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ABSTRACT 
 

In this paper, we first define odds ratio and attributable risk while considering 
investigating two sensitive attributes in real practice. Then we define two estimators of 
odds ratio and two estimators of attributable risk based on data collected either using the 
simple model or crossed model proposed by Lee, Sedory and Singh (2013). We define 
expressions for biases and variances of the resultant estimators. We investigate the 
performance of crossed model over the simple model under the same choice of 
parameters as discussed in Lee et al (2013). Also the values of odds ratio and attributable 
risk are reported based on a real data set. 
 
Key words: Sensitive characteristics, estimation of proportion, crossed model, simple 
model. 
 
 

1.  INTRODUCTION 
 
In 1965, S. L. Warner proposed the first research method in structured survey interview. 
Lee, Sedory and Singh (2013) introduced a new methodology for estimating the 
proportions of persons in a population possessing each of two sensitive characteristics, 
say A and B, along with the proportion possessing both, BA , by using two different 
randomized response models: Simple model and Crossed model. There are many 
situations where their proposed models could be implemented in real practice. For 
example, (1) assume A is a group of smokers, B is a group of drinkers, then BA  will 
be a group of both smokers and drinkers; (2) assume A is a group of smack users, B is a 
group of people involved criminally, then BA  will be a group of both smack users and 
criminally active people; and (3) assume A represents hidden membership in a terrorist 
group-I, B represents a hidden membership in a terrorist group-II, then BA  will be a 
hidden membership in both terrorist groups. Their models also allows one to estimate 
several other parameters, such as correlation coefficient, conditional proportions, and 
relative risk, etc. A pictorial representation of such a population is shown in Figure 1.1. 
Let A , B  and BA  be the true proportions of respondents possessing the sensitive 

characteristics A, B, and both BA .  Also note that  BABA Min  , . 

 
 



 CBA

BA BA

Fig.1.1. Populaton under study 
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Assume a simple random and with replacement sample (SRSWR) of n  respondents is 
selected from the population  . The authors suggest above two different randomized 
response models, which are described in brief in the following sub-sections named as 
Simple Model, and as Crossed Model. 
 
 

1.1  Simple Model 
 
In the simple model proposed by Lee, Sedory and Singh (2013), they suggest to using a 
pair of decks of cards in order: say Deck-I and Deck-II.  Each respondent, selected in a 
simple random with replacement sample of size n , is requested to draw two cards, one 
card from each deck of cards and keep the response in order from Deck-I and Deck-II 
respectively. Deck-I consists of cards, each bearing one of two mutually exclusive 
statements: “I belong to the sensitive group A ”, with probability P , and “I belong to the 

non-sensitive group cA ”, with probability )1( P . Deck-II also consists of cards, each 
bearing one of two mutually exclusive statements: “ I belong to the sensitive group B ”, 

with probability T , and “I belong to the non-sensitive group cB ”, with probability 
)1( T . By following the notation of Lee, Sedory and Singh (2013) for the simple model, 

the probabilities of obtaining, from a given respondent, each of the following responses 
(Yes, Yes), (Yes, No), (No, Yes) and (No, No) are, respectively, given by: 
 

)1)(1()12)(1()1)(12()12)(12(11 TPTPTPTP BAAB   ,   (1.1) 

TPTPTPTP BAAB )1()12)(1()12()12)(12(10   ,                (1.2) 

)1()12()1)(12()12)(12(01 TPTPTPTP BAAB   ,                (1.3) 
and 

PTTPPTTP BAAB   )12()12()12)(12(00 .                                  (1.4) 
 

Let nn1111
ˆ  , nn1010

ˆ  , nn0101
ˆ    and nn0000

ˆ  , be the observed proportions of 

(Yes, Yes), (Yes, No), (No, Yes) and (No, No) responses, so that nnnnn  00011011 . 
Then Lee, Sedory and Singh (2013) obtained unbiased estimators for the simple model as 
following: 
 

