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Abstract
When a multi-site randomized trial reveals between-site variation in program impact, methods are

needed for further investigating heterogeneous mediation mechanisms across the sites. We concep-
tualize and identify a joint distribution of site-specific direct and indirect effects under the potential
outcomes framework. A method-of-moments procedure incorporating ratio-of-mediator-probability
weighting (RMPW) consistently estimates the causal parameters. This strategy conveniently re-
laxes the assumption of no treatment-by-mediator interaction while greatly simplifying the outcome
model specification without invoking strong distributional assumptions. We derive asymptotic stan-
dard errors that reflect the sampling variability of the estimated weight.

Key Words: Direct effect; indirect effect; multilevel modeling; multisite randomized trials; method
of moments; RMPW; two-step estimation

1. Introduction

Intervention programs in economics, education, political science, public health, and so-
cial welfare are usually delivered in organizations or communities. Each local setting can
be viewed as an experimental site within which individuals are assigned to different treat-
ment conditions. Multi-site randomized trials and multi-site natural experiments have been
pervasive in these fields and often feature longitudinal data collection (Bloom et al., 2005;
Raudenbush and Bloom, 2015; Spybrook and Raudenbush, 2009). Different from clustered
trials, in which individuals in the same cluster/site are assigned to the same treatment con-
dition, multi-site trials provide unique opportunities for the investigation of how the treat-
ment impact varies across sites. Past research has often reported a considerable amount of
cross-site heterogeneity in the total treatment effect possibly due to natural variations in or-
ganizational contexts, in participant composition, and in local implementation (Weiss et al.,
2014). Assessing between-site variation in the causal mechanisms will generate important
information for unpacking and understanding the heterogeneity in the total treatment ef-
fects. With the existing statistical methods and analytic tools, however, program evaluators
cannot take full advantage of such data.

In the basic mediation framework, the treatment affects a focal mediator, which in turn
affects the outcome. To determine the extent to which the focal mediator transmits the
treatment effect on the outcome in a single site, one may decompose the total treatment
effect into an indirect effect that channels the treatment effect through the hypothesized
mediator and a direct effect that works directly or through other unspecified mechanisms.
Additional important research questions arise in a multisite study. We illustrate with the
National Job Corps Study, a multisite randomized evaluation of the nation’s largest job
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training program for disadvantaged youth. The Job Corps program theory emphasizes both
educational attainment and risk reduction. Previous research has suggested that educational
attainment be a potential mediator of the Job Corps impact on earnings (Flores and Flores-
Lagunes, 2013). Yet it is unclear whether the treatment mechanism mediated by educational
attainment–shown as an indirect effect–operates the same across all the sites; nor is it clear
whether the role of other program elements–summarized in a direct effect–is consistent
over the sites. Such evidence will be crucial for enriching theoretical understanding and for
informing the design and implementation of programs alike.

This study addresses the need for a flexible methodological solution for investigating
heterogeneity of causal mediation mechanisms in multi-site trials. We develop concepts
and methods for defining, identifying, and estimating (1) population average indirect effect
and direct effect that decompose a total treatment effect and (2) between-site variance and
covariance of indirect effect and direct effect. Unlike the existing strategies for multi-site
mediation analysis, our extension of a weighting method accommodates scenarios in which
the mediator-outcome relationship differs across the treatment conditions. The causal pa-
rameters are estimated through a two-step procedure. We derive asymptotic variances that
reflect the sampling variability of the estimated weight. Applying the proposed analytic
strategy to the Job Corps data, we generate new empirical evidence about the program.
Our method extends and supplements the existing literature on multi-site causal mediation
analysis.

Taking on the challenges of multisite data, researchers (Bauer et al., 2006; Kenny et al.,
2003; Krull and MacKinnon, 2001; Preacher et al., 2010; Zhang et al., 2009) have proposed
to embed the standard path analysis and SEM in multilevel modeling by including random
intercepts and random slopes in the mediator model and the outcome model. Bauer and col-
leagues have further explored the possibility of quantifying not only the population average
but also the between-site variation of the direct effect and the indirect effect through speci-
fying multivariate multilevel models. Path analysis and SEM rely on correct specifications
of the mediator model and the outcome model. Covariance adjustment for confounding
covariates is crucial for removing selection bias. However, even when the treatment is
randomized, results tend to be biased if one misspecifies covariate-outcome relationships
or fails to consider possible treatment-by-mediator interaction, mediator-by-covariate in-
teractions, or treatment-by-mediator-by-covariate interactions. In addition, because this
approach specifies the average indirect effect as a product of regression coefficients, it be-
comes particularly challenging to estimate the between-site variance of the indirect effect
and the covariance between the site-specific direct and indirect effects. Finally, relying on
maximum likelihood estimation, the above strategy typically assumes that the mediator and
the outcome are multivariate normal in distribution. As others have pointed out (Imai et al.,
010a; MacKinnon and Dwyer, 1993; VanderWeele and Vansteelandt, 2010), applications of
path analysis and SEM to discrete mediators and outcomes face many constraints in both
single-site and multi-site studies .

