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Abstract
This paper explores methods of spatial modeling to identify opportunities for reduced fieldwork in

census Address Canvassing operations. The purpose of Address Canvassing is to improve the cover-
age and quality of the Census Bureau’s address list, the Master Address File (MAF), prior to census
enumeration. Various modeling techniques such as zero-inflated negative binomial regression have
been explored in the past to predict areas with many coverage errors on the MAF and identify blocks
which would likely contain change (and those which would not). Such information could inform a
reduction to the in-field canvassing workload and reduced field costs. We use a recently developed
spatial mixed effects model with dimension reduction, and take New York County as an example.
It is seen that accounting for spatial dependence has a large effect on the estimated coefficients,
including which predictors are significant. The impact to predicted values is more subtle, with the
spatial model producing slightly more accurate predictions.

Key Words: Listing; Coverage Error Models; Address Canvassing; Census; Spatial Statis-
tics, Address Based Sampling.

1. Introduction

The purpose of census Address Canvassing operations is to ensure that the addresses in
the Master Address File (MAF) are as accurate as possible before Census enumeration.
In 2010, a full-scale Addressing Canvassing operation was conducted in the field (Ad-
dress List Operations Implementation Team, 2012). The use of statistical modeling has
been researched as a part of the effort to redesign Address Canvassing operations in prepa-
ration for the 2020 Census (Boies et al., 2012). Statistical models were explored to identify
which blocks would benefit from a field canvassing and which blocks already had suffi-
ciently accurate complete addresses on the MAF.

In 2014, the MAF Model Validation Test (MMVT) was conducted to assess the perfor-
mance of select statistical models as part of the 2015 Address Validation Test (U.S. Cen-
sus Bureau, 2016). The MMVT was based on a nationally representative sample of 10,100
blocks — 10,000 blocks with preexisting housing units and 100 blocks without preexisting
housing units — drawn to conduct an operation where listers made changes to the address
list by verifying, correcting, adding and deleting addresses.1 The results of this dependent
listing were used to evaluate the performance of various statistical models, including both
logistic and zero-inflated negative binomial regression. From this test, it was determined
that the statistical models put forward did not perform well enough to identify areas of
change to use operationally.
∗Decennial Statistical Studies Division, U.S. Census Bureau, Washington, DC, 20233, U.S.A.
†Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC, 20233, U.S.A
Disclaimer: This paper is released to inform interested parties of ongoing research and to encourage

discussion of work in process. Any views expressed are those of the authors and not necessarily those of the
U.S. Census Bureau.

1The 100 blocks without preexisting housing units were excluded from this analysis because these were
obtained as a convenience sample and do not have sampling weights.
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In this paper, we explore improving previous modeling techniques by incorporating a
spatial component. Traditional statistical modeling techniques assume the independence
of observations in space; however, this may not always be a correct assumption, as spatial
patterning (autocorrelation) may occur. Previous models are seen to feature residuals with
large spatial autocorrelation, which motivates shifting focus to spatial statistical modeling
methods. Spatial models use effects from neighboring areas to account for spatial auto-
correlation among observations. Spatial modeling techniques will potentially give more
accurate predicted values, give smaller residual values, and reduce spatial autocorrelation
among these residuals. They will also help to distinguish which predictors are actually sig-
nificant and which may only be significant/not significant due to their spatial dependence.
We explore Census tabulation block level modeling using Bayesian methodology. Condi-
tional autoregressive (CAR) models (Lee, 2013) have long been used to represent spatial
dependence between observations in regression models, but become computationally in-
tensive when there are many areal units, as required by this application. Therefore, we con-
sider the sparse spatial generalized linear mixed model (SGLMM) introduced by Hughes
and Haran (2013) to reduce the dimension of the problem. This paper focuses specifically
on the analysis of New York County to demonstrate the methodology, but future work could
expand to larger geographies.

The rest of the paper proceeds as follows. Section 2 introduces the baseline zero-
inflated negative binomial model based on previous modeling work, as well as a non-spatial
Poisson GLMM. Section 3 describes spatial modeling methods used in the CAR model
and the sparse SGLMM. Section 4 describes the data used for this analysis as well as the
measures of model evaluation. The resulting modeling evaluations for New York County
are listed and explained in Section 5. Section 6 gives our conclusions and potential future
work.

