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Abstract
Recent trends in U.S. official statistics are characterized by the rising cost of data collection and in-
creased nonresponse. At the same time, inexpensive data from commercial nonrandom web panels
have become readily available. This paper discusses the possibility of capitalizing on both sources
of information by calibrating data from web panels on estimates from conventional randomized
surveys. We treat the probability of being included in a web panel as similar to a response probabil-
ity and use propensity score adjustment (PSA) of sampling weights and generalized calibration to
produce g-weights, thus potentially making nonrandom samples representative of the general pop-
ulation. The simulation study discussed in this paper demonstrates that propensity score model or
calibration using covariates correlated with both web sample indicator and target variable can elim-
inate bias of estimates from web sample. Variances estimated using a two-phase sampling approach
match Monte Carlo variances of point estimators. If the web panel inclusion probability depends
on the target variable Y , bias can be removed by using Y as an instrumental variable and calibrat-
ing on a closely correlated covariate. However, this approach may lead to a significant increase in
variances. Conclusions of the simulation study were validated by applying the methods used in that
study to a real web sample representing a subset of the National Health Interview Survey (NHIS)
questions. The NHIS public-use file was used as an auxiliary for calculating estimates from the web
sample data and for their subsequent validation. The g-weight adjusted estimates from the web and
random NHIS samples matched within the limits of statistical significance.

Key Words: web panel, propensity score adjustment, generalized calibration, instrumental vari-
able, informative nonresponse, two-phase sampling

Introduction

As with the trend in statistics in general, the National Center for Health Statistics (NCHS)
has recently experienced rising costs and growing nonresponse on questionnaires for the
National Health Interview Survey (NHIS). One of the reasons is the long questionnaire and
consequent burden falling on respondents. Simultaneously, rapid proliferation of commer-
cially maintained web panels offers an expedient and relatively inexpensive way of collect-
ing data through web surveys. The obvious disadvantage of these data sources is that they
are in many cases collected from nonrandomly selected samples and therefore may not be
representative of the general population. The difficulties of producing population estimates
from web survey data were reported by Chmura et al. (2013), DiSogra et al. (2011) and
Dever et al. (2008).
Recently, an NCHS team of methodologists decided to test the possibility of producing
national estimates for some of the NHIS variables using data collected from a web sur-
vey. One of the commercial web panel vendors was selected to collect data for a subset
of NHIS questions, while the same data were simultaneously collected using the regular
NHIS random sample. This NHIS questionnaire was treated as consisting of two sets of