Other researchers have specified multilevel path analysis models for analyzing data
from group randomized trials (VanderWeele, 010b; Vanderweele et al., 2013) that are useful
for evaluating treatments administered at the group level but not for investigating between-
site variation in mediation mechanisms in a multisite trial. The multisite instrumental vari-
able (IV) method uses treatment-by-site interactions as instruments for the mediators (Kling
et al., 2007; Raudenbush et al., 2012; Reardon and Raudenbush, 2013). With its primary
interest in identifying the average effect of each mediator on the outcome, the IV method
does not estimate the between-site distributions of the indirect effects. A study by Bind
et al. (2016) examined time-varying treatments and mediators nested within individuals.
Even though one may view individuals in this longitudinal study as analogous to sites, the
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researchers focused only on the population average direct and indirect effects. No solution
was provided for estimating and testing the between-individual heterogeneity of these ef-
fects. To our knowledge, other methods that allow for a treatment-by-mediator interaction
(e.g., Imai et al., 010a; Imai et al., 010b) have not been extended to studies of between-site
heterogeneity in mediation mechanisms.

Hong (2010, 2015) and others (Hong et al., 2011, 2015; Hong and Nomi, 2012; Hu-
ber, 2014; Lange et al., 2012, 2014; Tchetgen et al., 2012; Tchetgen Tchetgen, 2013) have
developed weighting strategies for single-site mediation analysis. Defining direct and in-
direct effects in terms of potential outcomes (Pearl, 2001; Robins and Greenland, 1992),
a ratio-of-mediator-probability weighting (RMPW) analysis identifies and estimates these
causal effects each as a mean contrast, along with their standard errors, while adjusting for
pretreatment confounding through propensity score-based weighting. The basic rationale
is that, among individuals with the same pretreatment characteristics, the distribution of the
mediator in the experimental group and that in the control group can be effectively equated
through weighting under the assumption of sequential ignorability, which we will explain
in Section 2.3. Unlike the regression-based strategies, these weighting methods allow for
treatment-by-mediator interaction without having to specify the mediator-outcome relation-
ship and the covariate-outcome relationships. The greatly simplified outcome model mini-
mizes the risk of model misspecification. Simulations (Hong et al., 2015) have shown that,
when the outcome model is misspecified, RMPW clearly outperforms path analysis/SEM
in bias correction.

By extending the RMPW method to data from a multi-site trial, we aim to reveal
between-site differences in the causal mediation mechanism. In doing so, this study pro-
vides a new statistical tool that can be applied broadly to multi-site studies in which not
only the population average direct and indirect effects but also the between-site variation
of the direct and indirect effects are of scientific interest.

In the next section, we define the causal parameters under the counterfactual causal
framework, and clarify the identification assumptions, based on which we explain the ra-
tionale of RMPW-based multi-site mediation analysis. After delineating the method-of-
moments estimation procedure in Section 3, we assess the performance of this estimation
approach through simulations in Section 4. Section 5 applies the method to the Job Corps
data. In Section 6, we discuss the strengths and limitations of this new approach and raise
issues for future research.

2. Definition and Identification of the Population Average and Variance of
Site-Specific Causal Mediation Effects

2.1 The Counterfactual Causal Framework

Applying the counterfactual framework of causal inference (Neyman and Iwaszkiewicz,
1935; Rubin, 1978), we define the causal parameters of interest in the context of the multi-
site Job Corps evaluation. Study participants were assigned at random either to an experi-
mental condition that allowed for immediate enrollment in one of the 103 Job Corps centers
or to the control condition that forbade Job Corps enrollment for three years. An individ-
ual’s weekly earnings 48 months after randomization measures the economic outcome.
The focal mediator is whether an individual obtained an education or training credential 30
months after randomization.

2.1.1. Individual-specific causal effects. We use Tij = t to indicate the treatment
assignment of individual i at site j where t = 1 (or t = 0) implies the individual was
(or was not) assigned to the Job Corps program. Let the mediator value be m = 1 if the
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individual obatined an education or training credential, and m = 0 if not. The potential
mediator value for individual i at site j is defined as Mij(t) when the individual’s treatment
assignment is set to t for t = 0, 1. Similarly, we use Yij(t,Mij(t)) to represent the potential
outcome value for individual i at site j when Tij = t. When Mij(t) = m, the individual’s
potential outcome value can be written as Yij(t,m).

