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Abstract 
Unit-nonresponse is usually compensated for by weighting adjustment, and calibration 
techniques are frequently used for benchmarking purposes and for improving survey 
estimates. Traditionally, nonresponse adjustment and calibration are performed in two 
separate steps, and this weighting procedure is called the two-step procedure. Lately, 
there has been considerable discussion on whether the calibration step can take care of 
the nonresponse adjustment as well in a single step (called the one-step procedure). The 
answer to this question is not clear cut, and in this paper we want to address this issue for 
various situations arising in practice in terms of relationship between auxiliary 
information and survey variables and response mechanisms. This is an empirical 
investigation built upon the work by Haziza and Lesage (2016). 
 
Key words: Unit-nonresponse, nonresponse bias, calibration, one-step procedure, two-
step procedure, response mechanism 
 

1. Introduction 
 
Unit nonresponse in survey data is usually treated through weight adjustment of the base 
weight, which is the inverse of the selection probability. Assuming that nonresponse is 
another phase of sampling, the weighting class method, where the weighting classes are 
formed using categorical auxiliary variables, is often employed for nonresponse weight 
adjustment. Another commonly used method is the propensity score method, where the 
response propensity is estimated using a regression model such as the logistic regression 
model that describes the relationship between the response status and auxiliary variables. 
To reduce excessive variability of estimated propensity score adjusted weight when 
directly used, the latter also use the weighting class method by forming the weighting 
classes based on the estimated propensity scores. To distinguish the latter method from 
the traditional weighting class (TWC) method, it is called the propensity score based 
weighting class (PWC) method in this paper. The PWC method is more flexible in using 
available auxiliary variables than the TWC method because it is limited in using 
categorical auxiliary variables to form the weighting classes, and also the PWC method 
enjoys the robustness of the weighting class method. The weighting may end here.  
 
However, if the population totals of some auxiliary variables are available, the 
nonresponse adjusted weight can be calibrated to the population totals to enhance the 
efficiency of the survey estimates and provide the credibility of the survey weights by 
making their weighted sums equal to the population totals of the auxiliary variables. 
Commonly used calibration weighting methods are post-stratification, raking, the 
generalized regression (GREG) estimator, and some variants of these (see Deville and 
Särndal, 1992). This is the usual two-step weighting procedure. 
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However, recently, several authors proposed the one-step procedure, which skips the first 
step but uses the calibration step only (e.g., Lundström and Särndal, 1999; Folsom and 
Singh, 2000; Bethlehem, 2002; Särndal and Lundström, 2005; Kott, 2006; D’Arrigo and 
Skinner, 2010; Kott and Liao, 2015). The potency of the one-step procedure is also 
shown by Flores Cervantes and Brick (2008), who compared the two procedures using 
the 2007 California Health Interview Survey data and concluded that the two procedures 
are virtually the same for over 700 survey estimates they studied. Under certain 
conditions, the one-step procedure is (nearly) unbiased. However, Haziza and Lesage 
(2016) shows that the one-step procedure can be severely biased. Extending their study, 
we investigate the same issue with more general and realistic situations. 
 
In the section that follows, we discuss the one- and two-step procedures in detail. In 
Section 3, these two weighting procedures are compared. Some concluding remarks are 
provided in Section 4. 
 
 
2. One- and Two-step Weight Adjustment Procedures for Unit Nonresponse 
 
We are interested in estimating the population total of a survey variable 𝑦 . The 
population 𝑈 has 𝑁 units indexed by 𝑖, from which a sample of size 𝑛 is selected with a 
pre-determined probability 𝜋𝑖 (> 0) for unit 𝑖. The base weight is given by 𝑑𝑖 = 𝜋𝑖

−1, 
and if there is no nonresponse, the population total 𝑇𝑦 = ∑ 𝑦𝑖

𝑁
𝑖=1  can be estimated without 

bias by 

�̂�𝑦 = ∑ 𝑑𝑖𝑦𝑖

𝑛

𝑖=1
 

However, when some sampled units do not respond, the unadjusted estimator based on 
the respondent sample, 𝑅, of size 𝑛𝑅,  

�̂�𝑈𝑦 = 𝑁 ∑ 𝑑𝑖𝑦𝑖

𝑛𝑅

𝑖=1
∑ 𝑑𝑖

𝑛𝑅

𝑖=1
⁄  

is biased unless the response mechanism is uniform (i.e., every sampled unit has the same 
propensity of response). Note that it still uses a simple adjustment by a single factor, so 
we mean by “unadjusted” that the adjustment is too simplistic and insensitive to 
differential response propensity. To address the nonresponse bias issue, as mentioned in 
the introduction, two commonly used methods are the traditional weighting class (TWC) 
method and the propensity score based weighting (PWC) class method. The TWC 
method is based on the assumption that the sampled units respond under the quasi-
randomization mechanism (Oh and Scheuren, 1983), and that the sampled units have the 
same response probability within the weighting classes. The weighting classes are formed 
as cross-classes of categorical auxiliary variables available for both respondents and 
nonrespondents, which are supposed to be predictive of the response probability. The 
PWC is based on a somewhat different assumption that sampled units respond 
independently of each other according to a Poisson process. This requires estimation of 
the individual response probability (propensity), and this is usually done by the logistic 
regression that relates the response status as the dependent variable and all auxiliary 
variables (either categorical or continuous) available for both respondents and 
nonrespondents as dependent variables. The propensity score modelling admits 
continuous auxiliary variables, whereas the TWC method has to use only categorical 
variables. Of course, a continuous variable can be categorized to use as a class defining 
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variable but some loss of information results through categorization. Furthermore, the 
number of categorical variables should be limited to avoid defining too many weighting 
classes with small sizes – when this happens, small cells are collapsed but it still limits 
the number. In any case, the PWC method is more flexible in terms of using the auxiliary 
variable for nonresponse adjustment. However, estimated propensity score can be very 
small, and this causes very large adjusted weights, resulting in unstable variance. This 
can be prevented by grouping respondents with similar estimated propensity scores into a 
number of classes and using the weighting class method to perform the nonresponse 
adjustment. In this paper, we always use the PWC method for the nonresponse 
adjustment.  