2. Baseline Models

Previous work has evaluated various types of regression models on the 2009 Address Can-
vassing data, including Poisson, negative binomial, logistic, zero-inflated Poisson and zero-
inflated negative binomial regression. We focus on zero-inflated negative binomial regres-
sion as the baseline model to which spatial modeling will be compared. We also present a
Poisson generalized linear mixed model as its structure is similar to the sparse SGLMM,
except that its random effects are not spatially dependent. In this paper, we will focus on the
number of missed housing units as the response variable; we will refer to these as “adds”,
as Address Canvassing operations add these housing units to the MAF.

2.1 Zero-Inflated Negative Binomial Model

Poisson regression is the standard model for count data in the Generalized Linear Model
framework (McCullagh and Nelder, 1989). Poisson regression often suffers from overdis-
persion in real data analysis, where variance of the outcome is much larger than the mean.
The negative binomial (NB) distribution is used as a more flexible counterpart (Morel and
Neerchal, 2012, Chapter 6).

The density of the classical NB distribution can be defined as

Pr(Y = y) =

(
y + r − 1

y

)
py(1− p)r, for y = 0, 1, 2, . . ..

Here the random variable Y represents a number of failures observed until r successes are
obtained, in a series of independent Bernoulli trials each having success probability p. The

JSM 2016 - Survey Research Methods Section

1542



form of NB which is commonly used to model counts is obtained by taking r = 1/κ and
p = κµ/(1 + κµ), so that µ = E(Y ) parameterizes the mean and κ > 0 is a real-valued
dispersion parameter. The variance depends on both µ and κ, with Var(Y ) = µ(1 + κµ).
This form of the NB distribution can be written

Pr(Y = y) =
Γ(y + 1/κ)

Γ(y + 1)Γ(1/κ)

[
κµ

1 + κµ

]y [ 1

1 + κµ

]1/κ

, for y = 0, 1, 2, . . . (1)

where Γ(·) is the Gamma function. The NB distribution can also be derived as a continuous
mixture of Poisson distributions mixed by a gamma distribution,

Y | λ ∼ Poisson(λ)

λ ∼ Gamma(α, β),

taking µ = αβ and κ = 1/α, and using the Gamma density f(λ | α, β) = λα−1e−λ/β

Γ(α)βα

(Morel and Neerchal, 2012, Chapter 6).
In a typical count regression setting, we observe data {(yi,xi) : i = 1, . . . n} with yi

a count-valued outcome and xi a k-dimensional covariate. Optionally, we may designate a
covariateOi, for i = 1, . . . , n, as an offset to scale the count rate for interpretability. Model
(1) can adapted to the regression setting by assuming that

Yi ∼ NB(µi, κ), g(µi) = xTi β +Oi.

The link function g is typically taken as the natural log function g(x) = log(x), and β =
(β0, β1, . . . , βk) is a vector of regression coefficients.

Zero-inflated modeling is used to account for the presence of excess zeros in observed
yi. Excess zeros often appear in area-based count data when populations are very small.
Zero-inflated models assume that zero counts are caused by a mixture of two processes:
a count distribution which naturally produces zeros on occasion, and a point mass at zero
which always produces zeros. A Bernoulli draw selects between the point mass with prob-
ability ϕ and the count distribution with probability 1−ϕ when producing a random draw.
The zero-inflated negative binomial (ZINB) model uses NB as the count distribution, and
is considered for data with both excess zeros and overdispersion. The density of ZINB is
given by

Pr(Y = 0) = ϕ+ (1− ϕ)

[
1

1 + κµ

]1/κ

Pr(Y = y) = (1− ϕ)
Γ(y + 1/κ)

Γ(y + 1)Γ(1/κ)

[
κµ

1 + κµ

]y [ 1

1 + κµ

]1/κ

, for y = 1, 2, . . ..

ZINB regression is considered in this paper so that the proposed spatial models can be
compared to models from previous work (Raim and Gargano, 2015; Young et al., 2016).