The findings and conclusions in this paper are those of the authors and do not necessarily represent the
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questions, providing data for both core and detail variables. Core questions of a more gen-
eral type serve as a gateway to a group of detailed questions, which are usually focused on
more specific aspects of the studied characteristics. Since survey participants are presented
with detailed questions conditionally as a result of giving certain answers to core questions,
these two sets of variables must be strongly correlated. The hope is that these correlations
can be utilized to produce reliable estimates of population parameters for detail variables
from web panel data. Because detail variables were collected from both web and regular
NHIS surveys, it was possible to use the data to verify a proposed estimation methodology.
To recruit web panelists, the vendor utilized a protocol that can be characterized as a two-
phase stochastic process. Potential respondents were initially contacted using random digit
dialing. A subset of the contacted people, limited by access to the Internet and email sys-
tems and other unknown factors, might agree to join a web panel. The web panel is subject
to attrition as well. As a result, the distribution of web panelists by demographic and other
characteristics may differ from the general population. Dever et al. (2008) argued that using
random digit dialing for initial contact may provide better coverage of various demographic
groups than using a purely volunteer web panel.
The vendor fielded the NHIS web survey to a subset of the available panelists specially
selected using stratified sampling, so the resulting web sample was more or less balanced
with respect to the general population. Because the recruitment rate of the web panel varied
mostly by age, race and ethnicity, and education level, these variables were used to define
stratification cells. As with regular surveys, web surveys are subject to unit and item nonre-
sponse. For the NHIS web survey, average unit response rate was below 25% and differed
greatly by the same demographic strata. The vendor supplied post-stratification weights,
calculated using a set of demographic variables. These weights may provide for unbiased
estimation of some of the population parameters, but this cannot be stated unequivocally
because of unknown mechanisms of the panel recruitment probability and survey nonre-
sponse. This uncertainty leaves the possibility of biased estimates and requires additional
study focused on specific target variables.
Since data collection using web panels depends on unexplained recruitment and response
mechanisms, it is natural to consider estimation methods developed for regular nonre-
sponse adjustment. Little (1986) conducted simulations to compare performance of the
three methods: propensity-score adjustment (PSA) of sample selection weights, imputa-
tion of the outcome variable within adjustment cells defined by the response model, and
post-stratification, which is a particular case of calibration. Imputation was found to be
superior to other methods because it resulted in less bias and greater efficiency. Imputation
of missing data requires a separate model for every outcome variable and is widely used
for estimating basic population characteristics in case of item nonresponse and for various
analytical purposes; see Little and Rubin (1987) and Schenker et al. (2010). PSA relies
on a modeling response probability conditional on covariates available for both responding
and non-responding units. If this model is correctly specified, PSA is proved by Kim and
Kim (2007) to be asymptotically unbiased and consistent for any outcome variable. Deville
and Sarndal (1992) proposed a generalized calibration theory for the unified treatment of
post-stratification, raking, and generalized regression estimator (GREG); see also Sarndal
(2007). Generalized calibration was initially proposed as a method to reduce the variance
of the Horwitz-Thomson estimator in the case of complete data. It utilizes covariates avail-
able for sampled units and their finite population totals available from the external sources
to produce modified sampling weights by calibrating weighted sample totals of auxiliary
covariates to their population totals. Application of the same routine in the case of nonre-
sponse was described in Sarndal and Lundstrom (2005) and Kott (2006). Extension of gen-
eralized calibration utilizing instrumental variables, discussed in Kott and Chang (2010),
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Kott (2006), allows in principle handling the situation of informative nonresponse, when
the response probability directly depends on the target variable. This is because instru-
mental variables need to be observed only on the respondents and their population totals
are not used for calibration. Generalized calibration was shown by Kott (2006) to produce
an unbiased and consistent estimator of population parameters if the calibration covariates
and instrumental variables are good predictors of outcome variable and response indicator.
Combining different nonresponse adjustment methods is also possible. Haziza and Lesage
(2016) argue that the two-step procedure, using PSA on the first step to model the non-
response mechanism and generalized calibration on the second step, is more effective at
eliminating potential bias due to model misspecification, compared with one-step calibra-
tion. The two-step procedure allows for sophisticated modeling of the response probability
and, therefore, is more flexible than one-step calibration, which is restricted to the general-
ized linear model with some form of link function.
Estimation methods for bias reduction in case of nonresponse assume correct models for
response probability or outcome variables, but they are difficult to identify. The same is
expected for estimates from web samples. Any improvement of robustness of these meth-
ods to model misspecification would greatly improve the chances of using web sample data
for reliable estimation of population parameters. Bethlehem (1988) and Haziza and Lesage
(2016) express bias of estimates of totals as a correlation between residuals of models for
response indicator and target variables. This provides support for the accepted interpreta-
tion of “double robustness” property of estimation methods in case of nonresponse, which
allows misspecification of one of these two models if another is correct. The same ex-
pression for bias suggests another understanding of double robustness: Each of these two
models should only specify dependencies on covariates which are also relevant to the other
model. This property of a response propensity model was noted in review by Brick (2013).
Accounting for any other covariates, no matter how relevant they are to just one of the mod-
els, should not affect the bias of estimates from nonrandom samples for a specific outcome
variable.
In Section 1 of this paper, the modified PSA of sampling weights was derived for the web
samples. It involves modeling the web sample inclusion indicator on the dataset combining
the web sample and the randomized NHIS reference sample utilizing the core variables
available in both samples. It produces the set of weights projecting the web sample total to
the weighted total over the reference NHIS sample. In this sense, the proposed PSA is sim-
ilar to Sarndal’s generalized calibration. This similarity suggests using the same expression
in both cases for variance estimation from Chapter 11 of Sarndal and Lundstrom (2005).
Section 2 presents the results of simulations demonstrating the similarity of PSA and gen-
eralized calibration estimators when used with web sample data. The variance estimation
procedure is validated by comparing estimated standard errors with Monte Carlo variability
of estimates over the simulations and by calculating the coverage of the finite population
parameter by the estimated confidence intervals. This proposed interpretation of double
robustness is clearly illustrated by showing the lack of bias of any estimator accounting
for covariates essential for both target variables and web sample indicator. However, if
the probability to belong to a web sample depends on a target variable, there is no set of
auxiliary covariates that could provide for unbiased estimation. In this case, unbiased esti-
mates are possible only when the outcome variable is used as the instrumental variable in
the generalized calibration framework. In Section 3, generalized calibration estimates of
population means for two detail variables from the real web sample data were validated by
comparison with regular NHIS estimates. Estimates of totals of the selected demographic
and core covariates from the reference NHIS sample were used for calibration. Model co-
variates were selected to minimize conditional correlation between the outcome variable
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and the web sample inclusion indicator. It was demonstrated that such criteria, following
from the notion of double robustness, provides for a reliable inference procedure. In con-
clusion we discuss the feasibility and challenges of producing reliable estimates from web
sample data.

1. PSA estimator in case of web samples and its similarity to generalized calibration

The PSA of sampling weights to reduce bias of estimates in case of nonresponse requires
modeling the sample unit response indicator Ri on the combined sample of respondents
and non-respondents utilizing covariates Xi available for all sampled units:

Pr (Ri = 1|Xi = xi) = φ (xi) = φi (1.1)

Estimates of the propensity score φ̂ (xi) may be obtained by parametric [Little (1986)] or
non-parametric methods [Da Silva and Opsomer (2009); Phipps and Toth (2012)] and used
in the PSA estimator of population total [Brick (2013); Haziza and Lesage (2016)]:

t̂NRPSA =
∑
i∈sr

diφ̂
−1
i yi (1.2)

where di is sampling weights before nonresponse and summation goes over the sample
of respondents sr. Estimator t̂NRPSA is proved by Kim and Kim (2007) to be unbiased and
consistent if the propensity score φ̂ (xi) is estimated from the correct model.
A similar expression can be derived for web samples. Every unit of the web sample sW
is characterized by the set of variables

(
Xi, d

W
i , yi

)
, where Xi is demographic and core

covariates, dWi is possible web sample weights and yi is the target detail variable. Due to
the nonrandom nature of web sample selection, there is no guarantee that weights dWi can
provide for unbiased estimation of any detail variable.
A reference sample sH , selected following usual randomized sampling, has detailed ques-
tions omitted from the questionnaire to reduce the burden on respondents, so the target
variable is missing