)12(2
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 ,                                                                            (1.5) 
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and 

)12)(12(2

)1()1(ˆ)2(ˆ)(ˆ)(ˆ)(
ˆ 00011011





TP

TPPTTPTPPTTP
AB

 ,  (1.7) 

for 5.0P and .5.0T  
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1.2  Crossed Model 
 
In the crossed model, while the rest of the procedure remains the same as for the simple 
model but the composition of the decks is different. Deck-I consists of cards, each 
bearing one of two mutually exclusive statements: “I belong to the sensitive group A ”, 

with probability P  and “I belong to the non-sensitive group cB ”, with probability 
)1( P  respectively. Deck-II also consists of cards, each bearing one of two mutually 

exclusive statements: “I belong to the sensitive group B ” with probability T  and “I 

belong to the non-sensitive group cA ”with probability )1( T  respectively. By following 
the notation of Lee, Sedory and Singh (2013) for the crossed model, the probabilities of 
obtaining, from a given respondent, each of the following responses, (Yes, Yes), (Yes, No), 
(No, Yes) and (No, No) are, respectively, given by: 
 

)1)(1()1)(1()1)(1()}1)(1({*
11 TPTPTPTPPT BAAB   ,  (1.14) 

TPTPTPTPPT BAAB )1()1(}1)1{()}1)(1({*
10   ,              (1.15) 

)1(}1)1({)1()}1)(1({*
01 TPTPTPTPPT BAAB   ,              (1.16) 

and 

PTPTPTTPPT BAAB   )}1)(1({*
00 .                                                (1.17) 
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Let nn*
11

*
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ˆ  , nn*
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*
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*
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ˆ  , be the observed proportions of 

(Yes, Yes), (Yes, No), (No, Yes) and (No, No) responses so that nnnnn  *
00

*
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*
10

*
11 . 

Lee, Sedory and Singh (2013) obtained unbiased estimators for the crossed model as 
following: 
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In the next section, we consider two estimators of odds ratio (OR); one based on the 
simple model and the other based on crossed model.  
 
 

2.  ESTIMATION OF ODDS RATIO 
 
The use of estimation of odds ratio and its problem are well known to statisticians who 
dealing with the problem of estimation of proportion of characteristics. In case of two 
sensitive characteristics A  and B , the four cells of the 22  contingency table can be 
labeled as: 
 

Attributes B  cB Total 

A  AB  )( ABA    A  
cA  )( ABB    )1( ABBA   )1( A  

Total B  )1( B  1 
 
Thus, we consider a measure of odds ratio (OR) in case of two sensitive variables A  and 
B  as: 
 

 
  ABBABA

ABBAAB








1

OR                                                                            (2.1) 

 
In the following sub-sections, we consider estimators of the odds ratio (OR) defined in 
(2.1) by using the simple model and the crossed model. 
 
 

2.1  ESTIMATION OF ODDS RATIO USING SIMPLE MODEL 
 
By using the same notations for the simple model from Lee et al. (2013), we consider 
first estimator of the odds ratio (OR) as: 
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                                                                          (2.2) 

Now, we have the following theorems: 
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Theorem 2.1.  The bias in the estimator 1OR


 of the odds ratio (OR) is given by: 
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Proof.  The estimator 1


OR  of the odds ratio can be approximated as: 
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By the definition of bias that is 
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we have the theorem. 
 

Theorem 2.2.  The mean squared error of the estimator 1OR


 of the odds ratio (OR) is 
given by: 
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Proof. By the definition of mean squared error, we have 
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Expanding and taking the expected value, we have the theorem. 
 
 

2.2  ESTIMATION OF ODDS RATIO USING CROSSED MODEL 
  

By using the same notations for the crossed model from Lee et al. (2013), we consider 
second estimator of the odds ratio (OR) as: 
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Now, we have the following theorems: 
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Proof.  The estimator 2


OR  of the odds ratio can be approximated as: 
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we have the theorem. 
 

