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Abstract
Multiple imputation [Rubin, 1987] is difficult to conduct if the analysis model includes interactions,
squares, or other transformations of variables with missing values for two reasons: First, the im-
puter must be aware of the analysis model to address the congeniality issue [Meng, 1994]. Second,
the imputer must choose to produce either biased parameter estimates, even in the case of missing
completely at random, by the passive-imputation algorithm (van Buuren and Groothuis-Oudshoorn
[1999], a.k.a. impute, then transform) or inconsistent data relations by the just-another-variable al-
gorithm (von Hippel [2009], a.k.a. transform, then impute). Although some research on imputing
squares has been conducted [Vink and van Buuren, 2013], the conflict persists for all other non-
trivial transformations. We propose a flexible local imputation model that builds upon the ideas of
Cleveland [1979]. Implicitly, local imputation captures a broad range of transformations such as
interactions, squares, cubes, roots, and logs. Hence, there is no need for the imputer to consider
variable transformations. All they need to consider is the inclusion of all relevant variables as they
are. In a simulation study, we compare our proposed local-imputation algorithm with, among others,
random forest imputation [Doove et al., 2014], which also addresses nonlinearities.

Key Words: Multiple Imputation, Local Regression, Just Another Variable, Passive Imputation,
Congeniality, Ignorability

1. Introduction

Multiple imputation has become one of the most popular methods for conducting statisti-
cal analysis with missing data. Its major advantage over alternatives, such as maximum
likelihood [Little and Rubin, 2002], is that once the data are multiply imputed, the analyst
can conduct any desired analysis. In contrast, maximum likelihood and other alternative
methods have to be applied anew for each particular analysis. Multiple imputation origi-
nally involved drawing imputed values from multivariate posterior predictive distributions.
These distributions are difficult to define in applications, which led to the development
of fully conditional specification [Kennickell, 1991]. A detailed description of a fully-
conditional-specification algorithm is given in van Buuren [2012].

In applications, however, where the analysis’ objective is a regression model that con-
tains interactions or other nonlinear transformations of the covariates, fully conditional
multiple imputation yields biased and inconsistent results even if the missing mechanism
is ignorable in the sense of Rubin [1976] [Seaman et al., 2012]. For the special case of
a completely random missing mechanism, the just-another-variable algorithm developed
by von Hippel [2009] provides consistent parameter estimation. For another special case
in which logical consistency between the original variables and their transformations is
key, the passive-imputation algorithm developed by van Buuren and Groothuis-Oudshoorn
[1999] is suitable. Consequently, the current state of research is that, all of a sudden, the
analysis objective does matter and affects the strategy to be applied within the multiple-
imputation algorithm.
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In this paper, we argue that, given the set of existing algorithms for imputing interac-
tions, squares, and other nonlinear transformations, it is not worthwhile to build an impu-
tation model that captures the functional relations well because algorithms that implicitly
capture nonlinearities, such as the algorithm proposed by Doove et al. [2014], are superior.
We further introduce a new algorithm of this type named local imputation and present its
performance in a simulation study.

2. Imputing interactions, squares and other nonlinear transformations

The data consist of n realizations of a three-dimensional random vector (X,Y, Z). The
bivariate distribution of (X,Z) is normal. y and x are fully observed. We refer to the nmis
and the nobs = n − nmis realizations with and without missing values in z as recipients
and donors, respectively. The missing mechanism is defined by Pr (z = missing) =
Φ (x+ η), with Φ denoting the normal cumulative distribution function and η denoting
independent normal noise. The estimands are the parameters β of the regression model

Y = β0 + βxX + βzZ + u+
∑
l

βlgl (X,Z), (1)

where u denotes independent normal noise and g is a functional relation. For simplicity,
we assume that the model in equation (1) reflects both the true data generating process for
Y and the analysis model. In the simplest case, in which g (X,Z) = 0, fully conditional
parametric imputation proceeds as follows [Little and Rubin, 2002]:

1. On the fully observed part of the data, make a draw from the posterior distribution
of the parameters (α, σ2ε ) of the imputation model zobs = α0 +αxx

obs +αyy
obs + ε.

2. Conditional on the drawn parameters (α̃, σ̃2ε ) and
(
xmis, ymis

)
, draw nmis times

independently from the imputation model to obtain imputations for zmis.

3. Repeat the above steps M > 2 times, and then, apply Rubin’s rules [Rubin, 1987].

Algorithm 1: Fully conditional normal imputation.

