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Abstract 
 
In this paper, we propose consider a new weighted squared distance while 
minimizing a distance between the true proportions and the observed proportions 
of (Yes, Yes), (Yes, No), (No, Yes) and (No, No) answers in the set-up of 
Odumade and Singh (2009) model.  The resultant estimator is shown to be 
unbiased estimator of the proportion of the sensitive attribute of interest in a 
population and has smaller variance than the estimator of Odumade and Singh 
(2009) with the same protection of the respondents.     
 
Keywords: Unrelated question model, two-decks of cards, lower bound of 
variance and protection of respondents. 
 
 
 

1. Introduction 
 
The collection of data through personal interview surveys on sensitive issues, 
such as induced abortions, drug abuse, and family income is a serious issue; see 
for example Fox and Tracy (1986) and Kerkvliet (1994). Warner (1965) 
considered the case where the respondents in a population can be divided into 
two mutually exclusive groups: one group with stigmatizing/sensitive 
characteristic A and the other group without it.  For estimating  , the proportion 
of respondents in the population belonging to the sensitive group A, a simple 
random sample of n  respondents is selected with replacement from the 
population. For collecting information on the sensitive characteristic, Warner 
(1965) made use of a randomization device. One such device could be a deck of 
cards with each card having one of the following two statements: ( i. )  "I belong 
to group A" ( ii ) "I do not belong to group A" 
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The statements occur with relative frequencies 0P  and  01 P  respectively in the 
deck of cards. Each respondent in the sample is asked to select a card at random 
from the well-shuffled deck. Without showing the card to the interviewer, the 
interviewee answers the question, "Is the statement true for you?"  The number of 
people 1n  that answer "Yes" is binomially distributed with parameters 

    11 00 PP  and n .  The maximum likelihood estimator of   exists for 

5.00 P  and is given by:  
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The above estimator is unbiased with variance: 
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Mangat and Singh (1990) suggested a two-stage randomized response model. In 
the first stage each respondent is requested to use a randomization device, *

1R , 
such as a deck of cards with each card having written one of the following two 
statements: 
   ( i. )  "I belong to group A"   ( ii ) "Go to the randomization device *

2R " 
 
The statements occur with relative frequencies 0T  and A  respectively in the first 

device *
1R . In the second stage, if directed by the outcome of *

1R , the respondent 

is requested to use the randomization device *
2R  which is the same as the Warner 

(1965) device. Under the two-stage randomized response model, an unbiased 
estimator of the population proportion   is given by: 
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with variance: 
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Mangat (1994) considered another randomized response model where each 
respondent selected in the sample is requested to report “Yes” if he/she belongs 
to the sensitive group A  otherwise he/she is instructed to use the Warner (1965) 
device. For this model an unbiased estimator of the population proportion   is 
given by: 
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with variance given by: 
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where   011 Pm   .   
 
Mangat (1994) model remains more efficient than both the Warner (1965) and 
Mangat and Singh (1990) models.  Note that the Mangat (1994) model has been 
improved by Gjestvang and Singh (2006). 
 
 

2. Odumade and Singh (2009) Model 
 
Each respondent in the simple random and with replacement (SRSWR) sample of 
n   is provided with two decks of cards marked as Deck-I and Deck-II as shown 
in Figure 2.1. 

AI   
with probability 

P  

 AI   
with probability 

T
cAI   

with probability 
)1( P  

 cAI   
with probability 

)1( T  

Deck-I  Deck-II 
Fig. 2.1. Two decks of cards 

 
Each respondent is requested to draw two cards simultaneously, one card from 
reach deck of cards, and read the statements in order. The respondent first 
matches his/her status with the statement written on the first deck of cards, and 
then he/she matches his/her status with the statement written on the second deck 
of cards.  Let   be the true proportion of respondents in the population that 
possesses the characteristic A .  

