
Empirical likelihood inference for regression parameters when modelling
hierarchical complex survey data

Melike Oguz-Alper∗ Yves G. Berger†

Abstract
The data used in social, behavioural, health or biological sciences may have a hierarchical structure
due to the natural structure in the population of interest or due to the sampling design. Multilevel or
marginal models are often used to analyse such hierarchical data. The data may include sample units
selected with unequal probabilities from a clustered and stratified population. Inferences for the
regression coefficients may be invalid when the sampling design is informative. We apply a profile
empirical likelihood approach to the regression parameters, which are defined as the solutions of
a generalised estimating equation. The effect of the sampling design is taken into account. This
approach can be used for point estimation, hypothesis testing and confidence intervals for the sub-
vector of parameters. It asymptotically provides valid inference for the finite population parameters
under a set of regularity conditions. We consider a two–stage sampling design, where the first
stage units may be selected with unequal probabilities. We assume that the model and sampling
hierarchies are the same. We treat the first stage sampling units as the unit of interest, by using an
ultimate cluster approach. The estimating functions are defined at the ultimate cluster level of the
hierarchy.

Key Words: Design–based inference, generalised estimating equation, empirical likelihood, two–
stage sampling, uniform correlation structure, regression coefficient, unequal inclusion probability

1. Introduction

The data may be collected from samples that are selected from a multi–stage sampling
design that may involve unequal probabilities at some or all stages of the selection. The
sampling design is called informative when the selection probabilities are associated with
the model outcome variable, even after conditioning on the model covariates. Ignoring
informative sampling may result in invalid inference for regression parameters (e.g. Pfef-
fermann et al., 1998). Several methods that take sampling weights into account have been
considered for hierarchical data (e.g. Pfeffermann et al., 1998; Asparouhov, 2006; Rabe-
Hesketh and Skrondal, 2006; Skinner and De Toledo Vieira, 2007; Rao et al., 2013).

With single level regression models, sampling weights can be taken into account by
using the pseudo likelihood approach (e.g. Binder, 1983; Skinner, 1989; Binder and Patak,
1994). With this approach, the population is fixed and the observations are assumed to be
independent. In multilevel models, however, it is not straightforward to apply the pseudo
likelihood approach, because the observations within higher levels of the hierarchy are not
marginally independent. When this is the case, population totals cannot be written as a
single summation of the individual units (e.g. Grilli and Pratesi, 2004).

We propose using the profile empirical likelihood approach proposed by Oguz-Alper
and Berger (2016) to make inferences for hierarchical regression parameters. We consider a
sample weighted generalised estimating equation (GEE) (e.g. Skinner and De Toledo Vieira,
2007) to estimate regression parameters. We assume that the model and the design have the
same hierarchical structure. We use an ultimate cluster approach (Hansen et al., 1953). The
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empirical likelihood function is defined at the ultimate cluster level by assuming that the
sampling fraction is negligible at that level. The resulting empirical likelihood confidence
intervals may be better than the standard confidence intervals even when the point estima-
tor is not normal, the variance estimators are biased or unstable. The confidence intervals
proposed do not rely on re–sampling, linearisation, variance estimation or design effect.
Population level information can be accommodated with the approach proposed.

2. Two–stage sampling design and population level information

Let U be a finite population comprised of N disjoint finite primary sampling units (PSUs)
Ui of sizes Ki, with i = 1, . . . , N . Suppose that the population U is stratified into a finite
number H of strata denoted by U1, . . . , UH . We have ∪Hh=1Uh = U and

∑H
h=1Nh = N ,

where Nh denotes the number of PSUs within Uh.
Let sh be the sample of Ui, selected with replacement with unequal probabilities pi

(Hansen and Hurwitz, 1943) from Uh, where
∑

i∈Uh
pi = 1. Let nh denotes the fixed

number of draws from Uh. We assume that the sampling fractions nh/Nh are negligible.
The overall sample of PSUs is s = ∪Hh=1sh. Let

πi := nh pi·

The samples sh can be also a without-replacement set of units, because sampling with
and without replacement are asymptotically equivalent when nh/Nh are negligible (Hájek,
1981, p.112). Under sampling without replacement, πi are the inclusion probabilities.

Let si be the sample of secondary sampling units (SSUs), of size ki, with j = 1, . . . , ki,
selected with conditional probabilities πj|i within the ith PSU selected at the first stage. Let
vij be the vector of variables associated with unit j ∈ Ui.

