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Abstract
Auxiliary variables are extensively used in survey sampling to construct Generalized Regression

(GR) estimators, or Optimal Regression (OR) estimators, of totals and means. These estimators are
also calibration estimators, reproducing for the auxiliary variables the estimated parameters when
the latter are available from external sources. This paper explores the possibility of improving the
efficiency of such estimators when the utilized auxiliary variables are continuous, by augmenting
the set of these variables with selected exponents of them. It is shown for the case of a single
continuous auxiliary variable and simple random sampling or stratified simple random sampling,
that the addition of a fractional exponent of the auxiliary variable improves the efficiency of the
OR estimator to the degree of the implied increase of the coefficient of determination for the study
variables. A simulation study shows that this additional variable improves the efficiency of the GR
estimator greatly, even when the coefficient of determination is not increased.

Key Words: Continuous auxiliary variable, calibration, generalized regression estimator, optimal
regression estimator.

1. Introduction

In survey sampling, auxiliary variables are extensively used at the estimation stage to im-
prove the efficiency of estimators of interest, primarily of population totals and means. This
is done ordinarily through generalized regression (GR), or through optimal regression (OR)
for sampling designs for which this is possible.

As well known (see, for example, Deville, J. C., and Särndal (1992), Rao (1994), An-
dersson and Thorburn (2005)), both GR and OR are calibration procedures, whereby the
sampling weights are adjusted (calibrated) so that the resulting estimates for the totals of
the auxiliary variables are equal to the corresponding population totals (these being avail-
able from external sources). For any other variable of interest, the calibrated weights can
be used to derive an estimate of the total in the form of weighted sum of the variable values,
analogous to the linear form of the basic Horvitz-Thompson (HT) estimate involving the
sampling weights. In this paper we will use the calibration formulation of both GR and OR
procedures.

This paper addresses the question whether the calibration procedure uses to the maxi-
mum the information provided by a continuous auxiliary variable, or more information can
be extracted when exponents of this variable are included in the procedure. Adding the
exponent of the auxiliary variable to the calibration constraint entails calibrating its esti-
mated total to the corresponding population total, if this is readily available. As we should
strive for a most efficient sampling design, we should also search for maximum estimation
efficiency. This possibility of most efficient use of auxiliary information is explored here
for a single continuous auxiliary variable, and within the framework of optimal regression
estimation, where exact theoretical results with respect to efficiency gains can be derived.

It is shown for the case of a single continuous auxiliary variable and simple random
sampling or stratified simple random sampling, that the addition of a fractional exponent
of the auxiliary variable improves the efficiency of the OR estimator to the degree of the
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implied increase of the coefficient of determination for the study variables. A simulation
study shows that this additional variable also improves the efficiency of the GR estimator
greatly, even when the coefficient of determination is not increased.

2. Theoretical development

Let U = {1, · · · , k, · · · , N} denote a finite population of N units, and let s denote a sample
of size n drawn from the population U , using a sampling design that defines inclusion
probability πk = P (k ∈ s) for unit k ∈ U , and joint inclusion probability πkl = P (k, l ∈
s) for units k, l ∈ U . Assuming that πk > 0 for all k ∈ U , the design weight of unit k ∈ s
is wk = 1/πk. For any variable of interest y, with values yk, k ∈ U , and population total
Y =

∑

U yk, the Horvitz-Thompson (HT) estimator of Y is defined as Ŷ =
∑

swkyk.
Let now x denote a p×1 vector of auxiliary variables, with known vector of population

totals X. The generalized regression estimator (GR) of Y is defined as

Ŷ GR = Ŷ + β̂(X− X̂) = Ŷ + β̂1(X1 − X̂1) + . . .+ β̂p(Xp − X̂p),

where X̂ =
∑

swkxk, and β̂ =
∑

swkykx
′
k(
∑

swkxkx
′
k)

−1. The optimal regression
estimator (OR) of Y is defined as

Ŷ OR = Ŷ + β̂
o
(X− X̂),

where β̂
o
= Cov(Ŷ , X̂)(V ar(X̂))−1 is the optimal (variance minimizing) regression co-

efficient. Both Ŷ GR and Ŷ OR are calibration estimators, that is, X̂GR = X̂
OR = X.