(
Xi, d

H
i

)
. Sampling weights dHi provide for unbiased estimation of

any population characteristic. The question becomes: how to estimate the finite population
total of target detail variable yi from web and reference samples.
This question can be answered by following the similarity between nonresponse in random-
ized surveys and nonrandom recruitment to web panels. In both cases, the final sample is
drawn in two stages. In the case of nonresponse, a random sample s of size n is first drawn
from a population U of size N , so each population unit may be drawn with probability πi.
Then it is assumed that a sample of respondents sR of size nR is drawn from the random
sample according to a Poisson sampling, when each unit is drawn independently with the
probability of selection depending on a set of covariates φR (Xi). The described two-stage
process can be presented as:

U (N)
πi−→ s (n)

φR(Xi)−−−−→ sR (nR) (1.3)

The lack of bias of the nonresponse PSA estimator (1.2) is easily demonstrated:

Eπ
(
ER
(
t̂NRPSA

))
= Eπ

(
ER

(∑
i∈U

IiRiyi
πiφR(Xi)

))
= Eπ

(∑
i∈U

IiER(Ri)yi
πiφR(Xi)

)
=∑

i∈U

Eπ(Ii)yi
πi

=
∑
i∈U

yi
(1.4)

The sample inclusion indicator Ii is defined for the population, and survey response indi-
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cator Ri is defined for the units of random sample before nonresponse. The propensity to
respond to a survey is defined conditionally on covariates Xi as:

φR (Xi) = nR (Xi)/n (Xi) (1.5)

and can be estimated by modeling the response indicator Ri on the sample s data before
nonresponse. Consequently, response propensity φR (Xi) should not depend on sampling
weights di = π−1

i . This is consistent with the conclusions of Little and Vartivarian (2003),
whose simulations have shown that “weighting the response adjustment rates by the sam-
pling weights is either incorrect or unnecessary. It is incorrect, in the sense of yielding
biased estimates of population quantities if the design variables are related to survey non-
response; it is unnecessary if the design variables are unrelated to survey nonresponse.”
Compared with the situation of nonresponse, the two stages of selecting a web sample oc-
cur in a reversed order. The population of the prospective web panelists UW of size NW

can be imagined resulting from the Poisson sampling from the general population U of size
N with probabilities φW (Xi) depending on covariates. At the second stage, web sample
sW having nW units is drawn at random from the population UW according to a certain
design, so each unit is drawn with probability πi. Sampling with different probabilities at
the second stage actually happens when a web panel vendor decides to field a survey to a
certain subset of available web panelists to better satisfy the goal of a specific survey. The
web sample selection can be presented as the following two-stage process:

U (N)
φW (Xi)−−−−−→ UW (NW )

πi−→ sW (nW ) (1.6)

Lack of bias of the PSA estimator from web samples is proven similarly to (1.4), but ex-
pectations over the random sample selection and the Poisson response are taken in reverse
order:

EW
(
Eπ
(
t̂WPSA

))
= EW

(
Eπ

(∑
i∈U

IiWiyi
πiφW (Xi)

))
= EW

(∑
i∈U

WiEπ(Ii)yi
πiφW (Xi)

)
=∑

i∈U

EW (Wi)yi
φW (Xi)

=
∑
i∈U

yi
(1.7)

Random variable Ii indicates selected web sample units of the population UW of potential
web panelists. IndicatorWi points to units of population UW among the general population
U . Estimation of conditional probability of being a web panelist:

φW (Xi) = NW (Xi)/N (Xi) (1.8)

requires modeling the indicator variable Wi on general population U with covariates Xi.
Alternatively, the propensity φW (Xi) may be defined by considering the combined popu-
lation UC = UW ∪ U and the new indicator variable Qi on this population:

Qi =

{
1, i ∈ UW
0, i ∈ U (1.9)

Some of the units of the original population U are duplicated in the population UC , since
they belong to both U and UW . Index i running through the combined population UC
differentiates such units. One of each pair of duplicated units will have Qi = 1, while
another will have Qi = 0. Nevertheless, the probability that indicator Qi = 1 can still be
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defined as:

qW (Xi) =
NW (Xi)

NW (Xi) +N (Xi)
=

φW (Xi)

1 + φW (Xi)
(1.10)

Note the relation of this probability to the probability to be a prospective web panelist (1.8),
which is the ultimate goal of the estimation effort. In principle, qW (Xi) can be estimated
by modeling indicator Qi on the combined population UC .
The fact that this population is unavailable may be circumvented by considering the ran-
domly selected reference sample sH from the general population U , which shares covari-
ates Xi with the web sample sW . Having populations NW (Xi) and N (Xi) estimated
from the web and reference samples sW and sH , the sample-based definition of propensity
qW (Xi) (1.10) becomes:

qsW (Xi) =

∑
sW ,Xj=Xi

dW,j∑
sW ,Xj=Xi

dW,j +
∑

sH ,Xj=Xi

dH,j
(1.11)

Here dW and dH are sampling weights associated with web and reference samples, ran-
domly drawn from the corresponding populations. According to sampling theory [ Sarndal
et al. (1992)], qsW (Xi) is an unbiased and consistent estimator of qW (Xi). In turn, sample
probability qsW (Xi) may be estimated by modeling indicator variable Qi (1.9) on the com-
bined sample sC = sH∪sU . Estimated probability q̂sW (Xi), substituted in (1.10), produces
the unbiased estimator of probability of being a web panelist (1.8):

φ̂−1
W (Xi) =

1− q̂sW (Xi)

q̂sW (Xi)
(1.12)