Theorem 2.4.  The mean squared error of the estimator 2OR


 of the odds ratio (OR) is 
given by: 
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Proof. By the definition of mean squared error, we have 
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Expanding and taking the expected value, we have the theorem. 
 
In the next section, we consider the problem of estimation of attributable risk. 
 
 

3.  ESTIMATION OF ATTRIBUTABLE RISK 
 
In order to define an attributable risk, we have the following theorem. 
 
Theorem 3.1.  The attributable risk  BAAR |  is given by: 
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Following Rosner (2016), by the definition of attributable risk, we have 
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which proves the theorem. 
 
 

3.1  ESTIMATION OF ATTRIBUTABLE RISK USING SIMPLE MODEL 
 
By using the same notations for the simple model from Lee et al. (2013), we consider 
first estimator of the attributable risk as: 
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By the definition of bias, we have 
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which proves the theorem. 
 

Theorem 3.2.  The mean square of the estimator  BAAR |1


 of the attributable risk 

 BAAR |  is given by: 
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Proof. By the definition of mean square error, we have  
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Expanding and taking expected value, we have the theorem. 
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3.2  ESTIMATION OF ATTRIBUTABLE RISK USING CROSSED MODEL 
 
By using the same notations for the crossed model from  Lee et al. (2013), we consider 
first estimator of the attributable risk as: 
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Proof.  The estimator  BAAR |2


 can be approximated as. 
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By the definition of bias, we have 
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which proves the theorem. 
 

Theorem 3.2.  The mean squared of the estimator  BAAR |2


 of the attributable risk 

 BAAR |  is given by: 
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Proof. By the definition of mean squared error, we have  
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Expanding and taking expected value, we have the theorem. 
 
 

4.  RELATIVE EFFICIENCY 
 

We define the percent relative efficiency of the estimator 2


OR  with respect to the 

estimator 1


OR   as: 
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We define the percent relative efficiency of the estimator  BAAR |2


 with respect to the 

estimator  BAAR |1


 as: 
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We wrote FORTRAN codes, given in APPENDIX, to compute the percent relative 
efficiency values. We used 7.0TP  which is same choice as in Lee et al. (2013). The 
percent relative efficiency values so obtained for different choices of AB , A  and B  
are presentedin Table 4.1. 
 
Table 4.1. Percent Relative Efficiency values. 

AB  A  B  RE(OR) RE(AR)

0.1 0.2 0.2 987.5 1037.4 
0.1 0.2 0.3 1065.0 1107.2 
0.1 0.2 0.4 1152.7 1178.1 
0.1 0.2 0.6 1320.9 1284.7 
0.1 0.2 0.7 1345.6 1275.0 
0.1 0.3 0.2 1013.1 1000.4 
0.1 0.3 0.3 1057.1 1062.2 
0.1 0.3 0.4 1126.7 1106.7 
0.1 0.3 0.5 1183.5 1119.4 
0.1 0.3 0.6 1167.8 1084.5 
0.1 0.4 0.2 1067.2 1057.7 
0.1 0.4 0.3 1095.1 1082.4 
0.1 0.4 0.4 1134.7 1070.6 
0.1 0.4 0.5 1098.7 1017.6 
0.1 0.5 0.3 1133.2 1091.0 
0.1 0.5 0.4 1084.6 1014.0 
0.1 0.6 0.2 1198.6 1200.6 
0.1 0.6 0.3 1120.2 1078.6 
0.1 0.7 0.2 1242.2 1267.7 
0.2 0.3 0.3 858.5 966.4 
0.2 0.3 0.4 897.8 982.9 
0.2 0.3 0.5 932.3 986.4 
0.2 0.3 0.6 944.6 965.4 
0.2 0.4 0.3 864.0 886.3 
0.2 0.4 0.4 851.7 875.0 
0.2 0.5 0.3 885.8 872.4 
0.2 0.6 0.3 905.7 888.0 
0.3 0.4 0.4 796.3 896.4 
0.3 0.4 0.5 803.7 883.0 
0.3 0.5 0.4 792.4 795.3 