We have defined an individual’s potential educational attainment as a function of the
treatment value and have defined his or her potential earnings as a function of the treatment
value and the mediator value under the Stable Unit Treatment Value Assumption (SUTVA)
(Rubin, 1980, 1986, 1990). In the context of a multi-site mediation study, SUTVA implies
that (a) there is no interference between sites (Hong and Raudenbush, 2006; Hudgens and
Halloran, 2008), i.e. the potential mediators of individual i at site j are independent of
the treatment assignments of individuals at site j′ for all j′ ̸= j and, additionally, the
potential outcomes of individual i at site j are independent of the treatment assignments
and mediator value assignments of individuals at site j′; and (b) there is no interference
between individuals within a site, i.e. an individual’s potential mediators are independent
of the treatment assignments of other individuals at the same site and, additionally, the
individual’s potential outcomes are independent of the treatment assignments and mediator
value assignments of other individuals at the same site. In the national Job Corps evaluation,
an applicant was usually assigned to a Job Corps center relatively close to his or her original
residence. Hence, it seems reasonable to invoke assumption (a). Assumption (b) may be
violated if a Job Corps student’s performance is affected by the behaviors of other students
at a center. Contaminations are also possible between individuals in the treated group and
those in the control group who share a social network within a site.

Under SUTVA, for individual i at site j, the treatment effect on the outcome (i.e., the
ITT effect) is defined as β(T )

ij ≡ Yij(1,Mij(1)) − Yij(0,Mij(0)). Decomposing the total
treatment effect into a direct effect and an indirect effect, however, involves a third potential
outcome Yij(1,Mij(0)). This is the earnings the individual would counterfactually have if
assigned to a Job Corps program yet having the same educational attainment as he or she
would under the control condition.

The direct effect of the treatment on the outcome for individual i at site j is

β
(D)
ij ≡ Yij(1,Mij(0))− Yij(0,Mij(0)). (1)

The direct effect will be nonzero if the Job Corps program has an impact on earnings even
without changing an individual’s educational attainment. This is possible because many
Job Corps centers provide a range of supplemental services designed to reduce risks and
improve participants’ overall well-being. This is called “the natural direct effect” by Pearl
(2001) and “the pure direct effect” by Robins and Greenland (1992).

The indirect effect of the treatment on the outcome transmitted through the mediator
for individual i at site j is

β
(I)
ij ≡ Yij(1,Mij(1))− Yij(1,Mij(0)). (2)

The indirect effect represents the Job Corps impact on earnings to be attributed to the
program-induced change in educational attainment from Mij(0) to Mij(1). This is called
“the natural indirect effect” by Pearl (2001) and “the total indirect effect” by Robins and
Greenland (1992). The total treatment effect is the sum of the direct effect and the indirect
effect: β(T )

ij = β
(D)
ij + β

(I)
ij .

The above decomposition is not unique. Alternatively, one may decompose the total
treatment effect into a “total direct effect”, Yij(1,Mij(1)) − Yij(0,Mij(1)), and a “pure
indirect effect”, Yij(0,Mij(1)) − Yij(0,Mij(0)), in Robins and Greenland’s terms. The
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current study is primarily interested in the impact on earnings when an individual’s educa-
tional attainment changes from Mij(0) to Mij(1) under the Job Corps program. This is the
impact of educational attainment on earnings when the individual has simultaneous access
to a range of supplementary services provided by Job Corps. We therefore focus on the
causal effects defined in (1) and (2).

2.1.2. Site-specific causal effects. There was a Job Corps center at each experimental
site. At the time of the study, the 103 Job Corps Centers served eligible participants in al-
most the entire nation. Rather than viewing the 103 sites in this study as a finite population
of sites, we consider a theoretical population of sites that could possibly be infinite in num-
ber. This is because the composition of applicants, the composition of Job Corps staff, the
center operator, and various elements of the control condition tend to be fluid rather than
static. In the National Job Corps Study, which Job Corps center an individual would be as-
signed to was determined prior to the treatment randomization. Let Sij = j indicate the site
membership of individual i. We define the site-specific ITT effect β(T )

j = E(β
(T )
ij |Sij = j),

direct effect β(D)
j = E(β

(D)
ij |Sij = j), and indirect effect β(I)

j = E(β
(I)
ij |Sij = j).