Having this probability estimated, the unbiased estimator of the population total from web
sample data (1.7) may be expressed similarly to the corresponding estimator in case of
nonresponse (1.2):

t̂WPSA =
∑
i∈sW

dW,iφ̂
−1
W (Xi) yi =

∑
i∈sW

dW,i
1− q̂sW (Xi)

q̂sW (Xi)
yi =

∑
i∈sW

dW,iôi (Xi) yi (1.13)

where ôi = (1− q̂sW (Xi))/q̂
s
W (Xi) are the estimated odds of belonging to the web sample

sH for units of the combined sample sC .
Expressions (1.10, 1.11) support finding (a) from a simulation study conducted by Valliant
and Dever (2011) “that estimators of means based on estimates of propensity models that
do not use the weights associated with the reference sample are biased even when the prob-
ability of volunteering is correctly modeled.”
To summarize, PSA of sampling weights in case of nonresponse can be modeled from the
available sample before nonresponse without accounting for sampling weights. In the case
of web samples, as it explicitly follows from the expression (1.11), modeling correspond-
ing adjustments requires an additional reference sample, and must account for the sampling
weights in both the reference and web samples.
However, we make a conjecture that the estimate of total (1.13) does not ultimately de-
pend on the web sample weights dW,i, if these weights are simultaneously ignored in both
modeling of qsW and in (1.13). The last fact can be easily shown for the saturated model
qsW (Xi). In this case, index i designates adjustments cells, for which it is assumed that
web and reference samples have nW,i and nH,i units with identical weights dW,i and dH,i.
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Expression (1.13) then becomes:

t̂WPSA,Sat =
∑
i∈sW

nH,i
nW,i

dH,iyi (1.14)

Simulations described in Section 2 demonstrate independence of the estimates of total of
the web sampling weights (supporting results are not presented here). If proved to be
the case, this independence means that any method of a web sample data collection is
suitable for estimation of population characteristics, as long as basic demographic groups
are reasonably well represented, so estimated propensity scores φ̂W (Xi) are not very small.
In application to web sample data, the estimator t̂WPSA is very similar to the generalized
calibration estimator of Deville and Sarndal (1992):

t̂WC =
∑
sW

dWi F
(
λ̂Twxi

)
yi (1.15)

Choice of calibration function F
(
λ̂Twxi

)
corresponds to different calibration methods,

such as generalized regression estimator (GREG), raking, etc. The four most used func-
tions are described by Haziza and Lesage (2016) and implemented in statistical software for
calibration. Parameters λ̂Tw are determined by minimizing deviation of the adjusted weights
wi = dWi F

(
λ̂Twxi

)
from the original sample weights dWi with additional calibration con-

straints on population totals for covariates X:

tx =
∑
sW

dWi F
(
λ̂Twxi

)
xi (1.16)

In the situation of web and reference samples, population totals tx in calibration equations
(1.16) may be substituted with their estimates from the reference sample t̂x =

∑
sH
dHi X

H
i .

Then the PSA (1.13) and generalized calibration (1.15) estimators are very close in the
sense that they both produce sampling weight adjustments for every unit of a web sample:

v̂i =

{
ôi = (1− q̂i)/q̂i ,PSA

F
(
λ̂Twxi

)
, Calibration

(1.17)

Note, that expression (1.13) holds asymptotically for any variable y, while calibration
(1.16) holds exactly, but only for covariates X.
Despite these similarities, motivations for covariate selection for the PSA model and gen-
eralized calibration are different. Covariates in (1.13) must be explanatory of the indicator
variableQ, while covariates for GREG and other calibration estimators must correlate with
the target variable [Sarndal et al. (1992)]. This apparent dichotomy is explained by the de-
pendence of nonresponse bias of PSA and calibration estimators on the correlation between
the residuals of estimated response propensity and outcome variable models, first noted by
Bethlehem (1988). Sarndal and Lundstrom (2005) and Haziza and Lesage (2016) give the
following expression for the bias of the calibration estimator:

Bias
(
tNRC

)
≈ −

∑
i∈U

(
1− ϕiϕ̂−1

i

) (
yi − xTi B

)
(1.18)

where ϕi is the true response propensity, ϕ̂−1
i = F

(
λ̂ix

T
i

)
, and B is the regression coef-

ficient calculated for the population.
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Bias is zero if either of the models for response propensity or target variable y is cor-
rect, because corresponding residuals are randomly distributed and therefore, uncorre-
lated with residuals from the other model. This phenomenon is known in the literature
as “double robustness”. It can be formulated using random variables ∆ϕi = ϕi − ϕ̂i and
∆yi = yi−xTi B, representing residuals of both models. In these terms, expression for bias
becomes Bias

(
tNRC

)
∼ cov (∆ϕ,∆y). Accepted interpretation of double robustness sug-

gests that unbiased estimates are possible when either E (∆ϕ|Z) = 0 or E (∆y|X) = 0,
if covariates Z and X are used by the propensity and target variable models.
It can be pointed out that expression (1.18) allows for more general interpretation of double
robustness, which does not require correctness of either model. Suppose that covariates of
the response propensity model Z = (Z0, U) and of the target variable model X = (X0, U)
are correlated by a function of a covariate vector U , such that cov(Z,X) = fZ,X (U)
and X0 ⊥ Z0. Here and below, a function of a random variable is actually treated as
a function of its realized value. For zero bias, it is sufficient if residuals of both mod-
els remain dependent on two uncorrelated sets of covariates: E (∆ϕ|Z) = f∆ϕ (Z0) and
E (∆y|X) = f∆y (X0). In other words, only accounting for covariates U for both mod-
els is required for unbiased estimates. Such relaxed understanding of double robustness
in case of nonresponse was noted by Brick (2013) and will be demonstrated for simulated
web samples.
Suggested interpretation of the double robustness allows for more robust modeling and
also may be used to guide the process of covariate selection for either sample indicator Q
or the target variable model. These variables must be independent conditionally on model
covariates X:

f (y|X, Q = 1) = f (y|X) (1.19)