2.2 Poisson Generalized Linear Mixed Model

Another way to extend the Poisson distribution to model extra variation is by the addition of
random effects. A GLM with random effects is referred to as a Generalized Linear Mixed
Model (GLMM). While ZINB is relevant for its role in previous non-spatial modeling at-
tempts, Poisson GLMMs are more closely related to our spatial model and serve as a more
direct assessment of the impact of spatial modeling. GLMMs are an extension of linear
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mixed models (LMMs); LMMs are formulated for the setting of additive errors, usually in
the form

y = Xβ +Zγ + ε,

where y is the response variable, X is a design matrix of covariates, β is a vector of fixed
effects, Z is a design matrix for random effects, γ is a vector of random effects, and ε is
a vector of residuals. We assume γ ∼ N(0,G) where G is the covariance matrix of the
random effects and ε ∼ N(0,R) where R is the covariance matrix for the residuals. In a
Bayesian setting (Gelman et al., 2003), we make further assumptions on prior distributions
of parameters, such as β ∼ N(a,B), so that a is the prior mean for the fixed effects and is
theB prior covariance matrix.

In the case of count data with a Poisson response, the GLMM is usually formulated as

y ∼ Poisson(λ)

g(λ) = Xβ +Zγ +O

γ ∼ N(0,G)

with offset O, whose likelihood is expressed as an integral to obtain the marginal distribu-
tion of y. For the Bayesian setting, we use Markov chain Monte Carlo (MCMC) methods
available in the R package MCMCglmm (Hadfield, 2010). For our application, we specifi-
cally assume the random intercept model

yi ∼ Poisson(λi)

g(λi) = xTβ +Zγi +Oi

γi ∼ N(0, τ2)

with Z = 1, γ = (γ1, . . . , γn), β ∼ N(0,C) with C taken to be a diagonal matrix
with large values, and τ2 ∼ InverseGamma(a, b) for shape and scale parameters a and b,
respectively.

3. Spatial Models

3.1 Conditional Autoregressive Model

In data collected over a range of geographic areas, such as the 2009 Address Canvassing
outcomes, we might suspect that nearby areal units tend to behave more similarly than units
which are further away. However, explicitly modeling the nature of this dependence can
be difficult. Conditional autoregressive (CAR) models are GLMMs which model spatial
dependence by assuming certain covariance structures on the distribution of the random
effects. CAR models allow the distribution of a particular random effect to be written
conditionally on the others, while ensuring a valid joint distribution exists for the random
effects together. CAR models formulate the distribution of each random effect condition-
ally on the others. The R package CARBayes (Lee, 2013) supports several types of CAR
models with Normal, Binomial, and Poisson responses.

The CAR model, as specified in Lee (2013), assumes responses Y = (Y1, . . . , Yn)T are
linked to n non-overlapping areal units S = {S1, . . . , Sn} for a given study region S. The
spatial pattern in the response is modeled by a vector of random effects φ = (φ1, . . . , φn),
which capture spatial autocorrelation in Y not accounted for by the fixed effects.

For a given areal unit Sk, the vector of covariates is xTk = (xk1, . . . , xkp). The model
that CARBayes implements is a generalized linear mixed model (similar to what was
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shown in the previous section) for spatial areal unit data, which is given by

Yk | µk ∼ f(yk | µk, ν2) for k = 1, . . . , n,

g(µk) = xTk β + φk +Ok.

The responses Yk in this example come from a Poisson distribution and the vector of regres-
sion parameters are denoted as β = (β1, . . . , βp). The expected values µk of the responses
are related to the linear predictor by the link function g(·).

When there is likely to be residual spatial autocorrelation, one of the global or local
CAR priors is required, which will incorporate information on the spatial adjacency into the
Bayesian hierarchical model. We present the intrinsic prior (Besag et al., 1991) here, which
is one of the simpler CAR prior specifications that is available in CARBayes. A common
characteristic of CAR priors is that they can be written as a set of n univariate full condi-
tional distributions f(φk | φ−k) for k = 1, . . . , n, whereφ−k = (φ1, . . . , φk−1, φk+1, . . . , φn).
The intrinsic CAR prior is

φk | φ−k,W , τ2 ∼ N
(∑n

i=1wkiφi∑n
i=1wki

,
τ2∑n
i=1wki

)
τ2 ∼ InverseGamma(a, b).