For more complex g, there are two approaches in the fully conditional setup: the
passive-imputation algorithm [van Buuren and Groothuis-Oudshoorn, 1999] and the just-
another-variable algorithm [von Hippel, 2009]. To introduce both approaches, suppose that
g (X,Z) = Z2. The data set then consists of four columns (y, x, z, z2), where the first two
columns are fully observed and the other two columns have missing values for exactly the
same observations. The passive-imputation algorithm proceeds as algorithm 1 but includes
the squared term in the imputation model for z as well. After imputation of z, it simply
computes the squares. This is why von Hippel [2009] named this approach ’impute (the
linear terms), then transform’. The just-another-variable algorithm imputes the missing
values in z just like the passive-imputation algorithm. However, instead of just calculating
the square from the imputed values, the algorithm repeats the imputation procedure for z2

and thereby treats the transformation as if it were just another variable. Logical inconsis-
tencies between z and its transformations g are a natural consequence of this procedure.
If the missing pattern is completely at random [Mealli and Rubin, 2015], the just-another-
variable algorithm enables consistent estimation of the parameters of interest, whereas the
passive-imputation algorithm does not. For a missing at random pattern, neither of the
two approaches provide consistent estimates [Seaman et al., 2012]. Vink and van Buuren
[2013] proposed a solution for the special case of a squared term.
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3. Omniscient versus ignorant imputers

Both the passive-imputation algorithm and the just-another-variable algorithm require the
imputer to know the analysis model, which in our setup is equivalent to the data generating
process. This seems a doable requirement, as all the imputer needs to do is talk to the
analyst. However, in many applications, talking to the analyst is a tricky task. Let us
consider public use files, where one imputer at the agency provides the file but where
hundreds of analysts run highly sophisticated models driven by theories from their fields.
Some very talented imputers out there might actually be capable of doing this job. However,
there is no doubt that this takes substantial time and effort. Now, recall that if the missing
data pattern is not missing completely at random, neither of the two existing approaches
provide consistent parameter estimates; therefore, what is the reward for all this work? The
new local-imputation algorithm that we propose in this paper does not require knowledge
about g and can be shown to be consistent for a broad class of functional relations. We
compare the local imputation with two other algorithms that are ignorant of the true g and
also with the passive-imputation algorithm and the just-another-variable algorithm, which
both utilize the true g and are thus referred to as omniscient.

4. Algorithms for ignorant imputers

Any given data set confronts the ignorant imputer with a classic bias-variance trade-off. A
very sparse imputation model, which consists of for instance linear effects only, gives high-
precision parameter estimates. However, any unconsidered relations are assumed to be
zero. On the other hand, an imputation model with many parameters can be very inefficient
if, e.g., the analysis model is sparse. Knowing the true model the omniscient imputer does
not suffer from this uncertainty. Because the ignorant imputer is ignorant of the nonlinear
transformations, logical inconsistencies between the variable with missing values and its
transformations cannot occur, as opposed to the omniscient just-another-variable algorithm.

The motivation for the papers by Burgette and Reiter [2010] and Doove et al. [2014]
is presumably highly similar to the motivation for our paper. Doove et al. [2014] propose
to use random forests as implemented in Liaw and Wiener [2002] and show that the nature
of the classification algorithm helps preserve interaction effects. Their approach is imple-
mented in the R-package mice (R Core Team [2016], van Buuren and Groothuis-Oudshoorn
[2011]). Doove et al. [2014] present coverages of frequentist confidence intervals to check
whether the uncertainty associated with the estimation of the parameters of the imputation
model is well propagated. However, because they choose a fairly large number of donors,
the degree of uncertainty involved is low. Another potential issue is that most of the anal-
ysis models in applications involve some sort of regression, and thus, an imputation model
based on classification inevitably causes uncongeniality [Meng, 1994].

As opposed to the random forest multiple-imputation algorithm by Doove et al. [2014],
predictive mean matching as proposed by Little [1988] utilizes the parametric posterior
step as in algorithm 1 but substitutes the imputation step with a nearest neighbor ap-
proach. Predictive mean matching is known to add robustness toward model misspecifi-
cations [Schenker and Taylor, 1996].

5. The proposed algorithm

5.1 Local regression

Local regression is proposed by Cleveland [1979] and Cleveland and Devlin [1988] to
smooth scatterplots. Müller [1996] shows that local regression achieves a good fit under

JSM 2016 - Survey Research Methods Section

2038



mild assumptions, namely, a sufficient number of observations in the neighborhood and
continuity and differentiability of the underlying functional relation g. Without loss of
generality algorithm 2 shows local regression in a setup with an (n× 2) predictor matrix
A = (x, y) and a response variable z to ensure consistent notation.

1. Divide the columns of A by their interquartile ranges to rescale, and add a constant
column. Obtain A∗.

2. For any point a∗0, select the neighborhood of the k nearest points with an observed z
using Euclidean distances di.

3. For each observation in the neighborhood of a∗0, excluding a∗0 itself, compute the
weights wi from the distances with the tricube function

wi =
[
1− {di/max(di)}3

]3
+ δ, with δ denoting a small positive scalar number.