Given our central interest in between-site heterogeneity, here we focus on the popu-
lation of sites rather than the population of individuals. We therefore define the key pa-
rameters that characterize the distribution of the site-specific causal effects. These include
the average ITT effect γ(T ) = E(β

(T )
j ), the average direct effect γ(D) = E(β

(D)
j ), and

the average indirect effect γ(I) = E(β
(I)
j ) in the population of sites. In addition, the vari-

ance of the distribution of the site-specific ITT effect is quantified by σ2
T = var(β(T )

j ) =

E[(β
(T )
j − γ(T ))2]. The between-site heterogeneity in the ITT effect may be explained by

differences between the sites in the direct effect, the indirect effect, or both. We therefore
investigate the between-site variance of the direct effect σ2

D = var(β(D)
j ) = E[(β

(D)
j −

γ(D))2], the between-site variance of the indirect effect σ2
I = var(β(I)

j ) = E[(β
(I)
j −

γ(I))2], and the covariance between the site-specific direct effect and indirect effect σD,I =

cov(β(D)
j , β

(I)
j ) = E[(β

(D)
j − γ(D))(β

(I)
j − γ(I))]. Clearly, σ2

T = var(β(T )
j ) = σ2

D + σ2
I +

2σD,I .
In summary, we will focus on identifying and estimating the joint distribution of site-

specific direct and indirect effects characterized by population means γ(D) and γ(I) as well
as by between-site variances σ2

D, σ2
I , and covariance σD,I .

2.2 Identification Assumptions

The joint distribution of site-specific direct and indirect effects can be identified by observ-
able data under the following two assumptions that constitute the “sequential ignorability”
(Imai et al., 010a; Imai et al., 010b) at each site.

Identification Assumption 1. Ignorable treatment assignment. This assumption states
that, within levels of the observed pretreatment covariates, treatment assignment in each site
is independent of all the potential mediators and potential outcomes. In other words, there
is no unmeasured confounding of the treatment-mediator relationship or the treatment-
outcome relationship at site j. This is assumed to be true for all the sites.

{Mij(t), Yij(t,m)} ⊥⊥ Tij |Xij = x, Sij = j ∀j (3)

for t = 0, 1 and m = 0, 1. Here Xij = x denotes a vector of observed pretreatment
covariates. Additionally, it is assumed that 0 < Pr(Tij = t|Xij = x, Sij = j) < 1 for
t = 0, 1. That is, each individual has a nonzero probability of being assigned to either
treatment condition in a given site. The assumption of ignorable treatment assignment is
easy to satisfy in a multi-site randomized trial such as the Job Corps study.
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Identification Assumption 2. Ignorable mediator value assignment. This assumption
states that, within levels of the observed pretreatment covariates, mediator value assignment
under either treatment condition in each site is independent of all the potential outcomes.
In other words, there is no unmeasured confounding of the mediator-outcome relationship
within a treatment or across the treatment conditions in site j. This again is assumed to be
true for all the sites.

Yij(t,m) ⊥⊥ {Mij(t),Mij(t
′)}|Tij = t,Xij = x, Sij = j ∀j (4)

for t unequal to t′ where t, t′ = 0, 1 and m = 0, 1. It is also assumed that 0 < Pr(Mij(t) =
m|Tij = t,Xij = x, Sij = j) < 1 and 0 < Pr(Mij(t

′) = m|Tij = t,Xij = x, Sij =
j) < 1. That is, each individual has a nonzero probability of having the mediator value that
one would display under the actual or the counterfactual treatment condition. Identification
Assumption 2 is particularly strong because usually individuals were not randomized to
receive a mediator value after the treatment randomization. The plausibility of this assump-
tion relies heavily on the richness of the observed pretreatment covariates. This assumption
also requires that there is no posttreatment covariate that confounds the mediator-outcome
relationship (Avin et al., 2005; VanderWeele, 010b; Vanderweele et al., 2013). An example
of a possible violation is that, if among individuals with the same baseline characteristics,
those who are more likely to obtain an education credential are also the ones who tend to re-
ceive more counseling services, then the indirect effect mediated by educational attainment
would be confounded by the program benefit transmitted through counseling services. The
sequential ignorability assumption must hold in every site. If the assumption is violated in
one or more sites, the causal parameters will likely be identified with bias. Assessing the
sensitivity of analytic results to possible violations of these identification assumptions is a
necessary step in applications.

2.3 Identification Results

Under the sequential ignorability, the site-specific average of each potential outcome is
identifiable through weighting, which then enables the identification of the site-specific
direct and indirect effects.