For a univariate auxiliary variable x, we consider its exponentiation z = xm, where
m may be any positive number, and assume that the corresponding population total Z =
∑

U xmk is known. Then, the GR and OR estimators involving both of these two variables
are given, respectively, by

Ŷ GR = Ŷ + β̂1(X − X̂) + β̂2(Z − Ẑ),

and

Ŷ OR = Ŷ + β̂o
1(X − X̂) + β̂o

2(Z − Ẑ). (1)

The effect of including the variable z into the regression (calibration) estimation is possible
to determine in the case of the OR estimator (1), which can be written (see Merkouris
(2015)) as

Ŷ OR = Ŷ OR|x + β̂o
2(Z − ẐOR|x), (2)

where

Ŷ OR|x = Ŷ +
Cov(Ŷ , X̂)

V ar(X̂)
(X − X̂), ẐOR|x = Ẑ +

Cov(Ẑ, X̂)

V ar(X̂)
(X − X̂)

are, respectively, the OR estimators of Y and Z using the single variable x, and the optimal
partial regression coefficient β̂o

2 is given by

β̂o
2 =

Cov(Ŷ OR|x, ẐOR|x)

V ar(ẐOR|x)
.

It easily follows that

V ar(Ŷ OR|x) = V ar(Ŷ )−
Cov2(Ŷ , X̂)

V ar(X̂)
, V ar(ẐOR|x) = V ar(Ẑ)−

Cov2(X̂, Ẑ)

V ar(X̂)
, (3)
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and

Cov(Ŷ OR|x, ẐOR|x) = Cov(Ŷ , Ẑ)−
Cov(Ŷ , X̂)Cov(X̂, Ẑ)

V ar(X̂)
.

From (3), we can assess the variance reduction achieved by the OR estimation involving
the variable x. Then the efficiency of the estimator Ŷ OR|x relative to Ŷ , measured by
the relative difference eff(Ŷ OR|x, Ŷ ) = [(V ar(Ŷ ) − V ar(Ŷ OR|x)]/V ar(Ŷ ), is readily
verified to be eff(Ŷ OR|x, Ŷ ) = ρ2(Ŷ , X̂), that is, the square correlation coefficient of Ŷ
and X̂ .

It is now easy to show that

V ar(Ŷ OR) = V ar(Ŷ OR|x)−
Cov2(Ŷ OR|x, ẐOR|x)

V ar(ẐOR|x)
,

and hence determine the reduction of variability in the estimation of Y due to inclusion
of the variable z in the optimal regression procedure. Furthermore, with straightforward
algebra we obtain the efficiency of Ŷ OR relative to Ŷ OR|x

eff(Ŷ OR, Ŷ OR|x) =
V ar(Ŷ OR|x)− V ar(Ŷ OR)

V ar(Ŷ OR|x)
(4)

=
Cov2(Ŷ OR|x, ẐOR|x)

V ar(Ŷ OR|x)V ar(ẐOR|x)

=

[

Cov(Ŷ , Ẑ)V ar(X̂)− Cov(Ŷ , X̂)Cov(X̂, Ẑ)
]2

V ar2(X̂)V ar(Ŷ OR|x)V ar(ẐOR|x)

=

[

ρ(Ŷ , Ẑ)− ρ(Ŷ , X̂)ρ(X̂, Ẑ)
]2

[1− ρ2(Ŷ , X̂)][1− ρ2(X̂, Ẑ)]
, (5)

where ρ(Ŷ , Ẑ) and ρ(X̂, Ẑ) have similar to ρ(X̂, Ŷ ) meaning. It is clear from (5) that Ŷ OR

is more efficient than Ŷ OR|x only if the three correlation coefficients satisfy the condition
ρ(Ŷ , Ẑ) − ρ(Ŷ , X̂)ρ(X̂, Ẑ) 6= 0. Noticing that equality holds if ρ(X̂, Ẑ) = 1, a gain in
efficiency is possible if ρ(X̂, Ẑ) deviates from 1.
It follows that the efficiency of Ŷ OR relative to Ŷ , reflecting the compound optimal regres-
sion effect of the variables x and z, is

eff(Ŷ OR, Ŷ ) =
V ar(Ŷ )− V ar(Ŷ OR)

V ar(Ŷ )

=
ρ2(Ŷ , X̂) + ρ2(Ŷ , Ẑ)− 2ρ(Ŷ , X̂)ρ(Ŷ , Ẑ)ρ(X̂, Ẑ)

1− ρ2(X̂, Ẑ)
.