They remain correlated if selected covariates are not adequate for bias reduction. This
correlation can be estimated from the following regression:

Y ∼ XβX +QβQ,
βQ = cov (Y,Q|X)

(1.20)

Because the target variable is usually unavailable for the reference sample, this criteria
cannot be applied in practice for selecting covariates. In the NCHS experiment, however,
target variables are available for both web and reference NHIS samples. Expression (1.19)
will be first checked in simulations and then used to justify covariate selection for the real
data, just to demonstrate the possibility of using demographic and core covariates to reduce
bias of estimates for selected detail variables.
Making inferences from web samples requires the ability to estimate variances and confi-
dence intervals. Sarndal and Lundstrom (2005) generalized a well-known variance estima-
tion formula for the GREG estimator to the case of nonresponse. Samples with nonresponse
were considered resulting from a two-stage selection process: random sampling followed
by nonresponse, which is treated as a Poisson sampling. The resulting estimator of full
variance is a sum of the sampling variance of the GREG estimator and variance due to non-
response. Estimates of these variances in cases of nonresponse, presented by expressions
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(11.3-6) in Sarndal and Lundstrom (2005), can be applied to web samples:

V̂
(
t̂WC
)

= V̂SAM + V̂NR (1.21a)

V̂SAM =
∑∑

sW

(
dWk d

W
l − dWkl

)
(vkêk) (vlêl)−∑

sW
dWk
(
dWk − 1

)
vk (vk − 1) (êk)

2 (1.21b)

V̂NR =
∑

sW
vk (vk − 1)

(
dWk êk

)2
(1.21c)

where êk = yk − xkB̂ are residuals and B̂ =
(∑

sW dWk vkzkx
T
k

)−1 (∑
sW dWk vkzkyk

)
are model coefficients. In the conducted simulations and application to real data, it was
assumed that stratified simple random sampling would be the second stage of web sample
selection. Application of (1.21a) in such a case is described in the section devoted to a
simulation study.
Instrumental covariates zTk descriptive of nonresponse may be used for weight adjustments

F
(
λ̂Twzi

)
instead of calibration covariates xTk assumed to be descriptive of a target vari-

able. This contradicts the notion of double robustness in stating that only covariates relevant
to explaining both sample indicator Q and the target variable are relevant for bias correc-
tion. However, instrumental covariates may be the only way to deal with bias in the case
of informative web sample selection, when the web sample indicator explicitly depends on
the target variable:

Pr
(
Qi = 1|Xi = xi, d

H
i , d

W
i , yi

)
= qi (1.22)

In this case, no set of covariates Xi can provide for bias correction. Kott and Chang (2010)
have shown that bias can only be reduced when the target variable is employed as an in-
strumental variable. Using instrumental variables to handle bias caused by informative
selection of web samples is demonstrated in simulations below.

2. Performance of PSA and calibration estimators on simulated web samples

A population of sizeN = 10, 000 was simulated with two auxiliary variables and one target
binary variable (X1, X2, Y ). X1 plays the role of a “demographic” covariate (such as race),
X2 represents a possible core covariate (such as a response to the question, “Have you ever
been told that you have asthma?”) and Y can be thought of as a detail target variable corre-
lated with X2 (such as a response to the question, “Do you take asthma medication?”). The
population was unevenly stratified by X1 and evenly by X2, as N (X1 = 0) = 0.8N and
N (X2 = 0) = 0.5N . Reflecting the natural dependence between core and detail variables
in real data, Y was set to 0 for X2 = 0, while for X2 = 1, it was randomly generated from
a Bernoulli distribution with probability pY (X1).
From this population, a reference sample sH of size nH = 1000 was selected using strat-
ified random sampling without replacement (STSR WOR). Stratification by the “demo-
graphic” variable was different than in population nH (X1 = 0) = 0.6nH . Therefore, units
of the reference sample were weighted depending on X1 as dHi (X1) = N (X1)/nH (X1).
The web sample sW was selected in two stages. At the first stage, a simple random sample
of size nW = 1000 was selected, stratified by X1 as nW (X1 = 0) = 0.9nW . As a result,
weights dWi (X1) were associated with web sample units. In the second stage, an additional
Poisson-like selection of the web sample units with probability pWi (X1i, X2i, Yi) was used
for mimicking the web panel recruitment and web survey nonresponse processes.
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Simulations were conducted for the following cases defined by the web sample selection
probabilities pWi (X1i, X2i, Yi) and population distributions of the binary target variable
pY (X1). In all cases, the target variable Y depends on X2 due to the natural correla-
tion between core and detail variables, while web sample identifier Q always depends
on demographic variable X1 because of differences in stratification. Notations for dif-
ferent simulated cases show the resulting dependence of Q and Y on covariates (X1, X2).
When dependence on one of the covariates is missing, it is indicated by “−” (for example,
Q (X1,−) in Case 2). In Case 5 of informative web sample selection, target variable Y
was added to the regular set of covariates Q (X1,−, Y ).
Case 1. Uncorrelated Y and Q: Y (−, X2) ;Q (X1,−).
pY (X1) = 0.2; pWi (X1i, X2i, Yi) = 0.5 ((1−X1i) + 0.5X1i)
Case 2. Y and Q are correlated by X1: Y (X1, X2) ;Q (X1,−).
pY (X1) = 0.2X1 + 0.6 (1−X1) ; pWi (X1i, X2i, Yi) = 0.5 ((1−X1i) + 0.5X1i)
Case 3. Y and Q are correlated by X2: Y (−, X2) ;Q (X1, X2).
pY (X1) = 0.2; pWi (X1i, X2i, Yi) = ((1−X1i) + 0.5X1i) (0.2 (1−X2i) + 0.6X2i)
Case 4. Y and Q are correlated by (X1, X2): Y (X1, X2) ;Q (X1, X2).
pY (X1) = 0.2X1+0.6 (1−X1) ; pWi (X1i, X2i, Yi) = ((1−X1i) + 0.5X1i) (0.2 (1−X2i) + 0.6X2i)
Case 5. Informative sampling: Y (−, X2) ;Q (X1,−, Y ).
pY (X1) = 0.4; pWi (X1i, X2i, Yi) = 0.5 (0.7 (1− Yi) + Yi)
In all of the cases, resulting size of the web samples fluctuated around nW ∼ 400.
Nsim = 800 reference and web samples were drawn from the simulated population in all
cases and the finite population mean Ȳ =