Consider a situation that the selected respondent belongs to group A : Now if 
he/she draws first card with statement AI   with probability P  from the first 
deck of cards and second card with statement AI   with probability T  from the 
second deck of cards, then he/she is requested to report:  (Yes, Yes).   

Consider another situation that the selected respondent belongs to group cA : 
Now if he/she draws first card with statement cAI   with probability )1( P  from 

the first deck of cards and second card with statement cAI   with probability 
)1( T  from the second deck of cards, then he/she is also requested to report:  

(Yes, Yes).    Thus the response  (Yes, Yes) can come from both types of 
respondents either belonging to the group A  or cA  and hence their privacy will 
be maintained. Thus, the probability of getting (Yes, Yes) response is given by: 
 
    )1)(1)(1()YesYes,( 11   TPPTP     TPTP  111      (2.1) 
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Now consider a situation that the selected respondent belongs to group A : Now 
if he/she draws first card with statement AI   with probability P  from the first 
deck of cards and second card with statement cAI   with probability )1( T  
from the second deck of cards, then he/she is requested to report:  (Yes, No).   
 
Consider another situation that the selected respondent belongs to group cA : 
Now if he/she draws first card with statement cAI   with probability )1( P  
from the first deck of cards and second card with statement AI   with 
probability T  from the second deck of cards, then he/she is also requested to 
report:  (Yes, No).    Thus the response  (Yes, No) can come from both types of 
respondents either belonging to the group A  or cA  and hence their privacy will 
not be disclosed. 
 
Thus, the probability of getting (Yes, No) response is given by: 

 )1()1()1()NoYes,( 10   TPTPP    PTTP  1        (2.2) 
 
Now consider a situation that the selected respondent belongs to group A : Now 
if he/she draws first card with statement cAI   with probability )1( P  from the 
first deck of cards and second card with statement AI   with probability T  from 
the second deck of cards, then he/she is requested to report:  (No, Yes).   
Consider another situation that the selected respondent belongs to group cA : 
Now if he/she draws first card with statement AI   with probability P  from the 
first deck of cards and second card with statement cAI   with probability )1( T  
from the second deck of cards, then he/she is also requested to report:  (No, Yes).  
Thus the response  (No, Yes) can come from both types of respondents either 
belonging to the group A  or cA  and hence their privacy will not be disclosed. 

Thus, the probability of getting (No, Yes) response is given by: 
 

)1)(1()1()YesNo,( 01   TPTPP    TPPT  1          (2.3) 
 
Now consider a situation that the selected respondent belongs to group A : Now 
if he/she draws first card with statement cAI   with probability )1( P  from the 

first deck of cards and second card with statement cAI   with probability )1( T  
from the second deck of cards, then he/she is requested to report:  (No, No).   
 
Consider another situation that the selected respondent belongs to group cA : 
Now if he/she draws first card with statement AI   with probability P  from the 
first deck of cards and second card with statement AI   with probability T  from 
the second deck of cards, then he/she is also requested to report:  (No, No).  Thus 
the response  (No, No) can come from both types of respondents either belonging 
to the group A  or cA  and hence their privacy will not be disclosed. 
Thus, the probability of getting (No, No) response is given by: 

)1()1)(1()NoNo,( 00   PTTPP   PTTP  1             (2.4) 
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The responses from the n  respondents can be classified in to 22  contingency 
table as shown in Table 2.1. 

Responses Yes  No  

Yes  11n  10n  

No  01n  00n  

Table 2.1. The 22  contingency table. 

The true probabilities of  (Yes, Yes), (Yes, No), (No, Yes) and (No, No) 
responses in the population can be classified in a 22  contingency table as 
shown in Table 2.2. 

Two True Deck – II 

Decks probabilities T   T1  

 

Deck-I 

P  11  10  

 P1  01  00  

Table  2.2. The 22  contingency table. 

where 11 , 10  , 01  and 00 are given in (2.1), (2.2), (2.3) and (2.4) respectively.  