Denoting the adjustment factor by 𝑎𝑖 for respondent 𝑖, the nonresponse adjusted estimator 
is given by 

�̂�𝐴𝑦 = ∑ 𝑎𝑖𝑑𝑖𝑦𝑖

𝑛𝑅

𝑖=1
 

If the population totals are available for some auxiliary variables, calibration weighting 
can be applied to the nonresponse-adjusted weight. In this case, calibration is regarded as 
a weighting tool (rather than means of nonresponse adjustment) to enhance the efficiency 
of the estimates and the credibility of the final survey weight by forcing the weighted 
sums of the auxiliary variables from the respondent sample equal (calibrated) to the 
population totals. Let x𝒊 = (𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖)𝑇  be a 𝑝 -dimensional vector of auxiliary 
variables with the population total Tx = (𝑇𝑥1

, 𝑇𝑥2
, … , 𝑇𝑥𝑝

) . Then the calibration weight, 
𝑤𝑖, establishes the following equation: 

∑ 𝑤𝑖x𝑖 =
𝑖∈𝑅

Tx 

The calibration weight is obtained from the calibration equation given by 

𝑤𝑖 = 𝑎𝑖𝑑𝑖𝐹(�̂�Tx𝑖) 

where 𝐹(∙) is a monotonic and twice-differentiable function such that 𝐹(0) = 𝐹′(0) = 1 
(𝐹′ is the derivative of 𝐹) and �̂� is a 𝑝-vector of calibration coefficients (Deville and 
Särndal, 1992). Commonly used calibration functions are: (1) the linear function (from 
which the GREG estimator is derived) given by 

𝐹(𝑣) = 1 + 𝑣 

(2) the exponential function given by 

𝐹(𝑣) = exp (𝑣) 

(3) the logit function given by 

𝐹(𝑣) =
𝐿(𝑈 − 1) + 𝑈(1 − 𝐿)exp (𝐴𝑣)

𝑈 − 1 + (1 − 𝐿)exp (𝐴𝑣)
 

where 𝐿 < 1 < 𝑈 are the user-specified lower and upper bounds to limit the calibration 
weight and 𝐴 = (𝑈 − 𝐿)/(1 − 𝐿)(𝑈 − 1). This is a bounded version of (2) as 𝐹(𝑣) in (3) 
converges to 𝐹(𝑣) in (2) as 𝐿 → 0 and 𝑈 → ∞. The weighting method described above is 
a typical two-step weighting procedure. The first step is intended to eliminate the 
nonresponse bias, and the second step is to improve the efficiency and credibility of the 
survey estimates.  
 
However, some authors started seeing the calibration weighting as a tool for nonresponse 
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adjustment in a single step bypassing the usual nonresponse adjustment step (Fuller et al., 
1994; Lundström and Särndal, 1999; Bethlehem, 2002; Särndal and Lundström, 2005; 
Kott, 2006; D’Arrigo and Skinner, 2010; Kott and Liao, 2012; Kott and Liao, 2015). The 
original form was based on the liner calibration function, where the one-step procedure is 
asymptotically unbiased if the survey variable is linearly related with the auxiliary 
variables. Using the same concept that Kim and Park (2006) use in the context of 
imputation, Kott and Liao (2015) demonstrate that the one-step procedure can be doubly 
protected against the nonresponse bias if either the model for the survey variable is linear 
or the response mechanism (the response propensity) is inversely related with the 
calibration function. The first condition (referred to as A1) is stated as: 

𝑦𝑖 = x𝑖
𝑇𝜷 + 𝝐𝑖 

where E(𝝐𝑖|x𝑖) = 0. Haziza and Lessage (2016) provide a weaker condition than this, 
which is a special case. The second condition (referred to as A2) is given by: 

𝐹(𝛌𝑇x𝑖) = 𝜙𝑖
−1 

where 𝜙𝑖 is the response propensity for unit 𝑖. If a survey is multi-purpose with many 
survey variables, then not all survey variables would satisfy A1. Therefore, A2 is 
particularly important in this case because if A2 is satisfied, the one-step procedure is 
asymptotically unbiased for all survey variables. However, Haziza and Lessage (2016) 
shows that the double protection can fail with a serious bias consequences and emphasize 
that the two-step procedure is free to choose a nonresponse adjustment procedure for that 
purpose only and a calibration procedure for calibration only, whereas the one-step 
procedure has to take care of both nonresponse adjustment and calibration in one shot, 
and hence more burden is imposed on the procedure. They used an artificially generated 
population with a single auxiliary variable that follows a uniform distribution. In the 
following section, we reproduce their results and expand the simulation with other 
distributions for the single auxiliary variable. We also examine the performance of the 
two estimators using the 2014 public use micro sample (PUMS) provided by the Census 
Bureau based on the 5 year American Community Survey (ACS). 
 
 

3. Comparison of the One- and Two-Step Procedures 
 
3.1 Replication of the Simulation by Haziza and Lessge (2016) 

To compare the one- and two-step procedures through simulation, Haziza and Lessage 
(2016) generated four artificial populations of size 𝑁 = 1,000, using the following four 
models: 
 

(M1) Linear: 𝑦1 = 1,000 + 10𝑥 + 𝜀1; 
(M2) Exponential: 𝑦2 = exp(−0.1 + 0.1𝑥) + 𝜀2; 
(M3) Logistic: 𝑦3~𝐵(𝑝) , which follows a Bernoulli distribution with 𝑝 =

[exp{−0.5(𝑥 − 55)} + 1]−1; 
(M4) Quadratic: 𝑦4 = 1300 − (𝑥 − 40)2 + 𝜀4 

 
where 𝑥 follows a uniform distribution over (0, 80), ε𝑘 follows a normal distribution with 
mean 0 and variance 300, for 𝑘 = 1,2,4. Focusing on the nonresponse error, they used the 
census case (i.e., 𝑛 = 𝑁 = 1,000), and thus 𝑑𝑖 = 1 for all 𝑖 = 1,2, … , 𝑁. The scatter plots 
of the four 𝑦-variables are shown below: 
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F1gure 1. Plot of y-variables against the uniform x-variable 
 