In general, when Identification Assumption 1 holds within a site, the average potential
outcome associated with treatment condition t at site j, E(Yij(t,Mij(t)) |Sij = j), can be
identified by the weighted outcome of individuals actually assigned to treatment t at site j:

E(W
(t)
ij Yij |Tij = t, Sij = j),

where

W
(t)
ij =

Pr(Tij = t|Sij = j)

Pr(Tij = t|Xij = x, Sij = j)
. (5)

Here W (t)
ij is the inverse-probability-of-treatment weight (IPTW) known from past research

(Horvitz and Thompson, 1952; Robins, 2000; Rosenbaum, 1987). The weight transforms
the experimental group composition and the control group composition such that the proba-
bility of treatment assignment in the weighted sample would resemble that in a hypothetical
randomized design with equal probability of treatment assignment for all individuals. In
other words, applying W

(t)
ij to individuals with pretreatment characteristics x who have

been assigned to treatment t at site j removes bias due to treatment selection.
When Identification Assumptions 1 and 2 hold within a site, E(Yij(1,Mij(0)) |Sij =

j) can be identified by
E(WijYij |Tij = 1, Sij = j),
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in which

Wij =
Pr(Tij = 1|Sij = j)

Pr(Tij = 1|Xij = x, Sij = j)
× Pr(Mij = m|Tij = 0,Xij = x, Sij = j)

Pr(Mij = m|Tij = 1,Xij = x, Sij = j)
(6)

is the weight applied to individuals with pretreatment characteristics x who were assigned
to the experimental condition in site j and displayed mediator value m. Within a single
site, this weight is a product of IPTW and RMPW derived by Hong (2010, 2015) and oth-
ers (Hong et al., 2011, 2015; Hong and Nomi, 2012; Tchetgen et al., 2012). The latter is
a ratio of an experimental individual’s conditional probability of displaying mediator value
m under the counterfactual control condition to that under the experimental condition. For
individuals within levels of the pretreatment characteristics x, RMPW transforms the me-
diator distribution in the experimental group to resemble that in the control group. The
weighted experimental group mean outcome therefore identifies the average counterfactual
mean outcome associated with the experimental condition when the mediator counterfac-
tually distributes the same as that under the control condition. RMPW is mathematically
equivalent to the inverse probability weight (IPW) proposed by Huber (2014). This identifi-
cation result enables us to relate the observable data to the average counterfactual outcome
at a site.

When the treatment assignment is randomized within a site, Pr(Tij = t|Sij = j) =
Pr(Tij = t|Xij = x, Sij = j), we simply have that

W
(t)
ij = 1;

Wij =
Pr(Mij = m|Tij = 0,Xij = x, Sij = j)

Pr(Mij = m|Tij = 1,Xij = x, Sij = j)
. (7)

Below we use µ0j , µ1j , and µ∗j as shorthand for E(Yij |Tij = 0, Sij = j), E(Yij |Tij =
1, Sij = j), and E(WijYij |Tij = 1, Sij = j), respectively. In a multi-site randomized trial,
the average direct effect at site j, β(D)

j , can be identified by a simple mean contrast:

β
(D)
j = µ∗j − µ0j . (8)

The average indirect effect at site j, β(I)
j , can be identified by:

β
(I)
j = µ1j − µ∗j . (9)

Once the site-specific direct and indirect effects are identified, their joint distribution in
the population can be identified as well.

3. Estimation and Inference

The estimation involves two major steps. Step 1 estimates the weight for each individual in
the experimental group as a ratio of the conditional probability of mediator value under the
experimental condition to that under the control condition corresponding to equation (7).
Step 2 estimates the unweighted mean outcome of the control group, the unweighted mean
outcome of the experimental group, and the weighted mean outcome of the experimental
group for each site and subsequently the site-specific direct effect and indirect effect cor-
responding to equations (8) and (9). Based on these site-specific estimates, we estimate
the population average and the between-site variance of the direct effect and those of the
indirect effect.
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In step 1, following the convention of propensity score estimation in multilevel data, we
fit multilevel mixed-effects logistic regression models to the sample data in each treatment
group pooled from all the sites and estimate the coefficients through maximum likelihood.
The analysis in step 2 is complicated by the fact that the causal parameters must be es-
timated on the basis of the estimated weight rather than the true weight. We employ a
method-of-moments (MOM) estimation procedure in step 2 to estimate the site-specific di-
rect and indirect effects and their joint distribution. In the meantime, we propose asymptotic
variance estimators for the population average direct effect and indirect effect estimators
that incorporate the sampling variability in the weight estimation.

We choose MOM rather than MLE in step 2 for three reasons. First, the likelihood in
step 2 is a function of the parameters given both the observed outcome and the estimated
individual weight. The unknown distribution of the weight adds difficulty to the specifica-
tion of the likelihood function. Second, conventional MLE with multilevel data assumes
that the estimated site-specific effects are independent between sites, an assumption vio-
lated in this case due to the pooling of data from all the sites in the step 1 estimation of the
weight. Third, our preliminary results suggest that the site-specific effects are not normally
distributed. MOM does not invoke assumptions about the distribution of the site-specific
effects and thus has a potential for broad applications.