Remember that our aim is to estimate the unknown population proportion    of 
the respondents belonging to the group A .   
 

Let nn1111
ˆ  , nn1010

ˆ   , nn0101
ˆ   and nn0000

ˆ   be the observed 
proportions of (Yes, Yes), (Yes, No), (No, Yes)  and (No, No) responses. 
Odumade and Singh (2009) define  squared distance between the observed 
proportions and the true proportions as: 
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Odumade and Singh (2009) decided to choose    such that the least square 
distance D  is minimum.  Thus, to find such a choice of   they set: 
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By the method of moments, they suggested an unbiased estimator of the 
population proportion   is given by: 
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and the variance of the estimator os̂  is given by: 
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They also suggested an unbiased estimator to estimate the variance of os̂  is 
given by: 
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Note that if 0PPT   (say), then the variance of the proposed estimator os̂  in 
(2.8) becomes: 
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which is same variance if each respondent is requested to use the Warner (1965) 
device twice. 
 

Singh and Sedory (2011, 2012) suggested a new log-likelihood estimator of the 
population proportion   and developed a lower bound on the variance in this 
randomized response sampling setup. They consider the problem of maximizing 
the likelihood function, which is defined as: 
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On setting 0
)log(






L

, the maximum likelihood estimate mle̂  of   is given by 

a solution to the following equation: 
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By the well known Cramer-Rao inequality, the lower bound of the variance of 
the maximum likelihood estimate mle̂   of   is given by: 
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In a very short span of time, Odumade and Singh (2009) model becoming 
popular among the randomized response technique developed and has many 
citations on the Google Scholar, and a few of them are listed as: Singh and 
Sedory (2011, 2012), Abdelfatahm, Mazloum, and Singh (2013), Arnab,  Singh, 
and North (2012), Lee, Sedory,  and Singh (2013a), Lee, Sedory, and Singh 
(2013b), Su, Sedory, and Singh (2015), Bacanli and Tuncel (2014),Chen and 
Singh (2011), Lee, Su, Mondragon, Salinas,  Zamora, Sedory, and Singh (2016), 
Abdelfatah and Mazloum,  (2015a, 2015b), Batool and Shabbir (2016),  Arnab 
and Shangodoying (2016), Lee, Hong, Kim, and Son (2014), Arnab and Thuto 
(2015), Batool, Shabbir and Hussain (2015) and Fox (2016).  Chaudhuri (2015) 
has contributed a special issue, and several improvements in different directions 
on this topic can be found in this issue. This motivated to think more on the data 
collected with Odumade and Singh (2009) model if it can be analyzed in another 
efficient way! 
 
In the next section, we suggest a new method to derive a new unbiased and 
efficient estimator by making use of two decks. 
 

3. Proposed Weighted  Squared Distance Based Estimator 
 
We consider a weighted squared distance (WD) between the true proportions and 
observed proportions as: 
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On setting 
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Now we have the following theorem: 
 
Theorem 3.1. An unbiased estimator of population proportion   is given by 
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which proves the theorem. 
 
Theorem 3.2. The variance of the unbiased estimator p̂  of population 

proportion   is given by 
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(3.3) 
Proof. Because ),(~ ijij nBn  , now using the concept of binomial distribution, we 

have: 
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By the definition of variance, we have 
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which on simplification reduces to (3.3). Hence the theorem. 
 
 
Theorem 3.3. An unbiased estimator of the variance of the unbiased estimator 

p̂  of population proportion   is given by 
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(3.4) 
Proof.  It is easy to show that  
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which proves the theorem. 
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In the next section, we suggest a new compromised optimal estimator of the 
population proportion   of the sensitive attribute in a population. 
 