Under simple random sampling (SRS), ρ(Ŷ , X̂), ρ(Ŷ , Ẑ) and ρ(X̂, Ẑ) are equal, respec-
tively, to the population correlation coefficients ρ(y, x), ρ(y, z) and ρ(x, z). Then the effi-
ciency eff(Ŷ OR, Ŷ OR|x) reduces to

eff(Ŷ OR, Ŷ OR|x) =
[ρ(y, z)− ρ(y, x)ρ(x, z)]2

[1− ρ2(y, x)][1− ρ2(x, z)]
,

which is the square partial correlation coefficient ρ2(y, z|x) between y and z controlling
for x. Also, the efficiency eff(Ŷ OR, Ŷ ) reduces to

eff(Ŷ OR, Ŷ ) =
ρ2(y, x) + ρ2(y, z)− 2ρ(y, x)ρ(y, z)ρ(x, z)

1− ρ2(x, z)
,

which is the coefficient of determination R2(y|x, z) in the regression of y on x and z.
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3. Simulation Study

We have conducted a simulation study to assess the effect of adding z = xm in the cal-
ibration procedure that produces the OR and GR estimators. We simulated populations
of size N = 1000000, consisting of the values of two variables y and x having the bi-
variate lognormal distribution with means E(y) = 8, E(x) = 5 and pairs of variances
V ar(y) = (10, 50), V ar(x) = (10, 50), and associated coefficients of variation CV (y) =
(0.40, 0.88), CV (x) = (0.63, 1.41). For each of these four bivariate distributions we
specified three square correlations for (y, x), namely ρ2(y, x) = (0.25, 0.50, 0.75), thus
creating 12 different populations of values of (y, x). Obviously, for each population the
specification of ρ2(y, x) implies in turn the values of ρ2(y, z/x) and R2(y/x, z). Then,
from each of these 12 populations we drew 20000 simple random samples of sizes n =
(3000, 1000, 300), and for each of the 36 simulated sampling settings we generated the HT
estimate Ŷ of the total Y , the OR estimates Ŷ OR|x and Ŷ OR (as defined in Section 2), and
the analogously defined GR estimates Ŷ GR|x and Ŷ GR. For z = xm we chose the fractional
exponent m = 1/4 because it resulted in the highest efficiency gain eff(Ŷ OR, Ŷ OR|x)
(highest ρ2(y, z/x)) under the specified distribution of x, but also to avoid estimator insta-
bility associated with integer moments of x.

For each of the 36 sampling settings, using the 20000 samples we calculated the empiri-
cal relative (to the known Y ) bias of all the above five estimators, the empirical counterparts
of the OR efficiencies eff(Ŷ OR|x, Ŷ ), eff(Ŷ OR, Ŷ ), eff(Ŷ OR, Ŷ OR|x), and the same em-
pirical efficiencies involving the GR estimators. As shown in Section 2, in SRS the OR
efficiencies are equal to the correlation coefficients ρ2(y, x), R2(y/x, z) and ρ2(y, z/x),
respectively, and thus their nominal values are set by the specified values of these coeffi-
cients for each of the four different bivariate distributions of (y, x) described above. These
values are shown in Table 1, headed by the values ρ2(y, x) = (0.25, 0.50, 0.75) appearing
in bold phase. Table 1 shows the empirical efficiencies of the OR and GR estimators for
the various distribution and sample size settings.

We see in Table 1 that the inclusion of z = xm in the OR calibration procedure re-
sults in a nominal efficiency gain eff(Ŷ OR, Ŷ OR|x) (or ρ2(y, z/x)) which increases as the
correlation ρ2(y, x) increases, and as we move from distribution 1 to distribution 4 (to
smaller CV (y) relative to CV (x)), being negligible for distribution 1 and reaching the
maximum value of 89.2% for correlation ρ2(y, x) = 0.75 and distribution 4. This indicates
that depending on the bivariate distribution of (y, x), strong correlation ρ2(y, x) may give
substantial efficiency gains eff(Ŷ OR, Ŷ OR|x).

The empirical efficiencies of the estimators Ŷ OR|x and Ŷ OR are virtually identical to
the nominal ones across the four distributions and the three correlation levels for sample
size n = 3000, showing very small underestimation for size n = 300. The study showed
(but it is not reported in Table 1) that whereas the estimator Ŷ OR|x had a very small bias for
sizes n = (1000, 300) in distributions 3 and 4 (with negligible effect on the mean square
error), the estimator Ŷ OR had virtually zero bias.

The efficiency of the GR estimators Ŷ GR|x and Ŷ GR, for of which there is no analytic
expression, is empirically assessed relative to the efficiency of Ŷ and relative to their OR
counterparts.