We start by introducing the weighted method-of-moments estimators of the causal ef-
fects in a hypothetical scenario in which the weight is known. We then discuss our strat-
egy of obtaining the asymptotic sampling variance of the causal effect estimates when the
weight needs to be estimated. Finally, we estimate the between-site variance of the direct
and indirect effects by purging the average sampling variance off the total between-site
variance of the direct and indirect effect estimates. We also conduct a permutation test for
variance testing.

3.1 Method-of-Moments Estimators of the Causal Effects When the Weight Is Known

To estimate the population average effects, we first estimate the direct and indirect effects
site by site and then aggregate the site-specific direct effect estimates and the site-specific
indirect effect estimates (e.g., Diggle et al., 2002; Raudenbush and Bloom, 2015). In a
hypothetical experiment for causal mediation analysis, individuals within each site would
be randomized to the experimental or the control condition. Subsequently, individuals with
the same observed pretreatment characteristics would be assigned at random to obtain an
education credential under each treatment condition. Such a sequential randomized designs
satisfies the sequential ignorability assumption. Suppose that, for sampled individual i in
site j with pretreatment characteristics Xij = x, the probability of obtaining an education
credential is p1ij = Pr(Mij = 1|Tij = 1,Xij = x, Sij = j) under the experimental
condition and is p0ij = Pr(Mij = 1|Tij = 0,Xij = x, Sij = j) under the control
condition. To estimate µ∗j = E(WijYij |Tij = 1, Sij = j), we simply obtain a weighted
sample mean outcome of those assigned to the experimental condition at site j,

µ̂∗j =

∑nj

i=1 YijWijTij∑nj

i=1WijTij

, (10)

where nj is the sample size at site j. The weight is Wij = p0ij/p1ij when Mij = 1 and
Wij = (1− p0ij)/(1− p1ij) when Mij = 0.

The experimental mean outcome µ1j and the control mean outcome µ0j can be esti-
mated simply by the corresponding sample mean outcomes at each site:

µ̂0j =

∑nj

i=1 Yij(1− Tij)∑nj

i=1(1− Tij)
;
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µ̂1j =

∑nj

i=1 YijTij∑nj

i=1 Tij

. (11)

The method-of-moments estimators of the site-specific direct effect and the site-specific
indirect effect at site j are:

β̂
(D)
j = µ̂∗j − µ̂0j ;

β̂
(I)
j = µ̂1j − µ̂∗j . (12)

We then estimate the parameters that characterize the distribution of site-specific causal
effects for the population of sites. When the sites have been sampled with equal probability
from the population of sites, by taking a simple average of the above unbiased estimates
of the site-specific direct and indirect effects across all the J sites in the sample, we obtain
unbiased estimators of the average direct and indirect effects for the population of sites,

γ̂ =
1

J

J∑
j=1

β̂j , (13)

in which β̂j = (β̂
(D)
j , β̂

(I)
j )′ and γ̂ = (γ̂(D), γ̂(I))′. Equivalently, it can be written as

γ̂ =
(
Ψ′Ψ

)−1
Ψ′β̂, (14)

where β̂ = (β̂
′
1, . . . , β̂

′
J)

′, and Ψ = 1J ⊗ I2, in which 1J is a J × 1 vector of 1′s, and I2
is a 2× 2 identity matrix.

An alternative precision-weighted estimator would use the inverse of the covariance
matrix of the site-specific effect estimates as the weight. Even though precision-weighting
is expected to improve efficiency, it may introduce bias and inconsistency if the precision
weight is correlated with the effect size of the site-specific direct or indirect effect.

3.2 Asymptotic Sampling Variance of Causal Effect Estimates When Weight Is Unknown

In a typical multi-site randomized experiment, even though the treatment assignment is
randomized, the mediator value assignment is not. Hence the weight is unknown and needs
to be estimated from the sample data in step 1 prior to the estimation of the causal effects
in step 2. In the analytic procedure that we delineate below, a multilevel logistic regression
analysis is employed in step 1 to estimate the weight while step 2 involves site-by-site
method-of-moments analysis.