Respondents were generated using the following response mechanisms: 
 

(R1) Inverse linear: 𝜙1 = (1.2 + 0.024𝑥)−1 
(R2) Exponential:    𝜙2 = exp (−0.2 − 0.014𝑥) 
(R3) Logistic type:  𝜙3 = 0.2 + 0.6{1 + exp (−5 + 𝑥/8)}−1   
(R4) Quadratic:        𝜙4 = 0.7 + 0.0025𝑥 −  0.45(𝑥/40 − 1)2  

 
Response indicator, 𝑅𝑘~𝐵(𝜙𝑘), for k = 1, … ,4, was generated with the expected overall 
response rate of 50%. Because the response indicator was generated independently (i.e., 
Poisson sampling), the respondent sample size fluctuates around 500. These response 
mechanisms are depicted in the following graph. 

 

 
Figure 2. Graphs of four response mechanisms 
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Four estimators were compared, the PWC estimator and three calibration estimators. 
Haziza and Lessage (2016) omitted the calibration step for the two-step procedure to 
compare more clearly the bias removing properties of the procedures. Therefore, the 
PWC estimator, which is supposed to represent the two-step procedure, was computed 
without the calibration step. The PWC estimator is defined as follows: 
 

 Run logistic model, logit(𝑅) = 𝛽0 + 𝛽1𝑥; 
 Partition the estimated response propensities, that is, predicted values of 

exp(�̂�0 + �̂�1𝑥) /{(1 + exp(�̂�0 + �̂�1𝑥)} into 20 equal size weighting classes; 
 Post stratification weight adjustment using 20 weighting classes as post-strata. 

 
Usually a smaller number of weighting classes (between 5 and 10) is recommended but 
the larger number of 20 was used by Haziza and Lessage (2016) to handle severely 
nonlinear response mechanisms. We also tried 10, and the result (not shown) was slightly 
more biased but very close to the result with 20.  
 
The one-step procedure applies the calibration estimation directly without the 
nonresponse adjustment step. We use three calibration functions discussed in Section 2: 
 

 Linear (CAL1): 1 + 𝑣 
 Exponential (CAL2): exp (𝑣) 
 Logit (CAL3): 𝐿(𝑈−1)+𝑈(1−𝐿) exp(𝐴𝑣)

𝑈−1+(1−𝐿) exp(𝐴𝑣)
 

 
We used the calibration software, CALMAR, developed by INSEE of France, with 
auxiliary vector 𝐱 = (1, 𝑥). This means that the calibration estimators are calibrated to 
the population size (𝑁) and the population total of 𝑥 (𝑇𝑥). The four estimators are denoted 
as �̂�𝑃𝑦, �̂�𝐶1𝑦, �̂�𝐶2𝑦, and �̂�𝐶2𝑦, or referred to as P-estimator, C1-estimator, C2-estimator, 
and C3-estimator. To measure the bias of an estimator 𝜃, we compute the Monte Carlo 
percent relative bias(RB) and the percent relative root mean square error(RRMSE) of 𝜃 
with 𝑀 being the simulation size as follows: 

  𝑅𝐵𝑀𝐶(𝜃) =
100

𝑀
∑

(𝜃(𝑚) − 𝜃)

𝜃

𝑀

𝑚=1

 

 𝑅𝑅𝑀𝑆𝐸𝑀𝐶(𝜃) = 100 ×
{𝑀−1 ∑ (𝜃(𝑚) − 𝜃)2𝑀

𝑚=1 }1/2

𝜃
 

The simulation results are summarized in Tables 1-4, where these abbreviations are used: 
 

 R: Response mechanism  
 Var: y-Variable  
 U: Unadjusted estimator (�̂�𝑈𝑦) based on respondents without weight adjustment 
 P: One-step PWC estimator based on estimated propensity scores 
 C1: One-step calibration estimator based on the linear function 
 C2: One-step calibration estimator based on the exponential function 
 C3: One-step calibration estimator based on the logit function 

 
C2 and C3 performed almost identically with the upper bound (𝑈) we used to avoid the 
situation, where CALMAR could not find a solution during simulation. So, the result for 
C3 is omitted from the tables. 
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Table 1. Simulation results with the single uniform auxiliary variable 

R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y1 -4.93 0.03 0.01 0.01 5 0.77 0.76 0.75 

1 y2 -32.35 -0.16 -0.56 2.68 32.87 2.95 5.57 6.02 

1 y3 -29.8 -0.22 -0.35 1.66 30.18 2.43 3.67 3.82 

1 y4 -4.23 -0.13 0.23 -2.14 4.77 1.36 2.83 3.34 

2 y1 -5.7 -0.01 -0.02 -0.01 5.76 0.83 0.81 0.81 

2 y2 -39.17 -0.06 -4.21 0.16 39.6 3.02 7.61 6.28 

2 y3 -35.95 -0.27 -2.86 -0.04 36.23 2.47 4.66 3.42 

2 y4 -2.85 -0.05 3.24 -0.05 3.71 1.39 4.5 2.88 

3 y1 -7.86 0.02 -0.01 -0.01 7.9 0.94 0.86 0.88 

3 y2 -55.56 0.05 -10.63 -0.63 55.8 3.48 12.72 6.82 

3 y3 -54.91 -0.13 -13.12 -6.32 55.08 3.09 13.89 7.42 

3 y4 0.81 -0.02 12.47 4.67 2.27 1.55 13.04 5.6 

4 y1 2.2 -0.01 0 0.01 2.35 0.83 0.67 0.67 

4 y2 -11.57 -0.06 -28.57 -27.56 13.05 3.19 28.85 27.85 

4 y3 -0.92 -0.08 -17.8 -17.17 4.84 1.47 18.02 17.4 

4 y4 19.05 0.32 20.85 20.19 19.21 1.74 21 20.35 

 
We obtained similar results as shown in Haziza and Lesage (2016). Some highlights are: 
 

 The PWC estimator is virtually unbiased and almost always better than 
calibration estimators except for 𝑦1 variable, which is linear in 𝑥, and for which 
all estimators are unbiased as the theory predicts. 