4. Calculate P =
(
A∗>i=1...k

)
{diag(wi)}, Q = (P ) (A∗i=1...k), and Λ as the diagonal of

Q, with the element corresponding to the constant in the model set to zero.

5. Estimate the parameters of a weighted regression model by γ̂ = (Q+ λΛ)−1 (Pz).

6. Predict ẑ0 = a∗0γ̂.

Algorithm 2: Local regression.

Especially for small k, dimensionality issues may occur [Marimont and Shapiro, 1979].
Choosing the scalar λ > 0 makes the weighted least squares regression a ridge regression
with all its positive properties [Dempster et al., 1977] and thereby mixes constancy with
linearity within the neighborhood [Cleveland and Devlin, 1988].

5.2 Distance-based donor selection

The posterior step of the distance-based donor selection algorithm [Siddique and Belin,
2008] consists of maximum likelihood estimation of the imputation model parameters on
M independent bootstrap samples, thereby replacing the draws from the posterior distribu-
tion [Little and Rubin, 2002]. The imputations stem from drawing donors. For recipient j,
donor i is drawn with probability

vi,j = f(ω, ẑi, ẑj , κ) = ωi(∆ẑ)
−κ
i,j /

nobs∑
i=1

{
ωi(∆ẑ)

−κ
i,j

}
. (2)

The drawing probability vi,j depends upon the donor’s bootstrap weight ωi and the scalar
absolute distance between the predictive means of donor i and recipient j, labeled as
(∆ẑ)i,j . The closeness parameter κ controls the importance of the distance. Some im-
provements to this method are developed in an unpublished working paper available from
the first author.

5.3 Local imputation

Now that we have collected all the ingredients for local multiple imputation, the algorithm
is quite straightforward.

Algorithm 3 approaches the bias-variance trade-off by optimizing the number of pa-
rameters to estimate on a subsample of the data. One potential outcome is that k = nnobs
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1. Perform a Bayesian bootstrap and obtain the nonnegative bootstrap weights ω
[Rubin, 1981]. Conduct all subsequent steps on the bootstrap sample.

2. To obtain optimal parameters for (k, λ), minimize the objective function ‖z − ẑ‖,
with ẑ from algorithm 2 on a subsample of the donors.

3. For each observation, i.e., both donors and recipients, make a local regression
prediction using the optimal choices for (k, λ) and algorithm 2.

4. Obtain the imputations by applying the distance-based donor selection algorithm as
in equation (2), but draw only from the k donors inside the neighborhood.

5. Repeat the steps above for iterating over all variables and multiple imputations.

Algorithm 3: Local imputation.

so that the neighborhoods do not differ among recipients. This should occur for g = 0. If
g is highly nonlinear and if the data are rather sparse, even a local regression line might
not result in a good fit. The predictive-mean-matching-like distance-based donor selection
algorithm can cure slight model misspecifications on the local level.

By using the bootstrap weights ω in both the posterior and the imputation step, it is
ensured that the uncertainty involved in estimating the imputation model parameters is
propagated.

Because local regression can fit any differentiable function, local imputation is a priori
inclusive, i.e., the vast majority of potential relations g are not restricted. Typical analysis
models are at least approximately, rather than literally, nested in the imputation model.
Thus, estimates are likely to be consistent yet inefficient [Raghunathan, 2016]. Xie and
Meng [2016] call this feature hidden robustness.

6. Simulation study

6.1 Simulation setup

Using a simulation study, we assess the relative and absolute performance of the proposed
algorithm. We distinguish between ignorant approaches that take the linear terms as an
input only and omniscient approaches that utilize the linear terms and the relevant transfor-
mations. The ignorant approaches are random forest imputation by Doove et al. [2014], the
version of predictive mean matching in van Buuren [2012], and our proposed method; the
omniscient approaches are the passive-imputation algorithm [van Buuren and Groothuis-
Oudshoorn, 1999] and the just-another-variable algorithm [von Hippel, 2009]. The last two
approaches also deploy predictive mean matching in the imputation step to achieve better
comparability with the ignorant approaches.

