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Abstract 

The main objective of sampling is to obtain a representative sample for an unbiased and 
efficient estimate within a budget constraint. The current paper is to develop a new measure 
of representativeness of a sample. A population characteristics or measures of 𝑁 
population elements could be interpreted as a vector on 𝑁-dimensional space. Similarly, a 
sample characteristics or measures of 𝑛 sample elements could be interpreted as a vector 
on 𝑛-dimensional subspace, imbedded in 𝑁-dimensional space. The length of a population 
vector is defined as the square root of the sum of squares of 𝑁 components. The length of 
a sample vector is the square root of the sum of squares of 𝑛 components. A weighted 
length of a sample vector could be obtained by weighting the 𝑛 components with sampling 
weights. We can measure the sample representativeness as a ratio of the weighted length 
of a sample vector to the length of the population vector. 
 

1. Introduction 

Desirability of representativeness of a sample is accepted by professional statisticians and 
lay observers, even though the meaning or definition of “representativeness” varies, as 
discussed by many noted statisticians (Kruskal & Mosteller, 1979a, 1979b, 1979c, 1980; 
Snedecor, 1939; Stephan & McCarthy, 1958). A representative sample is a sample which 
is representative of a population. The method of selection may be random or purposive 
(Cramer, 1946, p. 331; Neyman, 1934). As Kendall and Buckland (1960) defined, we use 
the term “representative” to describe samples which “turn out to be so, however it chosen.” 
To the current author, no measure of sample representativeness has yet been proposed. In 
this paper, we propose an index of representativeness of a sample. Our measure is not 
equivalent to Yates’ balancing, which requires the average size of the selected units to be 
equal to the average size of the units of the population (Yates, 1971, Pp. 39-41). 
 

2. Data: Two Perspectives 
 
Consider an 𝑁 × 𝑃 rectangular data matrix with 𝑃 variables on 𝑁 units. Usually 𝑁 is much 
larger than 𝑃, i.e., 𝑁 ≫ 𝑃. There are two ways to present the data: One is the row picture, 
and the other is the column picture. The row picture would show 𝑁 points on the 𝑃-
dimensional space, familiar to us from when we began to study algebra using Cartesian 
diagrams. The column picture would present 𝑃 vectors on 𝑁 dimensional space. As an 
example, consider the following simple 2 × 1 matrix 𝐀 which shows two measures of a 
single variable/characteristic: 
 

𝐀 = [
1
2
]. 
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The matrix 𝐀 contains information on two measures/observations of a single variable. Fig. 
1(a) shows 2 points on a number line, and Fig. 1(b) shows a vector on a 2-dimensional 
space. With a million observations, for example, there would be one million points on a 
number line in Fig. 1(a). In Fig. 1(b), there would be still a single vector but on a million-
dimensional space. 
 
 

  
 
 
 
Let 𝐘 be a 𝑁 × 1 population vector of 𝑌𝑖 (𝑖 = 1, 2…𝑁), 
 

𝐘 = [

𝑌1

𝑌2

⋮
𝑌𝑁

]. 

Again, the vector 𝐘 could be interpreted as N points on one-dimensional space, or a 
vector on N-dimensional space.  

Let 𝐒 be a 𝑁 × 1 matrix containing sample indicators, 

𝐒 = [

𝑆1

𝑆2

⋮
𝑆𝑁

], 

where 𝑆𝑖 = 1 if 𝑌𝑖 ∈ 𝐲; and 𝑆𝑖 = 0 if 𝑌𝑖 ∉ 𝐲. The 𝐲 stands for 𝑛 × 1 matrix containing a 
sample set of size 𝑛.  Let 𝐃 = 𝑑𝑖𝑎𝑔(𝐒). Then, 

𝐘𝒔 = 𝐃𝐘. 
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The ith element of 𝐘𝒔 is either 𝑌𝑖 or 0 depending on the specific outcome of sampling 
algorithm for 𝑖 = 1, 2…𝑁. The 𝐲 would be obtained by omitting “zero” entries1 from 𝐘𝒔, 

𝐘𝒔 ⟹ 𝐲 =

[
 
 
 
𝑌(1)

𝑌(2)

⋮
𝑌(𝑛)]

 
 
 

. 

Note that we use parenthesis for subscripts to refer to sample elements as opposed to 
population elements. Sampling is to determine a particular 𝐒, based on specified methods.  