3.2.1. Two-step estimation procedures. In step 1, we fit two logistic regression models,
one to the sampled individuals in the experimental group and the other to those in the con-
trol group. (This is equivalent to fitting one logistic regression model to a combination of
these two groups with a submodel for each group.) To maximize the precision of estima-
tion, we pool data from all the sites and include a site-specific random effect in each model.
If a covariate predicts the mediator differently across the sites, a site-specific random slope
can be included as well. The models take the following form,

log

[
ptij

1− ptij

]
= X′

tijαt +C′
tijFtθtj , (15)

for t = 0, 1. Here Xtij is a vector of covariates including the intercept; αt is the cor-
responding vector of coefficients; Ctij is a vector of covariates with random effects. For
computational simplicity, following Hedeker and Gibbons (2006), we standardize the ran-
dom effects by representing them as Ftθtj . Here FtF

′
t = Σt is the Cholesky factorization
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of Σt, the variance-covariance matrix of the random effects; Ft is a lower triangular ma-
trix; and θtj follows a standardized multivariate normal distribution. The analysis can be
conducted through maximum likelihood estimation using iterative generalized last squares
(IGLS). In addition to the sequential ignorability, the multilevel logistic regression model
comes with its model-based assumptions with regard to the relationships between Xtij and
ptij as well as the distribution of the random effects.

We predict p1ij for each individual in the experimental group directly based on the
propensity score model fitted to the experimental group data. To predict p0ij for the same
individuals, we apply the propensity score model that has been fitted to the control group
data. In these two propensity score models, θ1j and θ0j are each estimated through an
empirical Bayes procedure. Because the treatment assignment was independent of the po-
tential mediators within each site, the independence also holds within levels of the pre-
treatment covariates. Hence among those with the same pretreatment characteristics, the
observed mediator distribution of those assigned to the control condition, in expectation,
provides counterfactual information of the mediator distribution that the Job Corps par-
ticipants would likely have displayed should they have been assigned to the control con-
dition instead. Based on the predicted propensity scores, we obtain the estimated weight
Ŵij = p̂0ij/p̂1ij for a Job Corps participant who successfully attained an education creden-
tial and Ŵij = (1− p̂0ij)/(1− p̂1ij) for one who did not. Ŵij is a consistent estimator of
Wij because, as the number of sites and the sample size at each site increase, p̂0ij and p̂1ij
converge in probability to the corresponding true propensities p0ij and p1ij . The estimated
weight converges in probability to the true weight accordingly.

The step-2 estimation is similar to that described in Section 3.1 except that we need
to replace Wij with Ŵij . In the existing literature on propensity score-based weighting in
multilevel settings (e.g., Leite et al., 2015), propensity score estimation and causal effect
estimation are conducted separately. In this way, however, the sampling variability of the
estimated weight obtained in step 1 will not be represented in the standard errors of the
causal effect estimates obtained in step 2. Moreover, because we analyze the propensity
score models by pooling data from all the sites, the predicted propensity scores and cor-
respondingly the estimated weights are inevitably correlated between sites. Separating the
two steps in analysis would lead to bias in estimating the standard errors for the estimated
population average direct and indirect effects. As shown later in the simulation study, the
problem becomes salient especially when the site size is small. To deal with this challenge,
we extend the strategy that Newey (1984) proposed under the single-level setting. Specif-
ically, we stack the moment functions from the two steps and solve them simultaneously.
By doing so, the second order conditions for the site-specific direct effect and indirect ef-
fect estimators are considered with respect to the parameters that must be estimated in step
1. Intuitively, the stacking allows the step 1 estimation to be configured into the step 2
estimation. The two-step estimators can be fit into the generalized method of moments
(GMM) framework (Hansen, 1982). This idea has been applied in single-level settings.
For example, Hirano and Imbens (2001) utilized it in the estimation of the total treatment
impact using propensity score weighting. Bein and colleagues (Bein et al., 2015) applied
the strategy to RMPW-based single-site causal mediation analysis. However, it has not
been employed in the multilevel setting. We innovatively extend the estimation procedure
to multi-site causal mediation analysis.

3.2.2. Asymptotic sampling variance of the causal effect estimates. Let h(1)
ij denote the

moment functions for the step-1 parameter estimators η̂. Here η̂ includes the estimators of
the coefficients in the multilevel logistic regression models as well as the elements on or
below the diagonal of F̂t. Let h(2)

ij denote the moment functions for the step-2 parameter
estimators µ̂. Here µ̂ includes the estimators of all the site-specific potential outcome
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means. Appendix A provides details of these moment functions. Stacking the moment
functions from both steps, we have that

hij =

[
h
(1)
ij

h
(2)
ij

]
. (16)

Now the estimators in the two steps can be rewritten as a one-step estimator ϑ̂ = (η̂′, µ̂′)′,
which jointly solves 1

N

∑J
j=1

∑nj

i=1 hij = 0. Under the standard regularity conditions, ϑ̂ is
a consistent estimator of ϑ = (η′,µ′)′ with the asymptotic sampling distribution (Hansen,
1982): √

N(ϑ̂− ϑ)
d−→ N(0, ṽar(ϑ̂− ϑ)). (17)

The asymptotic normal distribution enables computation of sensible confidence intervals
and tests when the site-specific effects or the outcome are not normally distributed. Details
on the consistent estimator of ṽar(ϑ̂− ϑ) can be found in Appendix A.