∑
U Yi/N was estimated using PSA and calibra-

tion estimators (1.13) and (1.15). Both estimators result in adjusting web sample weights
by v̂i (1.17), so estimates of the population mean become:

ˆ̄y
W

=
∑

sW
dWi v̂iyi/

∑
sW

dWi v̂i (2.1)

Weight adjustments v̂i for the calibration estimator were calculated using calib and gen-
calib functions of the R package sampling, made available by Tille and Matei (2015). It
is possible to select one of the four calibration adjustment functions F

(
λ̂Twxi

)
by spec-

ifying parameter method =c("linear","raking","truncated", "logit"). The
exponential form of adjustment function F

(
λ̂Twxi

)
= exp

(
λ̂Twxi

)
was selected, because

it corresponds to post-stratification by ”raking,” a method widely used by survey practition-
ers.
Double robustness was demonstrated by comparing the performance of estimators depend-
ing on all available covariates (X1, X2) with calibration estimators employing limited sets
of calibration covariates, either (X1,−) or (−, X2). The simple estimator of the mean
from the web sample data, ignoring all weights and adjustments, is also presented for com-
parison. The generalized calibration estimator using the target variable as the instrumental
variable is presented to demonstrate its advantage in the case of informative web sample
selection.
Different estimators of the mean were compared by calculating their relative biases over
the simulations:

RB
(

ˆ̄y
W
)

=

(
Nsim∑
s=1

ˆ̄yWs − Ȳ

)
/Ȳ (2.2)

Results, presented in Table 1, show almost identical performance of PSA and calibration
estimators utilizing the same set of covariates, even though the PSA estimator models web
sample indicator Q, while the calibration estimator calibrates on population totals of co-
variates correlated with target variable Y .
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They also support the relaxed interpretations of double robustness proposed at the end of
Section 1. For example, in Case 1 when variables Y and Q depend on different covariates,
even a simple MEAN(−,−) estimator produces unbiased estimates. In Case 2, variables
Y and Q depend on the same covariate X1. Estimator CAL(X1,−), which models Y (X1)
and leaves residuals E(Y ) = f(X2) dependent on X2 and does not model Q at all, pro-
duces unbiased estimates. Estimator PSA(−, X2), not presented in Table 1, was also used
for estimation in all simulated cases. Though it ignored dependence of Q (X1, X2) on X1

in Case 3, it still produced unbiased estimates because the outcome variable was indepen-
dent of X1. Other cases, like estimator CAL(−, X2) in Case 3, demonstrate more rigorous
“standard” interpretation of double robustness, requiring correctness of one of the models.
In Case 4, both variables Y and Q depend on (X1, X2). In this case, no estimator ignor-
ing either one of these variables could produce unbiased estimates. This provides implicit
support for both interpretations of double robustness.

Table 1: Relative bias (2.2) of PSA and calibration estimators depending on model/calibration
covariates. Simulations conducted for five cases of different dependences of sample indicatorQ and
target variable Y on designated “core” and “demographic” covariates.

Estimator
↼̂
y MEAN CAL CAL PSA CAL CAL

Simulation (−,−) (X1,−) (−, X2) (X1, X2) (X1, X2) (X1, Y )

Y (−, X2) ;Q (X1,−) 0.005 0.007 0.005 0.006 0.006 0.024
Y (X1, X2) ;Q (X1,−) 0.110 0.001 0.066 -0.005 -0.001 -0.007
Y (−, X2) ;Q (X1, X2) 0.508 0.510 0.005 0.008 0.006 NA
Y (X1, X2) ;Q (X1, X2) 0.668 0.503 0.068 -0.002 -0.003 -0.868
Y (−, X2) ;Q (X1,−, Y ) 0.323 0.322 0.222 0.223 0.222 -0.009

Table 2: Coverage of the population mean by the estimated 95% confidence intervals of the
calibration and PSA estimators. Simulations are conducted for five cases of different dependences
of sample indicator Q and target variable Y on designated “core” and “demographic” covariates.