 The C1 estimator works well in terms of the bias under the inverse linear 
response mechanism (R1) because the inverse of the calibration function 
estimates the response propensity. Likewise, the C2 estimator does well under 
the exponential response mechanism (R2). 

 Under other response mechanisms (R3 and R4), the calibration estimators do not 
perform well except for 𝑦1, for which any estimator is supposed to do well. 

 When the double protection is present, the calibration estimators are safe from 
the nonresponse bias but in general less efficient and vulnerable in the absence of 
double protection. 

 
Considering the uniform auxiliary variable is unusual, we also ran the simulation using 
the same set-up but with non-uniform auxiliary variables. To see how the performance of 
the estimators changes as the auxiliary variable moves away from uniform to a symmetric 
distribution with thinner tails, we used the Trapezoidal distribution over (0, 80) defined 
by the following density function with an arbitrary number 𝑎 in (0, 40) and  𝑏 =

𝑎

2(80−𝑎)
: 

𝑓(𝑥) = {
𝑏𝑥 𝑎⁄       if 𝑥 < 𝑎                      
𝑏         if 𝑎 ≤ 𝑥 < 80 − 𝑎         
𝑏(80 − 𝑥)/𝑎     if 𝑥 ≥ 80 − 𝑎

 

The density function of the Trapezoidal distribution is shown below. Note that when 
𝑎 = 0, it becomes the uniform, and when 𝑎 = 40, it becomes the triangular. 
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                                                                                                                                x 

                  0                          a                                         80 – a               80 
 

Figure 3. The distribution function of the trapezoidal distribution 
 
 
We ran simulation with 𝑎 = 10, 20, 30, 40, but to save space, we present the results for 𝑎 
= 20 and 40 only. 
 

Table 2. Simulation results with the Trapezoidal auxiliary variable with 𝑎 =  20 

R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y1 -2.60 0.05 0.08 0.08 2.71 0.67 0.66 0.66 

1 y2 -21.24 -0.60 0.01 2.11 22.49 5.93 7.47 7.76 

1 y3 -23.01 0.02 0.01 1.78 23.74 3.38 4.89 5.06 

1 y4 -2.02 0.00 0.02 -0.72 2.53 1.12 1.66 1.77 

2 y1 -3.16 -0.02 0.01 0.01 3.26 0.73 0.71 0.72 

2 y2 -26.54 -0.17 -2.53 0.35 27.48 6.32 7.87 7.48 

2 y3 -29.13 -0.27 -2.68 -0.14 29.71 3.59 6.01 5.18 

2 y4 -1.70 -0.07 1.00 -0.06 2.17 1.08 1.88 1.51 

3 y1 -5.27 -0.14 -0.10 -0.10 5.32 0.84 0.79 0.81 

3 y2 -44.87 -0.30 -9.28 -0.59 45.33 6.74 12.73 9.04 

3 y3 -51.55 -0.20 -13.58 -5.88 51.82 4.51 14.99 8.28 

3 y4 -0.77 0.06 5.43 2.14 1.49 1.17 5.78 2.78 

4 y1 1.26 0.02 0.03 0.03 1.49 0.77 0.69 0.69 

4 y2 -6.49 -1.18 -18.10 -17.52 9.39 5.72 18.97 18.41 

4 y3 -2.13 -0.16 -15.49 -14.95 5.94 2.48 15.91 15.39 

4 y4 5.97 0.42 6.24 6.05 6.09 1.11 6.36 6.18 

 

Table 3. Simulation results with the Triangular auxiliary variable (𝑎 =  40) 

R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y1 -2.23 -0.03 -0.01 0.01 2.37 0.77 0.75 0.75 

1 y2 -20.16 -0.49 -0.31 1.52 21.58 6.04 7.47 7.58 

1 y3 -22.63 -0.07 0.08 1.91 23.58 3.32 5.54 5.68 

1 y4 -0.94 0.01 0.04 -0.57 1.64 1.05 1.53 1.56 

2 y1 -2.69 -0.01 -0.02 0.00 2.81 0.78 0.76 0.76 

2 y2 -25.86 -1.22 -3.22 -0.64 26.90 6.43 8.18 7.51 

2 y3 -28.74 0.02 -2.54 0.10 29.41 3.36 6.10 5.30 

2 y4 -0.55 0.02 0.88 -0.01 1.38 1.03 1.75 1.44 

3 y1 -4.68 -0.01 -0.14 -0.07 4.74 0.81 0.77 0.76 

3 y2 -43.75 -0.72 -9.13 -0.90 44.26 6.59 12.48 8.84 

3 y3 -52.13 0.00 -13.68 -5.14 52.43 4.02 15.27 8.01 

3 y4 0.44 -0.09 4.54 1.59 1.28 1.23 4.93 2.37 
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R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

4 y1 0.71 0.03 -0.12 -0.12 0.99 0.68 0.64 0.64 

4 y2 -7.02 -1.65 -15.50 -15.18 9.82 5.99 16.54 16.23 

4 y3 -5.22 -0.29 -15.42 -15.07 7.86 2.25 15.92 15.57 

4 y4 4.64 0.39 4.99 4.90 4.78 1.05 5.13 5.03 

 
From these tables, we can see that as the distribution of the x-variable moves from the 
uniform to the triangular distribution, the bias of all estimators is generally reduced. 
Exceptions are that the PWC estimator performs slightly worse for y2-variable and that 
the bias for y3-variable virtually does not change – the bias for this variable (generated 
from the logistic model) is not much affected by non-uniform symmetric distribution. 
 
When we used a more realistic normal distribution for the auxiliary variable, the result is 
very similar to that for the triangular auxiliary variable (compare Tables 3 and 4). 
 