 

4. Proposed Compromised Optimal Estimator 
  
We consider a compromised estimator of the population proportion   of a 
sensitive attribute in the population by combining the above two estimators as: 
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where   is a suitable chosen constant such that the variance of the compromised 
estimator c̂  is minimum.   Now we have the following theorem: 
 
Theorem 4.1. The minimum variance of the estimator  c̂  in (4.1) is given by: 
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Proof.  By the definition of variance, we have 
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We get the optimum value of   given by 
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On substituting (4.4) in (4.3), we  have the theorem. 
 
Now we have the following corollaries: 
 
Corollary 4.1. The covariance between the estimators os̂  and p̂  is given by: 
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Corollary 4.2.  An estimator of the optimum value of   given by 
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where )ˆ,ˆcov( pos   can be obtained from (4.5) by replacing ij  by ij̂ .  A 

practicable compromised biased estimator of the population proportion   of a 
sensitive attribute in the population by combining the above two estimators as: 
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cc VV    to the first order of approximation. 
 
Now in the next section, we study the percent relative efficiency of the proposed 
estimators over the Odumade and Singh (2009) estimator at equal protection of 
the respondents. 
  

5.Relative Efficiency 
 

The percent relative efficiency of the proposed new estimator p̂  over the 

Odumade and Singh (2009) estimator is given by: 
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The percent relative efficiency of the proposed compromised estimator c̂  over 
the Odumade and Singh (2009) estimator is given by: 
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The percent relative efficiency of the proposed compromised estimator c̂  over 
the Singh and Sedory (2011, 2012) lower bound of variance is given by: 
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The percent relative efficiency values RE(1), RE(2) and RE(3) are presented in 
Table 5.1 for different values of   in the range 0.05 to 0.5 with a step of 0.05 for 

7.0P  and 7.0T  for all estimators considered here. 
 
 

Table 5.1. Percent RE values 
  RE(1) RE(2) RE(3) 

0.05 122.3 126.3 100.0 
0.10 116.8 118.4 100.0 
0.15 112.3 112.8 100.0 
0.20 108.7 108.7 100.0 
0.25 105.5 105.7 100.0 
0.30 102.7 103.5 100.0 
0.35 100.2 101.9 100.0 
0.40 97.9 100.8 100.0 
0.50 93.7 100.0 100.0 

 

The RE(1) values show that the proposed estimator p̂  remains more efficient 

that  the Odumade and Singh (2009) estimator when the value of   is close to 
zero with maximum relative efficiency of 122.6% at equal protection of 
respondents.  The compromised optimal estimator c̂  show relate efficiency of 