Estimator
↼̂
y CAL CAL PSA CAL CAL

Simulation (X1,−) (−, X2) (X1, X2) (X1, X2) (X1, Y )

Y (−, X2) ;Q (X1,−) 0.93 0.93 0.91 0.93 0.94
Y (X1, X2) ;Q (X1,−) 0.94 0.81 0.92 0.92 0.91
Y (−, X2) ;Q (X1, X2) 0.33 0.93 0.91 0.92 NA
Y (X1, X2) ;Q (X1, X2) 0.0 0.74 0.93 0.91 0.0
Y (−, X2) ;Q (X1,−, Y ) 0.2 0.31 0.30 0.31 0.89

Coverage of the population mean by the estimated 95% confidence intervals of the calibra-
tion and PSA estimators in the conducted simulations is presented in Table 2. Variances
were estimated using expression (1.21a), assuming a two-stage sample selection process.
If the first stage of web sample selection is considered stratified simple random sampling,
both individual dk and pairwise dkl sampling weights are expressed through population size
Nh and sample counts nh in strata. Chapter 11 of Sarndal and Lundstrom (2005) presents
detailed expressions for variance estimates in formula (11.7-11.9). Weight adjustments vk
corresponding to Poisson sampling at the second stage of web sample selection for PSA
and calibration estimators were estimated using (1.17). Calculated confidence intervals
always provide for close to nominal coverage when model/calibration covariates include
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those correlating with both sample indicator Q and target variable Y . Modest undercover-
age may be explained by a possible underestimation of standard errors.
The last simulated case of informative sample selection Y (−, X2) ;Q (X1,−, Y ) is a no-
table exception to the described standard behavior of the relative bias and coverage of the
final population mean. No set of covariates can help to obtain a reasonable inference, unless
the target variable itself is used as an instrumental variable of the generalized calibration
estimator. However, this estimator has a much larger variance and is very unstable for all
other simulated cases.
As shown in (1.20), covariate selection can be validated by estimating residual correlation
between the target variable and the web sample indicator, conditional on the selected co-
variates. The results of t statistic for testing of the null hypothesis of these correlations for
simulated data are presented in Table 3.

Table 3: t-statistics of null-hypothesis testing of conditional correlation βQ (X) = cov (Y,Q|X)
(1.20) for different simulations scenarios

Simulation βQ (X1) βQ (X2) βQ (X1, X2)

Y (−, X2) ;Q (X1,−) 0.04 0.04 0.03
Y (X1, X2) ;Q (X1,−) 0.0 0.92 -0.02
Y (−, X2) ;Q (X1, X2) 2.68 0.05 0.04
Y (X1, X2) ;Q (X1, X2) 5.03 1.11 0.25
Y (−, X2) ;Q (X1,−, Y ) 2.63 2.24 2.24

Comparing Tables 1 − 3 clearly shows that the t-statistic is a good indicator of biased esti-
mates for a given set of model covariates. For example, in Case 2 of the simulations when
Q and Y are correlated only by X1, the t-statistic for βQ (X1) is close to 0, the calibration
estimator using just X1 has a low relative bias of 0.001 and almost nominal coverage of
0.94. At the same time, βQ (X2) = 0.92 indicates a relatively large residual correlation
between Q and Y , pointing to substantial (0.066) relative bias and lack of coverage (0.81)
of the corresponding estimator.

3. Calibration estimator in application to the real NHIS and web sample data:
Selection of calibration covariates, inference, and validation

The calibration estimator (1.15) was used to estimate population means for two detail target
variables ystill and ymyr, corresponding to the NHIS questions: “Do you still have asthma?”
and “Did you have an asthma attack in the past year?”. These detail variables are related to
the same core variable Xever

2 , corresponding to the gateway question: “Have you ever been
told by a doctor that you have asthma?”.
Though not the case in reality, in the conducted experiment, variables ystill and ymyr were
available for both web and reference samples. This fact was used to justify the selection
of model covariates by testing the null hypothesis of independence (1.19, 1.20) of the web
sample indicator Q and target variable. While ystill was independent of Q conditionally
on just Xever

2 , in the case of ymyr conditional independence was achieved by employing
additional covariates X1. Calibration on (Xever

2 ) should be optimal for ystill and insufficient
for ymyr, while calibration on (Xever

2 ,X1) should be excessive for ystill and optimal for ymyr:

Model ystill ymyr

Xstill = (Xever
2 ) Optimal (t = -0.44) Insufficient

Xmyr = (Xever
2 ,X1) Excessive Optimal (t = 0.47)
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Here X1 combines variables corresponding to the following NHIS questions:
Would you say your health in general is excellent, very good, good, fair, or poor?
Did you use a computer to look up health information in the last year?
Did you use a computer to schedule an appointment with a health care provider in the last year?
Have you delayed getting care for any reason in the last year?
Has it happened that you could not afford getting health care for any reason in the last year?
Inferences from the web sample data in demographic domains obtained using the calibra-
tion estimator were compared to direct estimates from the reference NHIS sample. Relative
errors were calculated similarly to relative bias (2.2) using estimates from the reference
sample ˆ̄yref as the “true” value. An analogue of simulated coverage of the “true” value
could be obtained by calculating t-statistics of pairwise tests comparing estimates from
web and random NHIS samples:

tstaty =
ˆ̄yweb − ˆ̄yref√

var
(
ˆ̄yweb

)
+ var

(
ˆ̄yref

) (3.1)

var
(
ˆ̄yweb

)
is calculated using (1.21a) and var

(
ˆ̄yref

)
is the regular variance of direct esti-

mates from complex surveys [ Sarndal et al. (1992)]. The value
∣∣tstaty

∣∣ < z1−0.05/2 = 1.96
indicates the absence of statistically significant differences between domain estimates ˆ̄yweb
and ˆ̄yref within 95% confidence limits.
Calibration estimates of ˆ̄ystill and ˆ̄ymyr in demographic domains from web sample data
using optimal, excessive, and insufficient sets of covariates are compared to estimates from
the regular NHIS sample in Table 4.