 
From the Table 4.1, one can conclude that the use of crossed model also remains more 
efficient than the simple model in case of estimating odds raio and attributable risk. The 
results are consistent with the results obtaind by the use of crossed model while 
estimating other parameters, such as the relative risk, the correlation coefficient, etc. Thus, 
we conclude that the crossed model is better than the simple model for all situations we 
have investigated. 
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5.  APPLICATION BASED ON REAL DATASET 
 
Lee et al. (2013) collected real data from 75 respondents at the Joint Statistical Meeting 
(2011), Miami, FL by using crossed model with 7.0TP  on smoking and drinking. 
Let AB , A  and B  be the true proportions of smokers, drinkers, and smokers and 
drinkers, respectively. Lee et al. (2013) reported respective estimates as 

2367816.0ˆ* AB , 24.0ˆ* A , and 36.0ˆ* B . These estimates are used for estimating 
estimators of odds ratio and attributable risk. With the crossed model, the estimator of 

odds is obtained as 21.3802 


OR  and the attributable risk is found as 0.9790 for 

 BAAR |2


 and 0.5496 for  ABAR |2


. The high value of 21.3802 


OR  indicates that 

smoking and drinking are highly associated to each other. Lee et al. (2013) have shown 
that there is high correlation between smoking and drinking. The estimate of the 
attributable risk of a drinker to be a smoker is 0.9790, which mean a smoker has 97.70% 
chance to be a drinker than non-user of both; whereas the estimate of the attributable risk 
of a smoker to be a drinker is 0.5496, which implies a drinker has 54.96% chance to be a 
smoker than non-user of both. 
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APPENDIX 
! FILE NAME LEEARR.F95 
              IMPLICIT NONE 
              REAL P,T,PIA,PIB,PIAB,SUM 
              DOUBLE PRECISION VARPIA,VARPIB,VARPIAB,CPIABPIA, 
            1CPIABPIB,CPIAPIB,VOR1,VOR2,VARPIAS,VARPIBS,VARPIABS, 
            1CPIABPAS,CPIABPBS,CPIAPIBS,G1,G2,G3,G4,G5,RE_OR, 
            1F1,F2,F3, T1, T2, T3, V_ARR1, V_ARR2, RE_ARR 
              CHARACTER*20 OUT_FILE 
             WRITE(*,'(A)') 'NAME OF THE OUTPUT FILE' 
              READ(*,'(A20)') OUT_FILE 
             OPEN(42, FILE=OUT_FILE, STATUS='UNKNOWN') 
              P = 0.70 
              T = 0.70  
             WRITE(42,107)P,T 
107        FORMAT(2X,'P=',F6.3,2X,'T=',F6.3) 
             WRITE(42,108) 
108        FORMAT( 4X,'PIAB',6X,'PIA',6X,'PIB',6X,'RE_OR',6X,'RE_ARR') 
              DO 10 PIAB = 0.10, 0.99, 0.10 
              DO 10 PIA = 0.10, 0.991, 0.10 