3. Vector Length in Sample Subspace 

Now, 𝐲 is in a n-dimensional subspace imbedded in the N-dimensional space. 
The length of  𝐘 , ‖𝐘‖, is defined to be 
 

‖𝐘‖ = √𝑌1
2 + 𝑌2

2 + ⋯+ 𝑌𝑁
2 (1) 

 

Similarly, the length of  𝐲 , ‖𝐲‖, is defined to be 
 

‖𝐲‖ = √𝑌(1)
2 + 𝑌(2)

2 + ⋯+ 𝑌(𝑛)
2 . (2) 

 

The length of a vector in the sample subspace is less than, or equal to the length of the 
vector in the population space, i.e., 

‖y‖ ≤ ‖Y‖. 
 (3) 

The equality occurs when all the population elements are included in the sample, i.e., 𝑛 =

𝑁. 

4. Weighted Length 

Let ‖y‖𝑤 be an weighted length of a vector in sample subspace, i.e., 

‖y‖𝑤 = √𝑤(1)𝑌(1)
2 + 𝑤(2)𝑌(2)

2 …𝑤(𝑛)𝑌(𝑛)
2 , 

 
(4) 

where 𝑤(𝑖) is an inverse of inclusion probability, 𝑝(𝑖) of the (𝑖)-th unit. The weighted 
length, ‖y‖𝑤 of a sample vector could be larger than the length of a population vector, 
‖Y‖, and therefore, the inequality (‖y‖ ≤ ‖Y‖) is no longer true. When the sample is 
selected with equal probability, i.e., 𝑝(𝑖) = 𝑛/𝑁 for all (𝑖), 

                                                           
1 We omit the “zero” entries due to “0” sample indicator. We should not omit the entries when the 
value of 𝑌𝑖 is 0. For practical purposes, we could assume that all 𝑌𝑖 are positive. 
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‖y‖𝑤 = √
𝑁

𝑛
‖y‖. 

 

(5) 

 

5. An Index of Sample Representativeness 

There would be 𝑁!/{𝑛! (𝑁 − 𝑛)!} ways to select a size 𝑛 sample from a population of 𝑁 
elements. Now, consider a particular sample of size 𝑛 and a ratio (𝜆) of its weighted 
length to the length of population values, 

𝜆 =
   ‖𝐲‖𝑤

‖𝐘‖
. 

 
(6) 

When population vector 𝐘 is a normalized vector of length 1, 𝜆 is simply a 
weighted length of sample vector 𝐲. The 𝜆 would be 0 when every sample 𝑌(𝑖) is 
0, i.e., 0 ≤ 𝜆 < ∞. The value of 𝜆 of a representative sample would be near 1. 
 

6. Example 1: An Illustrative Example 

Let us consider selecting 2 elements without replacement from population set, 𝐘𝑇 =
[1,2,3,4], where 𝐘𝑇 stands for the transpose of 𝐘. The population mean is 2.5000 and its 
length is 5.4772. Table 1 shows weighted length and 𝜆 of each sample. The 𝜆 of Sample C 
is 1.0646 which is closest to 1. We argue that Sample C is more representative even though 
sample means of Samples C and D are the same and equal to the population mean. 
 
Table 1. Weighted Lengths and 𝜆’s 

Sample 
Identifier 

Sample 
Elements 

Sample Mean 
of 𝐲 

Weighted 
Length (‖𝐲‖𝑤) 

𝜆 

A (1,2) 1.5000 3.1623 0.5774 
B (1,3) 2.0000 4.4721 0.8165 
C (1,4) 2.5000 5.8310 1.0646 
D (2,3) 2.5000 5.0990 0.9309 
E (2,4) 3.0000 6.3246 1.1547 
F (3,4) 3.5000 7.0711 1.2910 

 

7. Utilizing Auxiliary Variable 

Up to this point, we discussed sample representativeness with the variable of interest, 𝐘. If 
we had complete information on 𝐘, in fact, sampling is unnecessary. Without any prior 
information on 𝐘, we have no choice but to randomly select a sample to make inference 
about the variable of interest. In practice, however, we have some auxiliary variables at our 
disposal such as geographic identifier or previous Census counts. For a list frame for human 
population, there might be a whole array of auxiliary variables including demographics.  

Now, let 𝐗 be the population vector of an auxiliary variable and 𝐱 be a sample vector. Now, 
𝜆 can be approximated with 
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𝜆 ≈
   ‖𝐱‖𝑤

‖𝐗‖
. 