126.3% for value of 05.0  and remains efficient than the Odumade and Singh 
(2009) model until the value of  approaches 0.5.  The value of RE(3)=100% 
indicates that the optimal estimator c̂  attains the lower bound of variance 
developed by Singh and Sedory (2011, 2012). The benefit of the optimal 
estimator c̂  is that it provides a closed form of an estimator and can be used to 
construct confidence interval estimates, if required.    The SAS code used in the 
analysis are given in the Appendix-A. 
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Appendix-A 
DATA DATA1; 
INPUT PI; 
CARDS; 
0.05 
0.10 
0.15  
0.20 
0.25  
0.30 
0.35  
0.4  
0.5  
; 
DATA DATA2; 
SET DATA1; 
P = 0.7; 
T = 0.7; 
A=1; 
B=1; 
C=1; 
D=1; 
TH11 = (P+T-1)*PI + (1-P)*(1-T); 
TH10 = (P-T)*PI + T*(1-P);  
TH01 = (T-P)*PI + P*(1-T); 
TH00 = (1-P-T)*PI + P*T; 
TERM1 = (P+T-1)**2*(P*T+(1-P)*(1-T)) + (P-T)**2*(T*(1-P)+P*(1-T)); 
DENO = (P+T-1)**2 + (P-T)**2; 
VAROS = TERM1/(4*DENO**2)-(2*PI-1)**2/4; 
EZ = A*((1-P)*(1-T))*TH00 + B*(P*(1-T))*TH10 +C* ((1-P)*T)*TH01 + D*(P*T)*TH11; 
EZ2 = A**2*((1-P)*(1-T))**2*TH00 +B**2*(P*(1-T))**2*TH10 +C**2*((1-P)*T)**2*TH01 + 
D**2*(P*T)**2*TH11; 
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VARZ = EZ2-EZ**2; 
DENOE = A*((1-P)*(1-T))*(1-P-T) + B*(P*(1-T))*(P-T) + C*(1-P)*T*(T-P) + D*(P*T)*(P+T-1); 
VARP = VARZ/DENOE**2; 
RE = VAROS*100/VARP; 
T1 = (P*T)**2*TH11*(1-TH11); 
T2 = (P*(1-T))**2*TH10*(1-TH10); 
T3 = ((1-P)*T)**2*TH01*(1-TH01); 
T4 = ((1-P)*(1-T))**2*TH00*(1-TH00); 
T5 = -2*P**2*T*(1-T)*TH11*TH10; 
T6 = -2*P*T**2*(1-P)*TH11*TH01; 
T7 = -2*P*T*(1-P)*(1-T)*TH11*TH00; 
T8 = -2*P*(1-P)*T*(1-T)*TH10*TH01; 
T9 = -2*P*(1-P)*(1-T)**2*TH10*TH00; 
T10 = -2*(1-P)**2*T*(1-T)*TH01*TH00; 
DENON = 1-2*P*(1-P)-2*T*(1-T); 
VARNEW = (T1+T2+T3+T4+T5+T6+T7+T8+T9+T10)/DENON**2; 
RE2 = VAROS*100/VARNEW; 
LB = (P+T-1)**2/TH11+(P-T)**2/TH10 + (T-P)**2/TH01 + (1-P-T)**2/TH00; 
LBOS = 1/LB; 
RE3 = VAROS*100/LBOS; 
G1 = PI*(1-PI); 
G2 = (2*P-1)**2*(2*T-1)**2*(P*(1-P)+T*(1-T))*PI/DENOE**2; 
G3 = P*T*(1-P)*(1-T)*(1-16*P*T*(1-P)*(1-T))/DENOE**2; 
VCHECK = G1 + G2 + G3; 
H1 = (P+T-1)*(P*T*TH11*(1-TH11)-P*(1-T)*TH10*TH11-(1-P)*T*TH01*TH11-(1-P)*(1-
T)*TH00*TH11); 
H2 =(P-T)*(P*(1-T)*TH10*(1-TH10)-P*T*TH11*TH10-(1-P)*T*TH10*TH01-(1-P)*(1-
T)*TH10*TH00); 
H3 =(T-P)*((1-P)*T*TH01*(1-TH01)-P*T*TH11*TH01-P*(1-T)*TH10*TH01-(1-P)*(1-
T)*TH01*TH00);  
H4 = (1-P-T)*((1-P)*(1-T)*TH00*(1-TH00)-P*T*TH11*TH00-P*(1-T)*TH10*TH00-(1-
P)*T*TH01*TH00); 
H5 = 2.0*(1-2*P*(1-P)-2*T*(1-T))*((P+T-1)**2+(P-T)**2);  
COV1 =(H1+H2+H3+H4)/H5; 
ALPHAO = (COV1-VARP)/(VAROS+VARP-2*COV1); 
DENO1 = VAROS + VARP-2.0*COV1; 
VARC = VARP - (COV1-VARP)**2/DENO1; 
RE1 = VAROS*100/VARP; 
RE2 = VAROS*100/VARC; 
RE3 = LBOS*100/VARC; 
KEEP PI P T RE1 RE2 RE3; 
PROC PRINT DATA= DATA2; 
VAR PI P T RE1 RE2 RE3; 
DATA DATA3; 
SET DATA2; 
PROC EXPORT DATA=DATA3  OUTFILE='c:\SASDATAFILES\OUT11.xls' DBMS=EXCEL 
REPLACE; 
RUN; 
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