We assume (X,Z) to follow a standard normal distribution with a ρ = 0.2 corre-
lation. The missingness is always at random [Mealli and Rubin, 2015] and defined by
Pr (z = missing) = Φ [(1/4){x+N(0, 3)}]. We fix M = 10, nmis = 90, and nobs as
low as 60 to obtain a substantial degree of estimation uncertainty of the imputation model
parameters. Throughout the different analysis models, we keep the coefficient of determi-
nation at approximately R2 = 2/3, and for each model, we perform nsim = 1000 Monte
Carlo simulation runs.
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Table 1: Simulation results

Ignorant approaches Omniscient approaches
LI PMM RF PI JAV

R C R C R C R C R C

Linear only*
∑

l βlgl (X,Z) = 0
β0 = 0 126 (930) 119 (944) 146 (928) 120 (937) 118 (944)
βx = 1 132 (938) 127 (953) 151 (925) 127 (949) 127 (948)
βz = 1 131 (908) 120 (910) 150 (806) 121 (916) 122 (915)

Square
∑

l βlgl (X,Z) = βz2Z
2

β0 = 0 254 (945) 286 (907) 242 (898) 458 (346) 200 (948)
βx = 1 249 (931) 267 (947) 235 (953) 440 (946) 195 (937)
βz = 1 246 (952) 274 (919) 231 (937) 463 (951) 192 (923)
βz2 = 1 248 (930) 254 (846) 240 (819) 460 (178) 198 (911)

Interaction
∑

l βlgl (X,Z) = βxzXZ
β0 = 0 279 (939) 341 (962) 264 (934) 282 (871) 223 (889)
βx = 1 280 (941) 348 (939) 265 (941) 279 (925) 218 (849)
βz = 1 270 (808) 318 (717) 252 (789) 269 (833) 215 (860)
βxz = 1 282 (791) 344 (537) 266 (720) 275 (459) 213 (881)

Cube
∑

l βlgl (X,Z) = βz3Z
3

β0 = 0 474 (949) 519 (957) 516 (957) 792 (982) 936 (961)
βx = 1 461 (941) 494 (951) 503 (952) 755 (869) 949 (914)
βz = 0 475 (963) 516 (924) 512 (954) 747 (913) 926 (717)
βz3 = 1 469 (964) 492 (951) 496 (907) 783 (943) 998 (669)

LI: Local imputation; PMM: Predictive mean matching; RF: Random forest imputation;
PI: Passive imputation; JAV: Just another variable; R: Root Mean Squared Error ×1000;
C: Coverage of the 950h interval; *When g = 0, PMM, PI, and JAV are identical
algorithms
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6.2 Simulation results

Table 1 shows the results for all parameters of interest and all introduced imputation meth-
ods in two dimensions. The root mean squared error R measures how far on average the
estimate on the imputed data set is away from the true value, be it due to bias or variance.
Small values indicate good quality. The root mean squared error is a quality indicator in
descriptive statistics. To obtain a quality indicator in inferential statistics, we construct
950h confidence intervals using Rubin’s rules (Rubin [1987], Barnard and Rubin [1999]).
In each simulation run, we note whether this confidence interval covers the true parameter.
Good quality is indicated by coverage values C of approximately 950h.

When averaging over all parameters, the proposed local-imputation algorithm obtains
the best performance in terms of descriptive statistics, closely followed by random forest
imputation. All other algorithms are far off. In terms of inferential statistics, local impu-
tation comprehensively outperforms all alternatives. Here, random forest imputation also
performs the second best; however, it is on average almost twice as far away from the the-
oretical 950h benchmark. Regarding both evaluation criteria, the omniscient approaches
perform the poorest despite having access to valuable additional information, namely, the
true model.

Although local imputation achieves the best performance, the coverage values of ap-
proximately 800h for the relation including the interaction term leave substantial room for
improvement.

7. Conclusion

Whenever nonlinear relations are of interest, finding a suitable imputation model can turn
out to be a serious burden for an imputer. Having established the model, the imputer can
apply one of the two omniscient algorithms: the passive-imputation algorithm by van Bu-
uren and Groothuis-Oudshoorn [1999] or the just-another-variable algorithm by von Hip-
pel [2009]. We find that both of these algorithms, which incorporate information about the
functional relation, perform poorly. This finding is in agreement with Seaman et al. [2012].

We refer to the algorithms that only use the linear terms and ignore the functional
relation as ignorant. Ignorant algorithms are much easier to deploy, as there is no need
to worry about the functional relation for the imputer. In this paper, we propose a new
ignorant algorithm named local imputation. Its theoretical properties are well understood,
as it is closely related to local regression by Cleveland [1979]. In the simulation study,
we find that local imputation is superior to all other compared algorithms in terms of both
descriptive and inferential statistics. Nevertheless, random forest imputation by Doove
et al. [2014] performs almost equally well in terms of descriptive statistics.

We generally feel that there must be better ways to incorporate the knowledge of the
true functional form. For the omniscient approaches, all the information necessary to per-
form a sensible imputation is available in our simulation study, but the results are disillu-
sioning. This clearly indicates a lack of suitable algorithms. For random forest imputation,
we believe that the uncertainty involved in parameter estimation must be propagated in a
different manner to obtain correct inferences. An R-package providing the proposed local-
imputation algorithm is available from the first author upon request [R Core Team, 2016].
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