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              DO 10 PIB = 0.10, 0.991, 0.10 
              SUM = PIA+PIB 
              IF ( (PIA*PIB).NE.(PIAB) ) THEN 
              IF((PIAB.LT.PIA).AND.(PIAB.LT.PIB).AND.(SUM.LT.0.999)) THEN 
              VARPIA = PIA*(1-PIA)+P*(1-P)/(2*P-1)**2  
              VARPIB = PIB*(1-PIB)+T*(1-T)/(2*T-1)**2 
              VARPIAB = PIAB*(1-PIAB) 
            1+( (2*P-1)**2*T*(1-T)*PIA+P*(1-P)*(2*T-1)**2*PIB+P*T*(1-P)*(1-T)) 
            1/((2*P-1)**2*(2*T-1)**2) 
             CPIABPIA = PIAB*(1-PIA)+P*(1-P)*PIB/(2*P-1)**2 
             CPIABPIB = PIAB*(1-PIB)+T*(1-T)*PIA/(2*T-1)**2 
             CPIAPIB = PIAB-PIA*PIB 
             F1=(1-PIB)/((PIA-PIAB)*(1-PIA-PIB+PIAB))+PIB/(PIAB*(PIB-PIAB)) 
             F2 = (1-PIB)/((PIA-PIAB)*(1-PIA-PIB+PIAB)) 
             F3 = (1-PIA)/((PIB-PIAB)*(1-PIA-PIB+PIAB)) 
            VOR1 = F1**2*VARPIAB + F2**2*VARPIA + F3**2*VARPIB 
         1 - 2*F1*F2*CPIABPIA - 2 *F1*F3*CPIABPIB + 2*F2*F3*CPIAPIB 
            T1 = 1.0/(PIAB-PIA*PIB) 
            T2 = PIAB/(PIA*(PIAB-PIA*PIB)) 
           T3 = (PIA-PIAB)/((1-PIB)*(PIAB-PIA*PIB)) 
           V_ARR1 = T1**2*VARPIAB + T2**2*VARPIA + T3**2*VARPIB 
         1 - 2*T1*T2*CPIABPIA - 2 *T1*T3*CPIABPIB + 2*T2*T3*CPIAPIB 
            G1 = P*T+(1-P)*(1-T) 
            G2 = 1.0-PIA-PIB+2*PIAB 
           VARPIAS = PIA*(1-PIA) + (1-P)*T*G1*G2/(P+T-1)**2 
          VARPIBS = PIB*(1-PIB) + (1-T)*P*G1*G2/(P+T-1)**2 
          G3 = PIAB*(P**2*T**2+(1-P)**2*(1-T)**2) 
          G4 = P*T*(1-P)*(1-T)*(1-PIA-PIB) 
         G5 = (P*T+(1-P)*(1-T))*(P+T-1)**2 
         VARPIABS = (G3+G4)/G5-PIAB**2 
         CPIABPAS=PIAB*(1-PIA) + PIAB*T*(1-P)*(P-T+1)/(P+T-1)**2 
       1+P*T*(1-P)*(1-T)*(T-P+1)*(1-PIA-PIB)/(G1*(P+T-1)**2) 
         CPIABPBS = PIAB*(1-PIB)+PIAB*P*(1-T)*(T-P+1)/(P+T-1)**2  
       1+P*T*(1-P)*(1-T)*(P-T+1)*(1-PIA-PIB)/(G1*(P+T-1)**2) 
         CPIAPIBS = PIA*(1-PIA)-PIAB*G1 
       1 - ( G1 +(P-T)*(1-2*PIA) )*(1-PIA-PIB)/2 
       1 +G1**2*(1-PIA-PIB+2*PIAB)/(2*(P+T-1)**2) 
         VOR2 = F1**2*VARPIABS + F2**2*VARPIAS + F3**2*VARPIBS 
      1 - 2*F1*F2*CPIABPAS - 2 *F1*F3*CPIABPBS + 2*F2*F3*CPIAPIBS 
         V_ARR2 = T1**2*VARPIABS + T2**2*VARPIAS + T3**2*VARPIBS 
      1 - 2*T1*T2*CPIABPAS - 2 *T1*T3*CPIABPBS + 2*T2*T3*CPIAPIBS 
          RE_OR = VOR1*100/VOR2 
          RE_ARR = V_ARR1*100/V_ARR2 
          WRITE(42, 101)PIAB, PIA, PIB, RE_OR, RE_ARR 
101   FORMAT(2X,F8.4,2X,F8.4,2X,F8.4,2X,F9.2,2X,F9.2) 
         ENDIF 
         ENDIF 
10     CONTINUE 
         STOP 
         END 
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