Suppose that we know a population parameter ϕN (Chaudhuri et al., 2008) which is the
solution of the estimating equation∑

i∈U

∑
j∈Ui

f(ϕ,vij) = 0·

For example, this could the estimating equation of means or ratios. The vector ϕN will be
treated as a vector of constant, not as a parameter to estimate. For simplicity f(ϕN ,vij) is
replaced by fij in what follows.

The asymptotic framework considered is based on an infinite nested sequence of sam-
pling designs, a sequence of finite populations and an associated sequence of samples (Isaki
and Fuller, 1982). We assume that n → ∞, where n is the number of PSUs sampled. We
assume that the size of the PSUs are bounded; that is, max{Ki : i ∈ U} = O(1). The
number of strata H , nh/n and Nh/N are fixed constants that they do not vary as n → ∞.
The sampling fraction n/N is assumed negligible: n/N = o(1).

3. Multilevel model of interest

Let yij be the values of a variable of interest and xij the vector of values of the explanatory
variables. The variables yij and xij are associated with the jth unit within the ith cluster,
where j = 1, . . . ,Ki and i = 1, . . . , N . We consider that yij and xij are part of vij ; that
is, vij = (yij ,x

>
ij , . . .)

>. We consider the multilevel model given by

yij = x
>
ijB + εij , (1)
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where

εij := ui + eij ·

Here, ui and the eij are independent random variables with means zero and variances σ2u
and σ2e respectively. The response variables yij are conditionally independent given the
random effect ui and marginally correlated within cluster i. This implies that the variance
of εi = (εi1, . . . , εiKi

)>, with respect to (1), is

Σi = σ2e IKi
+ σ2u (1Ki

1>Ki
),

where IKi
is the Ki ×Ki identity matrix and 1Ki

is the Ki × 1 column vector of ones (e.g.
Rao, 2003, p.135).

The finite population parameter βN is defined as the generalised least square predictor
ofB. The parameter βN is the solution to the population GEE (e.g. Liang and Zeger, 1986)
given by

G(β) :=
∑
i∈U

gi(β) = 0b, (2)

where

gi(β) := X>i Σ−1i (yi −Xiβ),

yi := (yi1, . . . , yiKi
)>,

Xi := (x
(1)
i · , · · · ,x

(b)
i · ),

x
(`)
i · := (x

(`)
i1 , · · · , x

(`)
iKi

)>·

Here, 0b is a b-vector of zeros, where b denotes the number of covariates.
Under a set of regularity conditions given by Liang and Zeger (1986), βN is a consistent

predictor of the model parameter B. The resulting estimator is fully efficient when the
working model is correctly specified. The covariance structure Σi within gi(β) does not
affect the consistency but only the efficiency (Liang and Zeger, 1986; Diggle et al., 2002).

We treat βN as the parameter of interest. Hence we consider a design–based inference
for βN , where the sampling distribution is only specified by the sampling design. Under
this framework, vij are treated as fixed, non-random constant vectors.

4. Sample weighted GEE estimator

The sample weighted GEE estimator β̂ is defined as the solution to∑
i∈s

π−1i ĝi(β) = 0b, (3)

where

ĝi(β) := X̂
>
i Σ̂

−1
i

(
ŷi −X̂iβ

)
· (4)

Here, ŷi andX̂i are the sample-based sub-matrices of yi andXi, which contains the obser-
vations of the sample si. We propose using the following estimator of Σ−1i

Σ̂
−1
i := σ̂−2e

{
diag(wj|i : j ∈ si)− γ̂i ŵ−1·|i (ŵi ŵ

>
i )
}
,
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where

wj|i := (πj|i ai)
−1,

ŵi := vector(wj|i : j ∈ si),

γ̂i := σ̂2u
(
σ̂2u + σ̂2e ŵ

−1
·|i
)−1

,

ŵ·|i :=
∑
j∈si

wj|i,

where ai are scaling factors. Scaling may reduce the bias of the estimators when cluster
sample sizes are small (e.g. Pfeffermann et al., 1998). We consider the scaling method,
so–called scaling method 1 by Pfeffermann et al. (1998, p.30). Here, σ̂2e and σ̂2u are sample
based estimates of σ2e and σ2u. In the numerical work in Section 6, we consider the method–
of–moments type of estimators to estimate σ2e and σ2u (e.g. Prasad and Rao, 1990; Graubard
and Korn, 1996; Huang and Hidiroglou, 2003; Korn and Graubard, 2003). Poor estima-
tion of the variance components may result in some loss in efficiency of the inference for
the finite population parameter βN . However, the consistency will still hold provided the
number of sample PSUs, n, is large (e.g. Pfeffermann et al., 1998).