You can think about the random effect φk as a draw from a normal distribution with the
mean being the average of the random effects of the neighboring units. The adjacency ma-
trix W determines the spatial autocorrelation of the random effects. The form of this non-
negative symmetric n×nmatrix depends on the selected CAR model. For our choice of in-
trinsic CAR,W is specified as a binary matrix based on geographic contiguity, with wkj =
1 if two distinct blocks (k 6= j) share a common border and zero otherwise. The joint
distribution of φ = (φ1, . . . , φn) is multivariate normal with φ ∼ N(0, τ2(I −B)−1D)
whereD = Diag(1/w1+, . . . , 1/wn+), with wk+ =

∑n
j=1wkj , and

B = DW =

w11/w1+ . . . w1n/w1+
...

. . .
...

wn1/wn+ . . . wnn/wn+

 .

3.2 Sparse Spatial Generalized Linear Mixed Model

While it is feasible to model all blocks within a particular county jointly for most coun-
ties, the adjacency matrix for a large geography with many blocks becomes too large to
construct explicitly. For example, the state of Pennsylvania has over 450,000 blocks which
would suggest construction of a 450,000 × 450,000 adjacency matrix. Most cells in the
adjacency matrix contain zeros since most blocks do not border one another. One alterna-
tive is to instead construct a sparse representation of the matrix using a list structure, which
can be obtained using the poly2nb() function within the spdep R package. This list
structure retains information on which blocks are connected without saving the zero cells.
It is possible to modify the CARBayes package to use list structure; however, Bayesian
hierarchical modeling with MCMC methods may still be too computationally intensive be-
cause of the large number of random effects. Model diagnostics may be improved with
more covariates and longer MCMC chains, but these modifications further increase the
time required to fit the model even once. Another issue with CAR modeling is spatial
confounding. Introducing spatial random effects into the model can inflate the variance of
the posterior distribution of β, potentially distorting estimates of coefficients and changing
their interpretation.
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Hughes and Haran (2013) recently proposed a spatial generalized linear mixed model
(SGLMM) for areal data that reduces spatial confounding and speeds computation. As
with CAR, an SGLMM is a hierarchical model that induces spatial dependence through
a latent Gaussian Markov random field. An SGLMM additionally reduces the dimension
of the random effects; this reduction can potentially be dramatic with minimal loss to the
quality of the model fit. SGLMMs can be fit with the function sparse.sglmm() in the
R package ngspatial (Hughes, 2014), which uses a sparse reparameterization of the
adjacency matrix.

Hughes and Haran reparameterize the areal SGLMM by considering the Moran opera-
tor P⊥WP⊥, which is contained in the numerator of a generalized form of the Moran’s I
statistic

IX(W ) =
n

1TW1

Y TP⊥WP⊥Y

Y TP⊥Y
.

where P⊥ = I − P and P = X(XTX)−1XT is the projection matrix onto the column
space of X . The Moran operator captures the intrinsic geometry of the models and the
information orthogonal to theX covariates.

Magnitudes of eigenvalues of the Moran operator measure varying degrees of spatial
dependence: larger positive eigenvalues correspond to stronger “attractive” spatial depen-
dence while negative eigenvalues correspond to stronger “repulsive” spatial dependence.
The eigenvectors associated with a given eigenvalue represent patterns of spatial cluster-
ing.

The dimension of the spatial effects is reduced to q << n by selecting q eigenvalues
of the Moran operator, and constructing an n× q matrixM from the corresponding eigen-
vectors. In general, the choice of q and the selection of eigenvectors is a model selection
problem. For the application in this paper, we selected the eigenvectors corresponding to
the q = 50 largest positive eigenvalues. Once M is constructed, the regression model
becomes

g{E(Zi | β,φ)} = xTi β +mT
i φ,

wheremT
i , i = 1, . . . , n, are the rows ofM . The prior density for the random effects is

p(φ | τ) ∝ τ q/2 exp
(
−τ

2
φTRφ

)
,

whereR = MTQM is a precision matrix withQ = Diag(W1)−W .

4. Application to Address Canvassing Data

4.1 Databases

The ZINB, Poisson GLMM, and Poisson SGLMM models will now be applied to the Ad-
dress Canvassing data. The three models are fit to data from the 2009 Address Canvassing
operation and then validated using data from the 2014 MMVT. Our objective is to deter-
mine whether spatial modeling can improve the identification of blocks which contain MAF
coverage errors. This study focuses specifically on adds, and does not make use of other
outcomes from address canvassing.