Table 4. Simulation results with the normal auxiliary variable 

R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y1 -1.24 -0.06 -0.04 -0.04 1.44 0.72 0.70 0.70 

1 y2 -12.47 0.08 -0.17 1.03 15.91 9.52 10.02 10.06 

1 y3 -20.75 -0.03 -0.72 1.43 22.69 6.84 9.36 9.36 

1 y4 -0.71 -0.05 0.09 -0.13 1.16 0.86 0.96 0.96 

2 y1 -1.41 -0.01 0.01 0.02 1.55 0.67 0.66 0.66 

2 y2 -16.48 -1.11 -2.50 -0.87 18.98 9.19 9.94 9.61 

2 y3 -26.18 -0.50 -3.45 -0.49 27.73 6.87 10.46 9.81 

2 y4 -0.67 -0.02 0.38 0.06 1.11 0.84 1.06 0.97 

3 y1 -2.61 -0.05 -0.03 -0.02 2.69 0.75 0.71 0.71 

3 y2 -30.88 -0.77 -9.23 -3.82 32.27 11.13 14.35 11.70 

3 y3 -49.36 -0.61 -15.85 -6.14 50.13 9.01 19.92 13.64 

3 y4 -0.59 0.00 1.91 0.84 1.08 1.00 2.23 1.39 

4 y1 0.32 0.07 0.03 0.03 0.77 0.69 0.66 0.66 

4 y2 -3.52 -0.26 -7.24 -7.11 10.68 9.52 12.06 11.98 

4 y3 -8.81 -0.57 -14.90 -14.64 12.72 5.81 16.73 16.48 

4 y4 1.41 0.19 1.39 1.37 1.68 0.90 1.66 1.64 

 

We also used the gamma distribution for the auxiliary variable. The result is shown in 
Table 5, which is quite surprising. The bias of all variables is reduced substantially by all 
estimators except for the y2-variable, for which the bias has gotten much worse. This 
shows that the interaction between the model that generates the survey variable and the 
model that describes the distribution of the auxiliary variable can seriously affect the 
performance of the one-step procedures, which can be further aggravated by the shape of 
response mechanism (e.g., R4). But we consider that R3 (logistic type) and R4 (quadratic) 
are somewhat unusual and not frequently observed in reality. 
 

Table 5. Simulation results with the Gamma auxiliary distribution 

R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y1 -1.09 -0.09 -0.08 -0.08 1.37 0.84 0.82 0.82 

1 y2 -18.05 3.79 10.32 15.91 143.46 145.32 145.69 146.22 

1 y3 -18.44 0.33 0.33 1.12 20.01 4.20 6.28 6.33 
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R Var 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

1 y4 -5.46 0.05 0.09 -0.17 5.83 1.38 1.70 1.69 

2 y1 -1.31 -0.07 -0.03 -0.04 1.58 0.87 0.86 0.86 

2 y2 -36.46 -10.11 -5.46 3.51 149.85 153.25 153.43 154.93 

2 y3 -24.37 0.01 -1.20 0.11 25.59 4.81 6.69 6.45 

2 y4 -6.80 0.07 0.46 0.05 7.09 1.38 1.74 1.67 

3 y1 -1.46 -0.01 0.10 0.08 1.69 0.89 0.86 0.86 

3 y2 -70.85 -27.28 -46.75 -35.13 164.10 165.18 166.87 165.89 

3 y3 -35.61 -0.24 -9.54 -7.28 36.31 4.96 11.82 9.99 

3 y4 -6.98 0.17 2.26 1.69 7.28 1.45 2.90 2.52 

4 y1 1.94 -0.06 0.07 0.04 2.10 0.82 0.79 0.79 

4 y2 22.42 -7.13 -70.64 -52.62 142.11 155.12 162.41 155.87 

4 y3 33.97 -0.04 -10.16 -8.06 34.80 3.19 11.26 9.29 

4 y4 11.94 0.22 3.16 2.29 12.11 1.49 3.51 2.74 

 
3.2 Simulation with PUMS 
We used the 2014 ACS Public Use Microdata Sample (PUMS) data to create the population 
data for simulation. Table 6 provides the PUMS variables we used for the study. 
 

Table 6. PUMS variables used for the study (auxiliary variables are in red) 

Variable Name Variable Label 

      HINCP HOUSEHOLD INCOME (PAST 12 MONTH) 

      D_HHT  HOUSEHOLD/FAMILY TYPE: 1 = MARRIED, 0 = OTHER 

      D_TEN TENURE: 1 = OWNED, 0 = NOT OWNED 

      VALP_CAT CATEGORIZED PROPERTY  VALUE (Int(VALP/100,000)) 

      FINCP FAMILY INCOME(PAST 12 MONTHS) 

      VALP PROPERTY VALUE 

      GRNTP GROSS RENT (MONTHLY AMOUNT) 

      D_HHL HOUSEHOLD LANGUAGE: 1 = ENGLISH ONLY, 0 = NOT ENGLISH ONLY) 

      D_NOC NUMBER OF OWN CHILDREN IN HOUSEHOLD: 1 = YES, 0 = NO 

      D_WIF WORKERS IN FAMILY DURING THE PAST 12 MONTHS): 1 = YES, 0 = NO 

      R18 PRESENCE OF PERSONS UNDER 18 YEARS IN HOUSEHOLD: (0,1) 

      R65 PRESENCE OF PERSONS 65 YEARS AND OVER IN HOUSEHOLD: (0,1) 

 
The simulation population of size 𝑁 = 1,000 was created by selecting a simple random 
sample from the PUMS data (with 809,302 records). Simulation was run with one 
auxiliary variable (HINCP), two auxiliary variables (HINCP and D_TEN or 
VALP_CAT), and three auxiliary variables (HINCP, D_TEN, and D_HHT). As before, 
we used a census, and for each simulation setup, we generated 500 respondent sets by 
Poisson sampling with four response mechanisms: (1) inverse linear; (2) exponential; (3) 
logistic type; (4) quadratic, with an average response rate of 50 percent. The auxiliary 
vector for the calibration estimators always includes 1 as the first component. 
 
