,2 ,… ,𝑆𝑆𝑘𝑘,200 
 
Step 4 
 
Perform mixed model on 𝑆𝑆𝑘𝑘,𝑏𝑏 where all the units in the sample now are 𝑦𝑦𝑘𝑘𝑖𝑖𝑖𝑖

(𝑏𝑏) to obtain 

𝜃𝜃�𝑘𝑘𝑏𝑏𝑖𝑖 = ��̂�𝜏2𝑘𝑘
(𝑏𝑏),𝜎𝜎�2𝑘𝑘

(𝑏𝑏),�̂�𝛽𝑘𝑘,0
(𝑏𝑏),�̂�𝛽𝑘𝑘,1

(𝑏𝑏),𝑣𝑣�𝑘𝑘𝑖𝑖
(𝑏𝑏)� for each bootstrap 𝑏𝑏𝑡𝑡ℎ sample from the sample 

replicate 𝑘𝑘. 
 
Step 5 
 
Then estimate the EB for area 𝑖𝑖𝑡𝑡ℎ for each bootstrap 𝑏𝑏𝑡𝑡ℎ from the sample replicate 𝑘𝑘𝑡𝑡ℎ. 
𝑌𝑌�𝑘𝑘,𝑖𝑖
𝐸𝐸𝐸𝐸,(𝑏𝑏) = 𝑁𝑁𝑖𝑖(𝑓𝑓𝑖𝑖𝑦𝑦�𝑘𝑘𝑖𝑖

(𝑏𝑏) + (1 − fi))𝑌𝑌��𝑘𝑘,𝑖𝑖𝑖𝑖
(𝑏𝑏)  )  

where 𝑌𝑌��𝑘𝑘,𝑖𝑖𝑖𝑖
(𝑏𝑏) = exp (�̂�𝛽𝑘𝑘,0

(𝑏𝑏) + �̂�𝛽𝑘𝑘,1
(𝑏𝑏)log (𝑋𝑋�𝑖𝑖) + 𝑣𝑣�𝑘𝑘𝑖𝑖

(𝑏𝑏) + 1
2

(𝜎𝜎�2𝑘𝑘
(𝑏𝑏) + �̂�𝛿𝑘𝑘,𝑖𝑖

2,(𝑏𝑏))) , and  

�̂�𝛿𝑘𝑘,𝑖𝑖
2,(𝑏𝑏) = 𝑉𝑉𝑠𝑠𝑓𝑓�𝑣𝑣𝑘𝑘 ,𝑖𝑖

(𝑏𝑏)�𝑎𝑎𝑠𝑠𝑟𝑟𝑠𝑠� , 𝑓𝑓𝑖𝑖 is the sampling rate in each small area. 
 

Step 6 
 
Compute the parametric bootstrap mse estimate for the area 𝑖𝑖𝑡𝑡ℎ  for each 𝑆𝑆𝑘𝑘 as follows: 
𝑠𝑠𝑖𝑖𝑠𝑠� 𝑘𝑘,𝑖𝑖 = 1

𝐸𝐸
∑ (𝑌𝑌�𝑘𝑘,𝑖𝑖

𝐸𝐸𝐸𝐸,(𝑏𝑏) −𝑌𝑌𝑘𝑘,𝑖𝑖
(𝑏𝑏) )2𝐸𝐸

𝑏𝑏=1                                                                
There are 500 bootstrap samples in each 𝑆𝑆𝑘𝑘 produce 29 (item codes) 𝑠𝑠𝑖𝑖𝑠𝑠�𝑘𝑘,𝑖𝑖.  In total, we 
have 29*1000 𝑠𝑠𝑖𝑖𝑠𝑠� 𝑘𝑘,𝑖𝑖 
 
Where 𝑌𝑌𝑘𝑘,𝑖𝑖

(𝑏𝑏) = exp (�̂�𝛽𝑘𝑘,0 + �̂�𝛽𝑘𝑘,1 log(𝑋𝑋�𝑖𝑖) + 𝑣𝑣𝑘𝑘𝑖𝑖
(𝑏𝑏)),     

 �̂�𝛽𝑘𝑘,0 ,�̂�𝛽𝑘𝑘,1are obtained from step 2, and      
𝑣𝑣𝑘𝑘𝑖𝑖

(𝑏𝑏) is obtained in step 3. 
 