Table 4: Relative error and pairwise t-test for domain estimates obtained using optimal and ex-
cessive sets of calibration covariates according to conditional correlation criteria (1.20). *Estimates
shown in red are significantly different between web and reference samples.

Target variable ˆ̄ystill ˆ̄ymyr
Model Xstill = (Xever

2 ) Xmyr = (Xever
2 , X1) Xmyr = (Xever

2 , X1) Xstill = (Xever
2 )

Optimal Excessive Optimal Insufficient
Relative Pairwise Relative Pairwise Relative Pairwise Relative Pairwise

Domain error t-test error t-test error t-test error t-test
All -0.02 -0.4 -0.28 −7.1∗ -0.11 -1.5 0.3 4.1∗

Sex
Male 0.22 2.4 -0.01 -0.1 0.29 1.6 0.68 4.0
Female -0.13 -2.6 -0.41 -8.4 -0.28 -3.5 0.13 1.5

Age
18 - 34 -0.07 -0.8 -0.39 -4.8 -0.25 -1.8 0.36 2.3
35 - 54 0.23 2.6 -0.22 -2.7 -0.05 -0.4 0.52 3.6
55 and over -0.19 -2.5 -0.23 -2.9 -0.05 -0.4 0.03 0.3

Race and ethnicity
Non-Hispanic white -0.16 -3.1 -0.37 -7.1 -0.28 -3.3 0.06 0.6
Non-Hispanic black 0.21 1.5 -0.19 -1.4 0.19 0.8 0.80 3.2
Non-Hispanic other -0.03 -0.1 -0.10 -0.4 0.49 1.0 0.52 1.3
Hispanic 0.53 3.1 0.02 0.1 0.23 0.9 0.95 3.5

Education
High school or less -0.31 -4.5 -0.34 -4.5 -0.10 -0.8 -0.06 -0.6
Associate degree, some college 0.04 0.5 -0.26 -3.2 -0.24 -2.1 0.22 1.7
Bachelor’s degree or higher 0.36 3.5 -0.22 -2.4 0.08 0.5 1.02 5.2

Income
$0 − $49,999 -0.49 -9.2 -0.65 -12.8 -0.52 -6.5 -0.30 -3.5
$50,000 − $99,999 0.09 0.9 -0.22 -2.3 -0.05 -0.3 0.52 2.9
$100,000 and over 0.27 2.1 -0.08 -0.6 0.16 0.7 0.59 2.5
Average 0.03 -0.4 -0.25 -3.8 -0.03 -0.9 0.40 2.0
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Estimates in some of the demographic domains from the web and NHIS samples are sta-
tistically different, even for optimally selected covariates. However, optimal covariate se-
lection substantially improves estimates for complete samples and has a very positive ef-
fect on errors and t statistics averaged over all domains. Estimates ˆ̄y

myr (
Xstill

)
based on

an insufficient set of calibration covariates show persistent positive shifts, while estimates
ˆ̄y

still
(Xmyr) using an excessive set of calibration covariates are smaller on average than es-

timates from the reference NHIS sample. The last observation is quite unexpected, given
the general understanding that adding excessive covariates to the nonresponse adjustment
model may increase variance of the estimates, but should not cause any extra bias. This
result requires further investigation.
Estimates of standard errors (not presented in Table 4) do not show noticeable dependence
on selected calibration covariates.

4. Conclusions and prospects of estimating general population characteristics from
web sample data

This paper proposed using the PSA estimator for making inferences from a combination
of web and reference samples data. If the propensity score model is correct and the web
sample size is sufficiently large, it converges to the regular Horwitz-Thompson estimator
from the reference sample. Its functional similarity to the calibration estimator, calibrating
on estimates of covariates’ totals from the reference sample, suggests that the variance ex-
pression for the calibration estimator in Sarndal and Lundstrom (2005) can be used for the
PSA estimator. Inferences by both estimators checked in the simulation study proved to be
very close, even though the PSA estimator depends on modeling the web sample indicator,
while covariates of the calibration estimator must correlate with the target variable. This
observation, and also the expression for bias of both estimators as the correlation between
residuals of propensity and target variable models (1.18), suggests that the conditional cor-
relation of the web sample indicator and target variables can be used as criteria for variable
selection. Successfully tested in simulations, this criteria appeared to work in the course
of the NCHS experiment. This is good evidence that web sample data can be used for in-
ferences, at least for the two asthma-related NHIS variables under consideration, if reliable
criteria for selecting model covariates are available.
Unfortunately, correlation between the target and web indicator variables cannot be easily
calculated in practice because the target variable is usually not available for a reference
sample. It remains the subject of future research to find some analogue of this criteria
that can be applied in reality for model checking. Better estimates from web samples can
be achieved by extending the class of estimators through the use of mixed models, non-
parametric regression, and machine learning, as suggested by Breidt and Opsomer (2016).
Such extensions of the basic PSA and calibration estimators can be developed in the appli-
cation to web samples.
Estimation from nonrandomly selected web samples is prone to substantial biases. Relia-
bility of the proposed estimation methodology using combined web and reference samples
ultimately depends on the ability of the shared core and demographic covariates to explain
correlation between the web sample indicator and target variables of interest. Thought-
ful allocation of the corresponding questions between web and reference surveys and the
development of reliable estimation methodologies may facilitate the estimation from futur-
istic data structures collected from a random reference survey bonded to a constellation of
web surveys by strong covariates, as shown in Figure 1.
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Figure 1: Web surveys complementing traditional random survey
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