The GR estimator Ŷ GR|x is very inefficient (relative to Ŷ ) for distributions 2 and 4 and
ρ2(y, x) = 0.25 (by 35.3% and 82.6%, respectively), and although it improves substan-
tially as ρ2(y, x) increases, it remains inefficient for all three correlation levels in distribu-
tion 4. In all other settings, Ŷ GR|x is more efficient than Ŷ , with the efficiency increasing as
ρ2(y, x) increases. The estimator Ŷ GR|x is very inefficient relative to the estimator Ŷ OR|x

in all settings, except for distribution 1 where its inefficiency is marginal. In all settings
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this inefficiency lessens as ρ2(y, x) increases. Furthermore, the efficiency of Ŷ GR|x drops
a little more than the efficiency of Ŷ OR|x as the sample size decreases. In the same settings
where Ŷ OR|x showed a little bias, Ŷ GR|x showed a little more bias.

Regarding the effect of adding z = x1/4 in the GR calibration procedure, Table 1
displays the most important finding of this empirical study: the estimator Ŷ GR is nearly as
efficient as the estimator Ŷ OR, irrespective of the distribution, the correlation ρ2(y, x) or
the sample size. Moreover, the estimator Ŷ GR (like the estimator Ŷ OR) has virtually zero
bias.

We repeated the simulation with the same specifications as above, but now with the
simulated populations stratified by the size of y, with five strata of sizes N1 = 400000,
N2 = 240000, N3 = 200000, N4 = 100000 and N5 = 60000. Simple random sam-
pling in each stratum was used with uniform sample allocation ni = n/5, i = 1, . . . , 5,
giving a highly efficient design with inclusion probabilities πi = ni/Ni = n/(5N), i.e.,
approximately proportional to the size of y. For this stratified random sampling (STRSRS)
the nominal OR efficiencies eff(Ŷ OR|x, Ŷ ), eff(Ŷ OR, Ŷ ), eff(Ŷ OR, Ŷ OR|x) are not equal
to the specified correlation coefficients ρ2(y, x), R2(y/x, z) and ρ2(y, z/x), respectively,
as they are in the case of SRS. They are significantly smaller. In Table 2, the values of
the nominal OR efficiencies are given just below the values of ρ2(y, x), R2(y/x, z) and
ρ2(y, z/x).

Table 2 shows that the empirical efficiencies of the estimators Ŷ OR|x and Ŷ OR are
virtually identical to the nominal ones across the four distributions and the three correlation
levels, although they drop very little or not at all as the sample size decreases.

The very small nominal OR efficiencies resulted in extremely inefficient GR estimator
Ŷ GR|x; this estimator is less efficient than Ŷ in all settings. Another reason for the extreme
inefficiency of Ŷ GR|x is that now the HT estimator Ŷ is much more efficient because of
the very efficient sampling design. Apparently, the regression effect is not added to the
design effect. The inefficiency of Ŷ GR|x lessens only marginally as the correlation ρ2(y, x)
increases. The estimator Ŷ GR|x is even more inefficient relative to the estimator Ŷ OR|x,
the latter being always more efficient than Ŷ .

With the addition of z = x1/4 in the GR calibration procedure, the GR estimator Ŷ GR

improves drastically, in all but one case, but is only better than the HT estimator Ŷ in only
one case. This is in sharp contrast with the unstratified case. One reason for this is that the
nominal efficiency gain eff(Ŷ OR, Ŷ OR|x) is in most settings small. In the only case that
eff(Ŷ OR, Ŷ OR|x) is large (75.5% for distribution 4), Ŷ GR shows impressive efficiency,
approaching that of Ŷ OR.

4. Conclusions

We have determined analytically the amount of the efficiency gain resulting from adding
a fractional exponent z = xm of a continuous auxiliary variable x in the calibration pro-
cedure that generates the OR estimator of the total for a study variable y. Through an
empirical study we showed that depending on the bivariate distribution of (y, x) and the
sampling design, the efficiency gain may be substantial if the correlation of y with x is
strong.

While the OR estimation is not feasible for many complex sampling designs, the GR
estimation is always practicable (but not an analytic expression of its efficiency). The
empirical study showed that adding a fractional exponent z = xm into the GR calibration
procedure improves the efficiency of the GR estimator greatly, even when the efficiency
gain for the OR estimator is only marginal.