 
(7) 

  
The 𝜆 is simply a weighted length of sample vector 𝐱 when population vector 𝐗 is 
a normalized vector of length 1. 

8. Simulation with Fisher’s Iris data 

Fisher (1936) observed four variables/characteristics (sepal length, sepal width, petal 
length, and petal width) of 50 plants in each type of three irises (iris setosa, iris versicolor, 
and iris virginica). Overall, there were 150 units and there were no missing values. For our 
simulation, the 150 units serve as the universe or population. For our simulation, petal 
width is the variable of interest, 𝐘, and the other three are auxiliary variables, 𝐗𝑝′s. Table 
2 shows descriptive statistics and lengths of the four variables. Also shown in Table 2 are 
correlation coefficients and cosines2 of the three vectors with petal width. Again, in actual 
application, the correlation coefficients and cosines needs to be estimated since 𝐘 is not 
available before data collection. The large correlation coefficient (.9629) and cosine (.9836) 
indicates a close relationship between petal width and petal length. 

Table 2. Vector Lengths in cm and Cosines with Petal Width: Fisher’s Iris Data (1936) 

Measures Variables/Characteristics 
Sepal Length Sepal Width Petal Length Petal Width 

N 150 150 150 150 
Mean 5.8433 3.0573 3.7580 1.1993 
Standard Deviation 0.8281 0.4359 1.7653 0.7622 
Vector Length 72.2762 37.8206 50.8204 17.3876 
Correlation 
Coefficient   
    (r) with Petal 
Width 

0.8179 -0.3661 0.9629 1.0000 

Cosine with 
   Petal Width 0.8977 0.8088 0.9836 1.0000 

 

Let us consider selecting 30 units from the 150 units without replacement to estimate the 
mean of petal width. There would be 150!/(30! 120!) ≈ 3.2199 × 1031 ways to select 
a sample of size 30 from 150 units. At each draw, we calculated index of sample 
representativeness using Equation (7), and evaluated the size of bias by comparing sample 
mean of petal width to the population mean (1.1993) of petal width. We generated 1,000 
samples for our simulation. As discussed, 𝜆 = 1  indicates that the sample exactly 
represents the population. We presented the indices using |𝜆 − 1|. Each panel of 
Figure 2 shows relationships between the absolute bias and the index based on 
particular auxiliary variable. Fig. 2a is based on petal width, 𝐘. In actual sampling, 
𝐘 would not be available. The vertical axis was so scaled that all the points may be 
spread around the 45 degree line when 𝐘 was used for simulation. As we see, all 

                                                           

2 cos 𝜃 =
𝐘𝑻𝑿

‖𝐘‖‖𝑋‖
, where 𝜃 is the angle between 𝐘 and 𝐗. 
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the points are spread along the 45 degree line, and in general shows a positive 
relationship between the size of |𝜆 − 1| and bias. Fig. 2b is based on petal length, 
which is highly correlated with petal width (𝑟 = .9629; 𝑐𝑜𝑠𝑖𝑛𝑒 = .9836). All the 
points in Fig. 2b are spread a bit off from the 45 degree line but in general shows a 
positive relationship between the size of |𝜆 − 1| and bias, and indicates that petal 
length is a good auxiliary variable. Fig. 2c indicates that the index of sample 
representativeness using sepal width is less effective in discriminating a 
representative sample from a non-representative sample, and sepal width is not a 
good auxiliary variable. 
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9. Concluding Remarks 

 

We proposed an index of sample representativeness using vector length and showed 
that our index was effective in choosing a representative sample with a simulation 
using Fisher’s Iris data. Our index could be an approximate quality measure of a 
sample. We also found that auxiliary variable needed to be moderately correlated 
with the variable of interest to be useful. Choosing a good auxiliary variable is 
difficult since the correlation between the auxiliary variable and the item of interest 
is unavailable since the item of interest is unknown before data collection. 
Developing an index using multiple auxiliary variables would be desirable. What 
would be the effect of using multiple auxiliary variables on the quality of the index? 
Also we should note that most of large-scale surveys are multipurpose (Kish, 1988). 
That is, there are many items of interest (𝐘’s) in a single survey. The best auxiliary 
variable for a particular item may not be the best for the other items. Further 
research is needed to develop an index for multipurpose surveys. 
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