The dependent variable yi in the 2009 model is the count of newly added housing units
on the ith block obtained from Address Canvassing. The offset is taken to be logdeplist,
the log of number of housing units prior to canvassing. Because 2009 was the only year in
which a full-scale Address Canvassing was conducted, 2009 is the only year for which we
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will have add counts on a majority of blocks. For the 2013 data, the dependent variable is
only available for the sample of 10,000 blocks from the 2014 MMVT test.

The covariates used in this work are a subset of those obtained from an extensive vari-
able selection carried out in Raim and Gargano (2015). Here we consider variables from
two of the previously studied data sources: the 2009 Address Canvassing database (AdCan
DB) and the 2000 Planning Database (PDB). Some variables were removed after noticing
poor diagnostics when performing initial fits of the spatial model. In addition to taking the
same transformations as in the previous work (mostly involving taking the natural log), all
variables were standardized to have mean zero and variance one; this was done to allevi-
ate convergence issues which we believe are influenced by irregular distributions of these
variables.

The 2009 AdCan DB was prepared by the Census Bureau to evaluate statistical models
for Address Canvassing outcomes (Tomaszewski, 2014). It contains a block-level database
with variables that have been summed from address-level data. A number of candidate pre-
dictor variables are available which were recorded prior the Address Canvassing operation;
their sources included previous MAF extracts and United States Postal Service Delivery
Sequence Files. The PDB contains variables related to nonresponse in the census (Bruce
and Robinson, 2007). Note that later PDBs are available, but the 2000 PDB was the most
recent one prior to 2009 Address Canvassing. Data in the 2000 PDB was recorded on 2000
tabulation geography; we interpolated it to 2010 geography using the method described
in Raim and Gargano (2015) so that it could be linked to the AdCan DB. To compute
updated predictors for the MMVT, the 2013 database of independent variables were used
in conjunction with the 2015 PDB, which included 5-year estimates from the 2009-2013
American Community Survey (ACS). Some variables from the 2015 PDB were summed
together to reproduce variables from the 2000 PDB. The same predictors were used across
all model types for consistency. Table 1 gives the list of predictors.

We fit the baseline ZINB model, Poisson GLMM, and sparse SGLMM models to Ad-
dress Canvassing data in New York County, NY, which contains 3,950 blocks. Two blocks
were removed from the analysis because they are islands with no neighbors, and therefore
could not be analyzed by our spatial models. Predictions were applied to the 2014 MMVT
sample using the 2013 covariates. New York County contained only 64 blocks in the 2014
MMVT sample, the largest proportion of any county in the US yet only a small number of
the blocks in the county.

4.2 Model Evaluations

We evaluate the models based on the following metrics:

1. Significance of the covariates.2

2. Prediction errors.
3. Correlations between predicted and observed values.
4. Significance of Moran’s I values of the raw residuals.
5. Number of adds captured based on predictions for given canvassing thresholds.

For 2009 model evaluation we use 5-fold cross validation and split the blocks in the
county into five pieces, created by sorting the blocks and labeling them 1 through 5 sys-
tematically. Setting aside the first piece as a test set, the model is fit to the remaining four
pieces, and predictions are computed for the test set. This is repeated four more times, tak-
ing pieces 2, . . . , 5 as the test set and obtaining cross validated predictions for all blocks.

2While prediction is of primary interest, knowing which variables are truly important in explaining adds is
of general interest in interpreting results.
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Note that in the Poisson GLMM, a block excluded from fitting does not have posterior
information for its random effect; therefore, only fixed effects are used in its prediction
when performing cross validation. For the SGLMM, the random effects enter the model
through the spatial structureM , and we are able to use them in cross validated predictions
by dropping rows of the overallM corresponding to the test set. For the 2014 model eval-
uations, we use parameter estimates from the full (without cross validation) run of 2009
models with updated 2013 covariates. For the spatial model, this translates to having the
same spatial structure but an updatedM matrix.