Further research is needed on a theoretical explanation of the effect of z = xm on the
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Table 1: Efficiency of OR and GR estimators (SRS)

Population 1: CV(y)=0.88, CV(x)=0.63 Population 2: CV(y)=0.40, CV(x)=0.63 Population 3: CV(y)=0.88, CV(x)=1.41 Population 4: CV(y)=0.40, CV(x)=1.41

n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x)

0.2500 0.2530 0.0040 0.2500 0.2697 0.0262 0.2500 0.3068 0.0758 0.2500 0.3647 0.1528
3000 3000 3000 3000

OR 0.2513 0.2535 0.0029 0.2542 0.2740 0.0265 0.2533 0.3093 0.0750 0.2537 0.3684 0.1537
GR 0.2302 0.2528 0.0294 -0.3531 0.2723 0.4622 0.1167 0.2997 0.2072 -0.8264 0.3671 0.6535

1000 1000 1000 1000
OR 0.2497 0.2498 0.0001 0.2439 0.2634 0.0258 0.2388 0.2922 0.0701 0.2415 0.3552 0.1499
GR 0.2273 0.2513 0.0311 -0.3951 0.2622 0.4712 0.0835 0.2851 0.2198 -0.9375 0.3542 0.6667

300 300 300 300
OR 0.2416 0.2359 -0.0076 0.2382 0.2546 0.0216 0.2330 0.2809 0.0625 0.2324 0.3469 0.1492
GR 0.22088 0.2424 0.0276 -0.3904 0.2559 0.4649 0.0683 0.2766 0.2236 -1.0685 0.3481 0.6848

0.5000 0.5000 0.0000 0.5000 0.5246 0.0492 0.5000 0.5630 0.1259 0.5000 0.6802 0.3604
3000 3000 3000 3000

OR 0.5013 0.5008 -0.001 0.5036 0.5282 0.0496 0.5030 0.5648 0.1244 0.5023 0.6827 0.3624
GR 0.5021 0.5011 -0.002 0.1033 0.5225 0.4674 0.4127 0.5469 0.2286 -0.4400 0.6775 0.7761

1000 1000 1000 1000
OR 0.4994 0.4962 -0.0065 0.4963 0.5207 0.0485 0.4939 0.5524 0.1154 0.4954 0.6755 0.3568
GR 0.5009 0.4991 -0.0036 0.0754 0.5156 0.4761 0.3932 0.5374 0.2375 -0.5302 0.6710 0.7849

300 300 300 300
OR 0.4924 0.4833 -0.0179 0.4899 0.5118 0.0429 0.4903 0.5415 0.1004 0.4878 0.6678 0.3515
GR 0.4980 0.4912 -0.0135 0.0759 0.5087 0.4683 0.3851 0.5304 0.2363 -0.6479 0.6641 0.7962

0.7500 0.7541 0.0164 0.7500 0.7740 0.0958 0.7500 0.8061 0.2244 0.7500 0.9730 0.8921
3000 3000 3000 3000

OR 0.7505 0.7545 0.0158 0.7520 0.7759 0.0963 0.7516 0.8071 0.2233 0.7494 0.9733 0.8934
GR 0.7391 0.7521 0.0502 0.4807 0.7682 0.5536 0.6903 0.7874 0.3136 -0.0956 0.9543 0.9583

1000 1000 1000 1000
OR 0.7498 0.7515 0.0069 0.7487 0.7726 0.0950 0.7489 0.8018 0.2108 0.7498 0.9728 0.8915
GR 0.7394 0.7511 0.0449 0.4659 0.7653 0.5605 0.6817 0.7841 0.3215 -0.1533 0.9542 0.9603

300 300 300 300
OR 0.7459 0.7444 -0.0064 0.7482 0.7717 0.0935 0.7482 0.7957 0.1887 0.7483 0.9717 0.8878
GR 0.7389 0.7468 0.0300 0.4717 0.7648 0.5548 0.6779 0.7810 0.3199 -0.2609 0.9531 0.9628
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Table 2: Efficiency of OR and GR estimators (STRSRS, unequal probabilities)

Population 1: CV(y)=0.88, CV(x)=0.63 Population 2: CV(y)=0.40, CV(x)=0.63 Population 3: CV(y)=0.88, CV(x)=1.41 Population 4: CV(y)=0.40, CV(x)=1.41

n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x) n ρ2(y,x) R2(y/x, z) ρ2(y, z|x)

0.2500 0.2530 0.0040 0.2500 0.2697 0.0262 0.2500 0.3068 0.0758 0.2500 0.3647 0.1528
0.0304 0.0336 0.0033 0.0419 0.0697 0.0291 0.0336 0.0436 0.0103 0.0323 0.0912 0.0612