CASE1::One auxiliary variable (HINCP) 

We generated 500 Poisson samples of respondents with response probability, 𝜙𝑘 using 
the response indicator 𝑅𝑘~𝐵(1, 𝜙𝑘) that follows four different response mechanisms as 
given below with x = HINCP/10000. 
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(R1) Inverse linear: 𝜙1 =  (1.83 + 0.024𝑥)−1; 
(R2) Exponential:   𝜙2 =  exp(−0.58 − 0.015𝑥); 
(R3) Logistic type: 𝜙3 =  0.17 + 0.35{1 + exp(−4 + 𝑥/8)}−1; 
(R4) Quadratic:       𝜙4 =  0.77 + 0.0025𝑥 − 0.4(𝑥/40 − 1)2; 

 
Four estimators (besides the U-estimator) were computed using the same weighting 
methods used in Section 3.1: P, C1 (Linear), C2 (Exponential), C3 (Logistic type). The P-
estimator was based on this logistic model: logit(𝑅) = 𝛽0 + 𝛽1𝑥. The result is shown in 
Table 7 but the result of D_WIF is omitted to save space and also because it is very 
similar to that of D_HHL. Likewise, the results for R18 and R65 are omitted because 
they are similar to that of D_NOC. C2 and C3 performed almost identically with the 
upper bound (𝑈) we used to avoid the situation, where CALMAR could not find a 
solution during simulation. So, the result for C3 is omitted in all the result tables (7-11) 
obtained from the PUMS data.  
 

Table 7. Simulation results with one auxiliary variable (HINCP) from PUMS data 

Var R 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

D_HHL 1 -0.15 0.12 0.12 0.10 1.56 1.61 1.57 1.57 

D_HHL 2 -0.34 0.01 0.05 0.01 1.55 1.55 1.52 1.52 

D_HHL 3 -0.23 0.01 0.05 0.03 1.58 1.62 1.59 1.59 

D_HHL 4 0.73 0.05 0.33 0.25 1.78 1.79 1.76 1.76 

D_NOC 1 -0.70 -0.40 -0.22 -0.17 4.16 4.18 4.17 4.17 

D_NOC 2 -0.66 -0.30 -0.13 -0.05 4.32 4.44 4.41 4.41 

D_NOC 3 -0.62 -0.53 -0.16 -0.12 4.17 4.31 4.21 4.21 

D_NOC 4 1.30 0.47 0.01 0.08 3.98 4.18 3.96 3.98 

FINCP 1 -7.87 -0.64 0.01 0.02 8.42 1.41 0.25 0.25 

FINCP 2 -10.39 -1.12 -0.01 0.00 10.72 1.69 0.27 0.27 

FINCP 3 -8.28 -1.47 -0.03 -0.03 8.76 1.97 0.26 0.26 

FINCP 4 18.73 -0.19 0.21 -0.05 18.91 0.60 0.53 0.22 

GRNTP 1 374.51 -0.24 -0.32 -0.09 374.84 6.79 6.79 6.78 

GRNTP 2 372.77 -0.56 -1.10 -0.72 373.07 6.93 7.01 6.95 

GRNTP 3 377.02 -0.26 -1.54 -1.28 377.40 7.02 7.25 7.18 

GRNTP 4 403.13 0.23 -2.50 -1.84 403.51 7.04 7.29 7.11 

VALP 1 24.43 0.25 0.47 0.36 25.12 4.70 4.69 4.71 

VALP 2 22.68 0.28 0.89 0.75 23.32 4.53 4.60 4.67 

VALP 3 23.31 -0.63 0.38 0.30 23.89 4.43 4.33 4.37 

VALP 4 43.82 0.24 1.58 1.00 44.07 3.19 3.70 3.41 

 
Except the unadjusted estimator, all other estimators have near zero bias (absolute RB < 
3%). It appears that the double protection is at play in this situation. HINCP and FINCP 
have a linear relationship with very strong correlation (0.99), and the calibration 
estimators particularly perform very well for FINCP. 
 
CASE2: Two auxiliary variables (HINCP and D_TEN) 

Respondents were generated using the following response mechanisms with 𝑥1  = 
HINCP/10000 and 𝑥2 = D_TEN: 
 

(R1) Inverse linear: 𝜙1 =  (1.88 + 0.01𝑥1 + 0.2𝑥2 )−1; 
(R2) Exponential:   𝜙2 =  exp(−0.60 − 0.01𝑥1 − 0.1𝑥2 ); 
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(R3) Logistic type: 𝜙3 =  0.17 + 0.35{1 + exp(−4 + 𝑥1/8 + 𝑥2 )}−1; 
(R4) Quadratic:      𝜙4 =  0.70 + 0.0015𝑥1 + 0.005𝑥2 − 0.4(𝑥1/40 + 𝑥2  − 1)2; 

 
Then we calculated four estimators (besides the U-estimator) using the same weighting 
methods used in Section 3.1: P, C1(Linear), C2 (Exponential), C3 (Logistic type). The P-
estimator is defined using the logistic regression model with two independent variables: 
logit(𝑅) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 . The result is summarized in the table below but as in 
Table 7, the results for D_WIF, R18, R65, and of the C3-estimator are omitted. 
 