Moran’s I is a measure of spatial autocorrelation with the standard form

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2
, (2)

where N is the number of blocks, wij is the adjacency between block i and block j (=1 if
the blocks are adjacent, 0 otherwise), and X is the variable of interest. Here we focus on
the Moran’s I of the residuals from a model to see if there is spatial autocorrelation in the
error term which has not been accounted for by the regression. Expression (2) is the global
Moran’s I value, which is the sum of the local Moran’s I, Ii, that can be calculated for each
block.

5. Results

ZINB, Poisson GLMM and sparse SGLMM models were fit to New York County. Trace
plots and acceptance rates were monitored for each model to ensure there were no obvious
failures of MCMC to converge to the posterior distribution — these diagnostics are not
shown due to space restrictions. Table 2 displays the significance of predictors in each of
the three example models. The SGLMM results in many more significant predictors than
ZINB or Poisson GLMM; we suspect that this is due to the SGLMM’s ability to reduce
spatial confounding between predictors and spatial effects.

Table 3 evaluates the 5-fold cross validated models fitted to the 2009 Address Canvass-
ing data. Prediction errors are measured by the sum of squared prediction error (SSPE)∑n

i=1(yi− ŷi)2 and the sum of absolute prediction error (SAPE)
∑n

i=1 |yi− ŷi|. The corre-
lation (CORR) between the observed values y1, . . . , yn and the predicted values ŷ1, . . . , ŷn
provides another summary of prediction accuracy. The p-value for the global Moran’s I
test, computed from the raw residuals yi − ŷi, measures the overall spatial dependence not
captured by the model. The number of blocks with a significant local Moran’s I statistic,
also computed on the raw residuals, summarizes uncaptured spatial dependence at a more
granular level.

The SGLMM attains the smallest SSPE while Poisson GLMM gives the smallest SAPE.
The spatial model also has the largest correlation between predicted add counts and ob-
served add counts on the 3,948 blocks. Although we do not see an improvement in the
local Moran’s I with the SGLMM, the p-value from global Moran’s I indicates that the
spatial model has accounted for the spatial autocorrelation which is present in the residuals
from Poisson GLMM and ZINB. Overall, we see a slight improvement in predictions from
the spatial model compared to the non-spatial models.

Table 4 presents evaluations for the 2014 MMVT add counts. Note that we are unable
to calculate the Moran’s I for these blocks as they are a noncontiguous sample of the full
county. Similar to the results in Table 3, we can once again see an improvement in the sum
of squared prediction error as well as the correlation between the predicted and observed
add counts, albeit slight.
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Table 2: The significance of predictors in each selected model; significant variables are
designated with an X.

Variable ZINB Poisson GLMM Sparse SGLMM
teaMOM X X X
log_dpreac_ac_mafsrc2_Sum X* X X
log_dpreac_ac_delptypeBk_Sum X* X X
log_landmeters2_sq X X X
log_dpreac_ac_delptypeX_Sum X* X X
log_dpreac_a9_adcanaf0_Sum X X
log_dpreac_ac_mafsrc28_Sum X X
tract_a9_count_sum X X
log_dpreac_ac_business_Sum X
log_dpreac_a9_adcanaf3_Sum X* X X
pct_occp_hu_moved_2010 X X X
log_devel3_pct X
log_pct_crowd_occp_u X X X
pct_aian_zero X* X X
devel1_pct X
log_pct_pop_0_17 X* X
pct_pub_asst_inc_2010 X X
wetlands2_pct * X
block_hu_density * X
logdeplist*log_pct_crowd_occp_u X X X
logdeplist*pct_aian_zero * X X
log_dpreac_ac_business_Sum *
pct_occp_hu_moved_2010 X* X

*Significant in zero component

Table 3: 2009 Address Canvassing results for 5-fold cross validated models.
Moran’s I Local Moran’s I

SSPE SAPE CORR p-value # Significant
ZINB 2,680,787 27,284.43 0.18 0.0558 44
Poisson GLMM 2,544,028 18,913.54 0.15 0.0001 29
SGLMM (M=50) 2,528,335 26,973.32 0.28 0.9998 36

Table 4: 2014 MMVT modeling results.
SSPE SAPE CORR

ZINB 50,744 808.84 0.049
Poisson GLMM 25,900 502.66 0.130
SGLMM (M = 50) 23,397 689.63 0.251
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Plots of predicted and observed add counts for the predictions based on the 2009 data
and on the 2014 data are shown in Figure 1. A perfect prediction would have the points
(representing the blocks) fitted to the red dashed line. We can see that this is not the case
for any of the six plots. While the numbers from the results in Tables 3 and 4 show slight
improvement, visually we do not see this improvement.