Step 7 
 
Approximate the true mse for each function code 𝑖𝑖. 
𝑟𝑟𝑓𝑓𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖 = 1

1000
∑ (𝑌𝑌�𝑘𝑘,𝑖𝑖

𝐸𝐸𝐸𝐸 − 𝑌𝑌𝑖𝑖 )21000
𝑘𝑘=1        

where 𝑌𝑌�𝑘𝑘,𝑖𝑖
𝐸𝐸𝐸𝐸 is obtained the same manner as step 5 but now applied on sample replicate, 𝑌𝑌𝑖𝑖 

is the true total in the universe for small area 𝑖𝑖𝑡𝑡ℎ.  We have 29 𝑟𝑟𝑓𝑓𝑢𝑢𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖. 
 
Step 8 
 
Evaluation:  Performance of parametric bootstrap mse to approximate the true mse, 
where 

Percent Relative Bias: 𝑅𝑅𝑅𝑅𝑖𝑖 = 100 ∗
1

1000
∑ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑘𝑘,𝑖𝑖 −𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖1000
𝑘𝑘=1

𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
 

Percent Relative Root MSE  

             𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 = 100 ∗
� 1
1000

∑ (𝑚𝑚𝑚𝑚𝑚𝑚�𝑘𝑘𝑖𝑖−𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖   )21000
𝑘𝑘=1

𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
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3. Results & Evaluations 
 
Figure 1 and Figure 2 show the data for California before and after log transform 
respectively, and Figure 3 shows the normality of the residuals after the 
transformation.  As you can see the normality of the residuals confirms the validity of 
the model assumption.  Figure 4 shows that the unit-covariate model outperforms the 
area-covariate model in terms of the relative mse.   
 
Table 1 and 2 are the main work of this paper that shows the performance of the 
parametric bootstrap when using area-covariate, and unit-covariate models. 
 
Figure 1:  Skewed Data (California Data 2007) 
 

 
Figure 2:  The Data after Log Transformed 
 

 
 
Figure 3 shows the distribution of the residuals after log transformation.  As we can see 
the normality assumption in the model is satisfied very well. 
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Figure 3:  Normality of the Residuals

 
Figure 4 is comparing the two mse estimates between the Area-covariate and 
Unit-covariate models. 
 
 
Figure 4:  Comparison of two EBLUP models’ MSE- Area-covariate and Unit- 
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Table 1:  Statistics for RRMSE of 29 Small Areas compared to Design-based True  
   RRMSE if the True Total of the Area Known (Area-covariate model) 
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Table 2:  Statistics for RRMSE of 29 Small Areas compared to Design-based True  
   RRMSE if the True Total of the Area Known (Unit-covariate model) 

 

 
 
Conclusion 
 
As we can see, the unit covariate model produces better estimates of employment totals 
than the corresponding area-covariate model. Also, unit-covariate model produces 
parametric bootstrap MSE estimates closer to the true design-based MSE than the 
corresponding area-covariate model. The parametric bootstrap MSE overestimates the 
true design-based MSE. The increases of the number of sample replicates and/or the 
number of parametric bootstrap samples may help to increase the estimates of the 
RRMSEs from parametric bootstrap method.  In practice, many times we do not always 

JSM 2016 - Survey Research Methods Section

3008



have unit-level auxiliary variable information, area-covariate model is good to use. In the 
future, we will examine performance of double bootstrap or some suitable adjustments to 
the single bootstrap formula. 
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Appendix 
Function   Descriptions 
 
000    Totals for Government 
001    Air Transportation 
002    Space Research & Technology (Federal) 
005    Correction 
006    Nat Defense & International Relations (Federal) 
012    Elementary and Secondary - Instruction 
014    Postal Service (Fed) 
016    Higher Education - Other 
018    Higher Education - Instructional 
021    Other Education (State) 
022    Social Insurance Administration (State) 
023    Financial Administration 
024    Firefighters 
025    Judicial & Legal 
029    Other Government Administration 
032   Health 
040    Hospitals 
044   Highways 
050    Housing & Community Development 
052    Libraries 
059    Natural Resources 
061    Parks & Recreation 
062    Police Protection - Officers 
079    Public Welfare 
080    Sewerage 
081    Solid Waste Management 
087    Water Transport & Terminals 
089    All Other & Unallocable 
090    Liquor Stores (State) 
091    Water Supply 
092    Electric Power 
093    Gas Supply 
094    Transit 
112    Elementary and Secondary - Other 
124   Fire - Other 
162    Police-Other 
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