Table 8. Simulation results with two auxiliary variables from PUMS data 

Var R 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

U P C1 C2 U P C1 C2 

D_HHL 1 0.21 -0.05 0.03 0.03 1.63 1.88 1.90 1.62 

D_HHL 2 -0.08 -0.27 -0.15 -0.15 1.51 1.83 1.86 1.54 

D_HHL 3 -0.04 -0.21 0.04 0.04 1.69 2.00 2.10 1.73 

D_HHL 4 -1.33 -0.65 -0.10 -0.10 2.05 2.16 2.15 1.60 

D_NOC 1 -1.26 0.11 0.08 0.06 4.64 5.05 5.01 4.42 

D_NOC 2 -1.95 -0.54 -0.32 -0.36 4.73 4.82 4.78 4.24 

D_NOC 3 -0.93 -0.46 0.29 0.24 4.48 4.88 4.87 4.35 

D_NOC 4 7.12 -0.78 0.93 0.66 8.14 4.94 4.95 4.21 

FINCP 1 -2.98 -0.24 0.00 0.00 4.18 1.62 1.60 0.26 

FINCP 2 -6.59 -0.49 -0.01 0.00 7.14 1.70 1.73 0.27 

FINCP 3 -8.30 -1.13 -0.03 -0.02 8.78 2.96 2.75 0.29 

FINCP 4 9.11 -0.16 0.06 0.00 9.50 1.42 1.34 0.30 

GRNTP 1 377.79 -0.59 -0.02 -0.01 378.20 4.80 5.03 3.70 

GRNTP 2 374.37 -0.10 -0.10 -0.12 374.75 5.14 5.79 3.60 

GRNTP 3 373.43 -0.93 0.14 0.03 373.77 5.15 5.84 3.42 

GRNTP 4 377.27 -1.28 -3.27 -2.68 377.44 3.05 3.42 3.93 

VALP 1 27.27 0.15 0.24 0.21 27.76 4.42 4.67 3.91 

VALP 2 24.45 -0.35 0.17 0.10 25.01 4.96 5.11 4.36 

VALP 3 23.13 -0.76 0.02 -0.02 23.75 5.68 5.74 4.47 

VALP 4 43.85 0.17 2.24 1.73 44.19 4.10 4.24 4.19 

 
The bias for all estimators except the unadjusted is still fairly well contained (absolute 
RB < 4%) although the bias slightly increased for some cases. 
 
CASE3: Two auxiliary variables (HINCP and VALP_CAT)  

Respondents were generated using the following mechanisms with an interaction term, 
where 𝑥1 = HINCP/10000 and 𝑥2 = VALP_CAT. 
 

(R1) Inverse linear: 𝜙1 = (1.88 + 0.01 𝑥1 + 0.01𝑥2 + 0.001 𝑥1𝑥2)−1; 
(R2) Exponential:   𝜙2 = exp(−0.60 − 0.01𝑥1 − 0.005𝑥2 + 0.0003𝑥1𝑥2); 
(R3) Logistic type: 𝜙3 = 0.25 + 0.35{1 + exp(−4 + 0.3𝑥1/8 + 0.4𝑥2 +

0.1𝑥1𝑥2)}−1; 
(R4) Quadratic:      𝜙4 = 0.67 + 0.001𝑥1 + 0.001𝑥2 − 0.2(0.1𝑥1/40 +

0.03𝑥2 + 0.0003𝑥1𝑥2 − 1)2; 
 
Then we calculated five estimators (besides the unadjusted estimator) using the same 
weighting methods used in Section 3.1: two versions of P, C1 (Linear), C2 (Exponential), 
C3 (Logistic type). The result is summarized in Table 10. The P-estimator is defined 
using the logistic regression model with two independent variables with an interaction 
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term (denoted as P1) or without it (denoted as P2) as given below: 
 

 P1: logit(𝑅) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 
 P2: logit(𝑅) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 

 
The unadjusted estimator performed similarly as shown in Table 8, and it is not shown in 
Table 9. Instead both P1 and P2 are shown. P1 and P2 performed very similarly, which 
means the inclusion of interaction terms does not affect the PWC estimator much. The 
results for D_WIF, R18,  and R65 and of the C3-estimator are omitted to save space. 
 

Table 9. Simulation results with two auxiliary variables from PUMS data 

Var R 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

P1 P2 C1 C2 P1 P2 C1 C2 

D_HHL 1 -0.14 -0.14 0.05 0.03 1.93 1.94 1.63 1.63 

D_HHL 2 -0.18 -0.21 -0.08 -0.10 1.77 1.84 1.55 1.55 

D_HHL 3 -0.81 -0.71 0.11 -0.03 2.15 2.11 1.52 1.54 

D_HHL 4 -0.09 -0.14 0.05 0.05 1.81 1.90 1.62 1.62 

D_NOC 1 -0.38 -0.30 -0.33 -0.24 4.63 4.60 4.08 4.07 

D_NOC 2 -0.50 -0.27 -0.05 0.00 4.22 4.40 3.90 3.90 

D_NOC 3 -1.51 -1.11 -0.97 0.06 5.33 5.28 4.58 4.42 

D_NOC 4 -0.37 -0.60 -0.72 -0.59 4.31 4.35 3.99 3.97 

FINCP 1 -0.56 -0.62 0.00 0.00 1.87 1.77 0.25 0.25 

FINCP 2 -0.45 -0.42 0.00 0.01 1.68 1.71 0.25 0.25 

FINCP 3 -1.21 -0.88 0.02 0.02 3.10 2.79 0.26 0.26 

FINCP 4 -0.11 -0.11 0.01 0.01 1.10 1.05 0.23 0.23 

GRNTP 1 0.68 0.61 -0.61 -0.13 6.60 6.58 6.64 6.53 

GRNTP 2 -0.56 0.18 0.10 0.39 7.11 7.46 6.72 6.69 

GRNTP 3 5.30 4.14 3.52 8.29 8.29 7.38 9.18 11.06 

GRNTP 4 -1.05 -1.04 -2.61 -2.06 6.70 6.81 7.17 6.95 

VALP 1 -0.95 -0.62 -0.11 -0.07 3.19 2.89 0.50 0.49 

VALP 2 -0.27 -0.03 0.02 0.05 2.88 2.73 0.47 0.46 

VALP 3 -2.16 -1.64 0.42 0.85 4.76 4.10 0.87 1.08 

VALP 4 0.11 0.05 -0.22 -0.16 1.36 1.25 0.45 0.42 

 
The P1-estimator and P2-estimator similarly performed but the P2-estimator did slightly 
worse, which is surprising because we expect the other way around. Perhaps, adding the 
interaction term in the logistic model causes more noise in the estimate of the propensity 
score when the interaction term in the response model is weak. 
 