The design-consistency of β̂ can be established by using a Taylor expansion of (3) and
assuming that ∑

i∈s
π−1i ĝi(βN ) = Op(n

− 1
2 ),

(e.g. Godambe and Thompson, 2009, p.90).

5. Empirical likelihood approach

Consider the empirical log-likelihood function (Berger and De La Riva Torres, 2016) given
by

`(m) =
∑
i∈s

logmi, (5)

where the mi are unknown scale-loads allocated to data points i ∈ s (Hartley and Rao,
1968) and m denotes the n × 1 vector of mi. Here, the mi are defined for the PSUs
sampled.

Let m̂∗i (β) maximizes `(m) subject to the constraints mi > 0 and∑
i∈s

mi c
∗
i(β) = C

∗, (6)

with

c∗i(β) := {c>i , ĝi(β)>}>, C∗ = (C>,0>)>,

ci := {π−1z>i , f̂>i }>, C = (π−1n>,0>)>,

zi := (zi1, . . . , ziH)>, n :=
∑
i∈U

zi = (n1, . . . , nH)>,

f̂i :=
∑
j∈si

π−1j|i fij ·

where zih = πi for i ∈ Uh and zih = 0 otherwise. Here, π = n/N is the sampling
fraction at PSU level, ĝi(β) is defined by (4) and fij := f(ϕN ,vij). The solution to this
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maximisation is invariant to π , because π appears on both side of the constraint (6). Hence,
the approach can be implemented with π removed from both ci and C. The quantity π is
only required to ensure that ci is bounded, which is a necessary requirement to justify the
asymptotic results.

We assume that the C∗ is an inner point of the conical hull formed by
∑

i∈smic
∗
i(β),

with β in the parameter space. Hence the set of m̂∗i (β) is unique.
The maximum value of `(m) under mi > 0 and (6) is given by

`(β) =
∑
i∈s

log m̂∗i (β)· (7)

This function takes into account of the sampling design and the population level informa-
tion because of zi and f̂i within the definition of c∗i(β).

The maximum empirical likelihood estimator β̂EL of βN is the vector that maximizes
expression (7). It can be shown that β̂EL is the solution of the following sample level
estimating equation (Berger and De La Riva Torres, 2016)

Ĝ(β) =
∑
i∈s

m̂i ĝi(β) = 0b, (8)

where the m̂i are the maximum empirical likelihood weights obtained by maximising the
empirical log-likelihood function (5) with respect to the constraints: mi > 0 and∑

i∈s
mici = C; (9)

that is,

m̂i = (πi + η
>ci)

−1, (10)

where the vector η is such that (9) and mi > 0 hold. A modified Newton–Raphson algo-
rithm as in Chen et al. (2002) can be used to compute η.

When we do not use any population level information, we have ci = π−1zi. In this
case, η = 0 and m̂i = π−1i , the standard Horvitz and Thompson’s (1952) weight for the
ith PSU. In this case, β̂EL is the weighted GEE estimator β̂, which is the solution to (3).

Suppose that the parameter of interest θN is a sub-parameter of βN ; that is, βN =
(θ>N ,ν

>
N )
>, where νN is a nuisance parameter. We wish to make inference about θN in the

presence of the nuisance parameters νN . The profile empirical log-likelihood ratio function
is defined by

r̂(θ) = 2
{
`(β̂)−max

ν∈Λ
`(θ,ν)

}
,

where `(θ,ν) = `(β) with β = (θ>,ν>)> and `(β̂) =
∑

i∈s log m̂i, where the m̂i are
defined by (10). Under some regularity conditions (Oguz-Alper and Berger, 2016) and
using an ultimate cluster approach (Hansen et al., 1953), we have that

r̂(θN )
d−→ χ2

df=p (11)

in distribution, with respect to the sampling design. Thus r̂(θN ) is pivotal and can be used
for testing hypotheses. Confidence intervals can be constructed based on (11), when θN is
scalar.
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6. Simulation study