Maps of the predicted values were created to evaluate the models from a geographic
standpoint. Figure 2 shows a map created in SAS JMP which displays predicted adds for
each of the fitted models, as well as adds observed from Address Canvassing in 2009. Here
we see overestimation in both the ZINB model and sparse SGLMM, and underestimation
in the Poisson GLMM. There are particular areas in the sparse SGLMM (highlighted with
circles) where the spatial model is more clearly identifying where there are actually no adds
observed compared to the ZINB model, while also still capturing the blocks with a large
number of adds that are not captured in the Poisson GLMM.

Figure 3 is based on the predictions for the 64 blocks in New York County that were
in the 2014 MMVT data. This plot gives the estimated weighted3 add count for a given
cumulative number of blocks, where those blocks are sorted by descending predicted add
counts. The blue line indicates how many adds would be captured for a given number of
blocks if we knew exactly what was to be observed in the field; a desirable model would
be one that approaches this line. For example, assume that our canvassing threshold is 8
blocks. The vertical dotted line at 8 indicates the (weighted) number of true adds captured
when selecting blocks with the largest 8 predicted add counts for a given model. At this
mark, the SGLMM is performing the best. However, if our canvassing threshold is 24
blocks (focusing on the dotted line at 24), we see that the order has changed and SGLMM
is performing worse than ZINB and Poisson GLMM. Therefore, the best model depends
on the threshold, and no one model outperforms the other based on this metric.

6. Conclusions

We have compared three count regression models to predict adds in the full-scale 2009
Address Canvassing operation and to produce extrapolated predictions for the later 2014
MMVT operation. The ZINB model used in previous work is an overdispersed Poisson
model with the ability to handle excess zeros in the data. The recently proposed SGLMM
accounts for spatial dependence through its random effects structure, and is designed to
avoid spatial confounding and avoid some computational burden via dimension reduction.
Poisson GLMM was also included as a non-spatial counterpart of SGLMM.

The set of significant predictors was noticeably larger under SGLMM than under ZINB
or Poisson GLMM, which suggests spatial dependence was masking the effect of some
predictors in the non-spatial models. SGLMM was also effective at accounting for spatial
autocorrelation, as shown in the global Moran’s I test of the residuals. However, the ability
to predict adds in New York County was only slightly improved with the SGLMM. Our
experience suggests that, while spatial random effects models are helpful in accounting for
trends that depend on space and are difficult to model explicitly, the fixed effects part of the
model determines its prediction ability.

Therefore, while further improvements to predictions may be possible through more
sophisticated modeling, major improvements will likely require the acquisition of stronger
predictors. This has proven to be an elusive problem to date, as the true cause of adds in a
particular block may depend on a set of circumstances specific to that block.

Our study of New York County has revealed some opportunities for future work. In
spite of the dimension reduction, the computational burden of SGLMM becomes large as

3Sampling weights are used to weight the sample of blocks up to represent the entire county.
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Figure 1: Predicted vs. observed add counts from the three models. Plots in first column
display 5-fold cross validated predictions and observed counts for 2009 Address Canvass-
ing. Right column shows 2014 MMVT predictions and observations.
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Figure 3: Plot of model comparison of cumulative adds captured

the number of areal units increase, and it would be of interest to scale it to large geogra-
phies. In this paper we have considered only adds, but several other outcomes of interest
were recorded in Address Canvassing. A multivariate model of these outcomes might out-
perform our univariate model. Recently Bradley et al. (2015) have proposed a large scale
multivariate spatio-temporal model which may help to address some of these issues.

If models with sufficiently accurate predictions can be developed, there are also ques-
tions about how they could be used operationally. It has already been determined for the
2020 Census that models alone will not be used to guide an in-field canvassing workload
(Decennial Census Management Division, 2015, Section 2.3). However, models could be
used as an additional input to inform planned canvassing activities. For example, an alert
could be raised if an area is at high risk of having large coverage error based on past can-
vassing experience.
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