CASE4: Three auxiliary variables (HINCP10, D_TEN, and D_HHT)  

Respondents were generated using the following response mechanisms, where 𝑥1  = 
HINCP/10000, 𝑥2 = D_TEN, and 𝑥3 = D_HHT: 
 

(R1) Inverse linear: 𝜙1 = (1.83 + 0.01𝑥1 + 0.1𝑥2 + 0.1𝑥3)−1; 
(R2) Exponential:   𝜙2 = exp(−0.57 − 0.01𝑥1 − 0.05𝑥2  − 0.05𝑥3); 
(R3) Logistic type: 𝜙3 = 0.17 + 0.35{1 + exp(−4 + 𝑥1/8 + 0.5𝑥2  + 0.5𝑥3)}−1; 
(R4) Quadratic:      𝜙4 = 0.57 + 0.0015𝑥1 + 0.002𝑥2 + 0.002𝑥3 − 0.26(𝑥1/

40 + 0.3𝑥2 + 0.3𝑥3  − 1)2 ; 
 
Then we calculated four estimators (besides the unadjusted estimator) using the same 
weighting methods used in Section 3.1: P, C1(Linear), C2 (Exponential), C3 (Logistic 
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type). The P-estimator is defined using the logistic regression model with three 
independent variables: logit(𝑅) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 . We also used two 
classification tree algorithms, GUIDE (Loh, 2015) and RPART to form the weighting 
classes. RPART is an R-version of CART (Classification and Regression Trees, Breiman 
et al., 1984). For both GUIDE and RPART, the three auxiliary variables were used for 
classification with default options. The result is summarized in Table 11. We omit the 
unadjusted estimator and C3, which very similarly performed as C2. 
 
Table 10. Simulation results with three auxiliary variables from PUMS data 

Var R 
Relative Bias (RB) Relative Root Mean Square Error (RRMSE) 

P C1 C2 G T P C1 C2 G T 

D_HHL 1 -0.30 -0.07 -0.07 -0.01 -0.15 2.01 1.66 1.66 0.44 1.90 

D_HHL 2 -0.18 -0.01 -0.01 -0.05 0.08 1.92 1.63 1.64 1.28 1.94 

D_HHL 3 -0.39 -0.01 -0.02 -0.15 -0.12 1.91 1.64 1.64 1.30 1.80 

D_HHL 4 -0.28 -0.03 -0.03 -0.04 -0.32 1.93 1.68 1.68 1.23 1.90 

D_NOC 1 -0.39 -0.27 -0.29 -0.22 0.39 4.51 4.03 4.03 3.24 4.12 

D_NOC 2 -0.22 0.07 0.04 -0.46 -0.13 4.64 4.18 4.17 2.81 4.11 

D_NOC 3 -0.82 -0.05 -0.14 -0.24 -0.52 5.09 4.48 4.49 2.67 4.06 

D_NOC 4 -0.23 0.07 0.03 0.33 0.30 4.77 4.13 4.13 2.77 4.06 

FINCP 1 -0.26 -0.01 0.00 -3.72 -1.04 1.65 0.26 0.26 4.87 3.84 

FINCP 2 -0.65 -0.03 -0.02 -8.19 -2.72 1.66 0.25 0.25 8.82 4.68 

FINCP 3 -1.15 -0.08 -0.06 -10.63 -5.16 3.02 0.30 0.29 11.02 6.66 

FINCP 4 -0.27 -0.08 -0.07 4.30 -1.27 1.43 0.25 0.25 5.25 2.91 

GRNTP 1 -0.18 -0.25 -0.25 -2.73 -0.05 5.12 3.53 3.53 7.08 7.26 

GRNTP 2 -0.16 0.04 -0.02 -1.52 -0.34 5.33 3.39 3.37 6.58 6.33 

GRNTP 3 -0.42 0.45 0.28 -0.63 -0.28 6.03 3.73 3.69 6.36 6.96 

GRNTP 4 -0.18 -0.78 -0.58 6.42 3.46 4.91 3.17 3.11 8.92 7.56 
VALP 1 -0.12 -0.07 -0.10 -0.91 -0.51 4.53 3.94 3.94 5.36 5.19 

VALP 2 -0.39 0.13 0.10 -3.19 -0.90 4.99 4.08 4.09 6.06 5.36 

VALP 3 -0.51 0.10 0.06 -4.16 -1.96 5.96 4.58 4.65 6.76 5.92 

VALP 4 0.32 1.02 0.91 1.14 -1.05 4.27 3.67 3.63 5.50 5.20 

 
The classification tree algorithms tend to have a larger bias for continuous variables such 
as FINCP. This suggests that it may be better to use the regression tree option rather than 
the classification tree. This is a subject of future research. 
 
We also ran simulation under more complex scenarios using PUMS such as that some 
auxiliary variables involved in the response models were omitted in the estimation model. 
When this happened, the nonresponse bias increased substantially. We also tried the two-
step procedures under non-census sampling experiments. The two-step procedure was 
slightly less biased and more efficient in our simulation. 
 
 

4. Discussion and Concluding Remarks 
 
From the simulation results, we provide the following summary: 
 

 The one-step procedure is virtually unbiased under the double protection if either 
A1 or A2 condition is met. 

 However, the one-step procedure is more vulnerable than the two-step procedure 
in the absence of double protection (that is, neither A1 nor A2 condition is met). 

 For natural populations and under more realistic situations, the one-step 
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procedure is fairly robust although it can be less efficient than the two-step 
procedure. 

 Inclusion of important predictors in the estimation model is important and seems 
more important than correct model specification. 

 Classification tree algorithms are viable options for weighting but more study is 
needed. 

 
We did not study variance estimation. Variance estimation based on the Taylor method is 
discussed in Kim and Haziza (2014) and Kott and Liao (2015). It appears that the 
resampling based methods are not well developed and need more research. 
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