In this Section, we present some numerical results for the parameters of a hierarchical linear
model defined by (1). Our simulation study shows the design performance of confidence
intervals. We selected 10 000 random samples with respect to a two-stage sampling design
from a finite population, which is a realisation of the model

yij = B0 +B1x
(1)
ij +B2x

(2)
ij + ui + eij , (12)

where B0 = 20, B1 = B2 = 1, x(1)ij and x(2)ij are generated according to gamma distribu-

tions; that is, x(1)ij ∼ gamma(Ki, shape = 2, scale = α1i) and x(2)ij ∼ gamma(Ki, shape =
2, scale = α2i), where α1i and α2i are selected randomly with replacement among the val-
ues (1, 2, 3) and (1, 2, 3, 4) respectively. The Ki are the cluster sizes generated from a log-
normal distribution and defined by Ki = 100 exp(τi), with τi ∼ N(0, 0.2). The number of
clusters is N = 3000. The cluster sizes range between 47 and 207. The random effects ui
follow a normal distribution with mean zero and standard deviation σu. The eij are the level
one residuals generated from a chi-squared distribution, that is, eij ∼ χ2(σ2e/2) − σ2e/2,
with σ2e = 12−σ2u. The values of σ2u were chosen in such a way that different intra–cluster
correlations, defined by ρ = σ2u/σ

2, where σ2 = σ2e + σ2u = 12, were obtained. The
total variance, σ2, was kept fixed at 12. The correlation coefficients considered range from
0.04 to 0.83. Population size is

∑
i∈U Ki = 305 305. The finite population parameter,

βN = (β0N , β1N , β2N )
>, is obtained by solving (2) and given in Table 1.

We selected two-stage samples. At the first stage, a sample s of n = 150 PSUs was
selected with randomized systematic sampling with unequal probabilities πi proportional
to δi = b0 + ui + b1εi, where εi ∼ exp(rate = 1) − 1 and corr(δi, ui) ≈ 0.85. The
constant b0 was used to avoid very small inclusion probabilities. The constant b1 was used
to control the correlation between δi and ui. For the second stage, samples of ki = αKi

SSUs were selected with simple random sampling without replacement within the PSU i
selected, where α = 0.25. The range of sample sizes within clusters is [12, 52].

We compare the Monte Carlo design–based performance of the empirical likelihood
confidence interval with the confidence intervals obtained from the restricted maximum
likelihood, the weighted GEE (e.g. Skinner and De Toledo Vieira, 2007) and the compos-
ite likelihood (Rao et al., 2013) approaches. The nominal level considered is 95%. The
weighted GEE and the composite likelihood confidence intervals rely on variance estimates.
We used the Hartley and Rao (1962) variance estimator for the former and the conditional
variance estimator (e.g. Rao et al., 2013, p.270) for the latter.

The weighted GEE confidence interval is based on the method of inverse testing (e.g.
Binder, 1983; Binder and Patak, 1994), which takes the randomness of the nuisance pa-
rameters into account. The composite likelihood confidence interval relies on the linearised
sandwich variance estimator (e.g. Rao et al., 2013, p.270). Normality is implicitly assumed.

Standard parametric confidence interval involves restricted maximum likelihood esti-
mation. The point estimator is assumed to be normal. Hierarchical structure is considered
by fitting a two–level model with a uniform covariance structure. Survey weights are not
taken into account with this approach. Point estimates and standard errors were obtained
by using the ‘lme’ function in R (R Development Core Team, 2014).

We used the D’Agostino’s (1970) K–squared test for the test of normality of the point
estimators. We also considered the percentage relative bias (%) of the point estimators
with respect to the sampling design. The percentage relative bias (%) is defined by RB% =
[{E(φ̂) − φ}/φ] ∗ 100%, where E(φ̂) = M−1

∑M
m=1 φ̂m, with M = 10 000, is the em-

pirical expectation of the estimator φ̂, where φ is the parameter of interest and φ̂m is an
estimate based on the mth sample.
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We consider three estimators denoted by β̂rml, β̂cl and β̂el in Table 1, where β̂rml =
(β̂rml

0 , β̂rml
1 , β̂rml

2 )> is the restricted maximum likelihood estimator, β̂cl = (β̂cl0 , β̂
cl
1 , β̂

cl
2 )
>

is the composite likelihood estimator and β̂el = (β̂el0 , β̂
el
1 , β̂

el
2 )
> is the empirical likelihood

estimator proposed. Weights are incorporated with the empirical, weighted GEE and com-
posite likelihood approaches. The estimator β̂el is the solution to the sample GEE (8). We
obtain the same point estimator with the empirical likelihood and the weighted GEE ap-
proaches, because there is no population level information, and thus the weights are equiv-
alent to the Horvitz and Thompson (1952) weights. The restricted maximum likelihood
estimator β̂rml does not involve weights.