3000 3000 3000 3000
OR 0.0293 0.0327 0.0035 0.0452 0.0731 0.0292 0.0335 0.0421 0.0089 0.0314 0.0840 0.0543
GR -3.5675 -1.9974 0.3437 -10.1740 -1.3580 0.7889 -4.6135 -1.6619 0.5258 -9.9916 -1.9591 0.7308

1000 1000 1000 1000
OR 0.0265 0.02600 -0.0005 0.0399 0.0649 0.0261 0.0322 0.0379 0.0058 0.0348 0.0872 0.0542
GR -3.5659 -2.022 0.3379 -10.4109 -1.4189 0.7880 -4.7271 -1.7052 0.5276 -10.2707 -1.9541 0.7378

300 300 300 300
OR 0.0244 0.0165 -0.0081 0.0364 0.0522 0.0163 0.02911 0.02601 -0.0032 0.0331 0.0766 0.0449
GR -3.5717 -2.0671 0.3291 -10.1644 -1.3965 0.7853 -5.0225 -1.8465 0.5273 -10.7509 -1.9357 0.7502

0.5000 0.5000 0.0000 0.5000 0.5246 0.0492 0.5000 0.5630 0.1259 0.5000 0.6802 0.3604
0.0887 0.0909 0.0024 0.1032 0.1748 0.0799 0.1215 0.1317 0.0117 0.0945 0.2439 0.1650

3000 3000 3000 3000
OR 0.0908 0.0927 0.0022 0.1025 0.1719 0.0774 0.1172 0.1261 0.0101 0.0976 0.2433 0.1615
GR -2.0635 -2.0325 0.0101 -6.1621 -1.3362 0.6738 -2.8511 -1.2402 0.4183 -5.0295 -0.7967 0.7020

1000 1000 1000 1000
OR 0.0907 0.0915 0.0009 0.1010 0.1654 0.0716 0.1305 0.1342 0.0043 0.0972 0.2368 0.1546
GR -2.0596 -2.0326 0.0088 -6.2058 -1.3588 0.6726 -2.8673 -1.2523 0.4176 -5.3290 -0.8598 0.7061

300 300 300 300
OR 0.0838 0.0749 -0.0097 0.1024 0.1619 0.0663 0.1232 0.1191 -0.0047 0.0909 0.2314 0.1545
GR -2.0989 -2.0956 0.0011 -6.0145 -1.3183 0.6695 -3.0051 -1.3301 0.4182 -5.4845 -0.8569 0.7136

0.7500 0.7541 0.0164 0.7500 0.7740 0.0958 0.7500 0.8061 0.2244 0.7500 0.9730 0.8921
0.2368 0.2369 0.0001 0.2455 0.3675 0.1616 0.3499 0.3696 0.0302 0.3187 0.8331 0.7550

3000 3000 3000 3000
OR 0.2344 0.23303 -0.0018 0.2392 0.3654 0.1659 0.3412 0.3619 0.0315 0.3209 0.8357 0.7582
GR -0.5671 -0.9402 -0.23807 -2.3432 -0.4275 0.5730 -0.8914 -0.1648 0.3842 -1.0375 0.7966 0.9002

1000 1000 1000 1000
OR 0.2279 0.2255 -0.0029 0.2403 0.3566 0.1531 0.3461 0.3595 0.0205 0.3193 0.8335 0.7555
GR -0.5732 -0.9428 -0.2349 -2.4089 -0.4518 0.5741 -0.9195 -0.1893 0.3804 -1.0814 0.7918 0.8999

300 300 300 300
OR 0.2362 0.2272 -0.0118 0.2454 0.3594 0.1511 0.3529 0.3573 0.0067 0.3162 0.8299 0.7512
GR -0.5612 -0.9368 -0.2406 -2.4445 -0.4589 0.5764 -0.9461 -0.2114 0.3775 -0.9991 0.7920 0.8959

JSM
 2016 - Survey R

esearch M
ethods Section

2011



efficiency of the GR estimator. Also, more detailed simulations involving other bivariate
distributions of (y, x) and other sampling designs will help understanding this effect. In
any real survey situation, the choice of the fractional exponent can be made empirically
using the survey data. Moreover, using real survey data, an evaluation of the usefulness of
such an extended GR calibration should also include the impact on estimates of many study
variables, and on estimates for domains and for low-prevalence characteristics.
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