In Table 1, we have the finite population values of regression coefficients and the rela-
tive bias (%) of their estimators. The restricted maximum likelihood point estimator β̂rml

0

is slightly biased, because the selection of the PSUs is informative due to the dependency
on random effects given in (12). Relative biases (%) increase with intra–cluster correlation.

Table 1: Finite population values of the regression coefficients in working model (12) and
the relative bias (%) of their estimators. Two–stage sampling design. Unequal probability
selection of the PSUs. N = 3000 and n = 150.
Intra–cluster Population Relative bias (%)
correlation value unweighted (RML) weighted (CL) weighted (EL)

ρ β0N β1N β2N β̂rml
0 β̂rml

1 β̂rml
2 β̂cl

0 β̂cl
1 β̂cl

2 β̂el
0 β̂el

1 β̂el
2

0.04 20.00 1.00 1.00 0.63 0.01 -0.07 0.05 0.07 -0.10 0.03 0.00 -0.06
0.25 20.05 1.00 1.00 2.05 0.03 0.00 0.03 0.50 -0.13 0.02 0.03 0.03
0.50 20.06 1.00 1.00 2.62 0.00 -0.01 0.07 0.55 -0.19 0.01 0.03 -0.03
0.83 20.06 1.00 1.00 3.22 0.02 -0.03 0.10 0.74 -0.26 0.03 0.01 -0.01

RML, CL and EL stand respectively for restricted maximum likelihood, composite likelihood and empirical likelihood.

In Table 2, we have the observed coverages of the 95% confidence intervals. The
D’Agostino’s K–squared test of normality shows that the point estimators are mostly not
normally distributed. Coverages of the restricted maximum likelihood confidence intervals
for the intercept are significantly different from the nominal level, 95%, for all cases. The
coverages with this approach decreases with intra–cluster correlation. The poor coverages
are due to ignoring the informative sampling. In this case, the finite population parameter
β0N is slightly over–estimated and the variance of β̂rml

0 is substantially underestimated.
We observe poor coverages with the weighted GEE and composite likelihood approaches in
most cases. The empirical likelihood confidence intervals have better coverages overall.

7. Conclusion

We proposed using an empirical likelihood approach to make design–based inference for
regression parameters when modelling hierarchical data. The approach proposed provides
asymptotically valid design–based inference. The numerical work show that the empirical
likelihood confidence intervals may provide better coverages than the standard confidence
intervals based on the normality assumption, even when the point estimator is not normal
or the data is skewed. Standard confidence intervals that do not take sampling design into
account may have very poor coverages. The empirical likelihood approach proposed does
not depend on variance estimation, re–sampling, linearisation and second order inclusion
probabilities. Confidence intervals are not based on the normality of the point estimator.
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Table 2: 95% confidence intervals for the estimates of regression coefficients. Two–stage
sampling design. Unequal probability selection of the PSUs. N = 3000 and n = 150. The
D’Agostino’s K–squared p-values within the parentheses.

Intra–cluster Parameter Empirical Restricted Weighted Composite
correlation likelihood ML GEE likelihood
ρ βN (%) (%) (%) (%)
0.04 β0 94.9 (0.89) 82.9*(0.60) 94.3*(0.89) 94.6 (0.90)

β1 94.8 (0.00) 95.0 (0.00) 94.2*(0.00) 94.8 (0.00)
β2 94.9 (0.71) 94.9 (0.56) 94.2*(0.71) 94.5*(0.93)

0.25 β0 94.6 (0.00) 31.4*(0.33) 94.1*(0.00) 94.2*(0.02)
β1 94.8 (0.79) 94.9 (0.56) 94.3*(0.79) 93.8*(0.00)
β2 94.1*(0.01) 94.7 (0.01) 93.7*(0.01) 94.2*(0.03)

0.50 β0 95.1 (0.00) 28.7*(0.13) 94.6 (0.00) 94.7 (0.01)
β1 94.6 (0.05) 95.1 (0.18) 94.0*(0.05) 93.9*(0.84)
β2 94.6 (0.00) 95.4 (0.00) 94.1*(0.00) 94.2*(0.00)

0.83 β0 94.9 (0.11) 27.7*(0.63) 94.3*(0.11) 94.5*(0.09)
β1 94.7 (0.03) 95.4 (0.11) 94.1*(0.03) 94.3*(0.63)
β2 94.5*(0.01) 94.8 (0.00) 93.9*(0.01) 94.5*(0.05)

∗ Coverages significantly different from 95%. p-value ≤ 0.05.
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