Then we are able to derive the sampling variance of the direct and indirect effect esti-
mators. Based on Equations (8), (9) and (12), it is easy to show that β̂ − β = Φ(µ̂ − µ),
and thus

var(β̂ − β) = Φvar(µ̂− µ)Φ′, (18)

where Φ = IJ ⊗
(

−1 1 0
0 −1 1

)
, in which IJ is a J × J identity matrix. var(β̂ − β) is

a 2J × 2J matrix, with var(β̂j − βj) as the jth 2 × 2 submatrix along the diagonal. The
off-diagonal elements E[(β̂j − βj)(β̂j′ − βj′)

′], where j ̸= j′, are non-zero due to the
correlations among the weights estimated in the first step.

Correspondingly, the sampling variance of the population average direct effect and in-
direct effect estimators, as given in Equation (14), is

var(γ̂) =
(
Ψ′Ψ

)−1
Ψ′var(β̂)Ψ

(
Ψ′Ψ

)−1
, (19)

in which
var(β̂) = var(β̂ − β + β) = var(β̂ − β) + var(β), (20)

where var(β) = IJ ⊗ var(βj). Based on the consistent estimators of var(β̂ − β) and
var(βj), we could consistently estimate the asymptotic standard errors for the population
average direct and indirect effect estimators. We explain the estimation of var(βj) in the
next subsection.

3.3 Estimation and Inference of Between-Site Variance and Covariance of Causal Effects

We estimate the between-site variance and covariance of the direct and indirect effects
again through the method of moments. We prove in Appendix B that the consistent estima-
tor is:

v̂ar(βj) =
1

J − 1
[

J∑
j=1

(β̂j − γ̂)(β̂j − γ̂)′−
J∑

j=1

v̂ar(β̂j −βj)+
1

J
Ψ′v̂ar(β̂−β)Ψ]. (21)

In practice, if a negative variance estimate is obtained, which is known as a Heywood case,
both the variance estimate itself and the related covariance estimate will be set to 0.

Previous researchers of multilevel mediation analysis (e.g., Bauer et al., 2006) have not
discussed how to conduct hypothesis testing for the between-site variance of the direct and
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Table 1: Population Causal Parameter Specification
Parameters Population Average Between-Site Variation

γ(D) γ(I) σ2
D σ2

I σD,I
Parameter Set 1 0 0 0 0 0
Parameter Set 2 0.08 0.08 0.04 0.04 0.02
Parameter Set 3 0.19 0.19 0.06 0.06 0.01

Note. To enable comparisons between the different scenarios, the population average effects have been stan-
dardized by the average within-site standard deviation of the outcome in the control group, and the between-site
variances and covariances have been standardized by the average within-site variance of the outcome in the
control group.

indirect effects. Taking the direct effect as an example, we prove in Appendix C that under
H0 : σ

2
D = 0,

J∑
j=1

(β̂
(D)
j − γ̂(D))2

var(β̂(D)
j − β

(D)
j )

d−→ χ2(J − 1).

Replacing var(β̂(D)
j − β

(D)
j ) with v̂ar(β̂(D)

j − β
(D)
j ), the test statistic is

Q(D) =
J∑

j=1

(β̂
(D)
j − γ̂(D))2

v̂ar(β̂(D)
j − β

(D)
j )

. (22)

As discussed in Section 3.2.4, as N increases, v̂ar(β̂(D)
j − β

(D)
j ) converges to var(β̂(D)

j −
β
(D)
j ). However, when N is small, the distribution of the sample test statistic may deviate

from χ2(J − 1). We thus employ a permutation test proposed by Fitzmaurice et al. (2007).
The test randomly permutes the site indices, based on the idea that all permutations of
the site indices are equally likely under the null. The details about the algorithm of the
permutation test can be found in Appendix C.

4. Simulation Study

We conduct a series of Monte Carlo simulations to assess the finite-sample performance
of the multilevel RMPW procedure in estimating the population average and between-site
variance and covariance of the direct effect and indirect effect. We focus on the case of
a binary randomized treatment, a binary mediator, and a continuous outcome, although
the estimation procedure can be easily extended to multi-category mediators and binary
outcomes. We implement the estimation in R, using the lme4 package (Bates et al., 2014)
to fit the multilevel logistic regression models.

We specify three sets of population causal parameters listed in Table 1. The standard-
ized parameter values are similar in magnitude to those used in previous simulation studies
of multilevel mediational models (Krull and MacKinnon, 2001; Bauer et al., 2006) and re-
flect a range of plausible values in real applications. Both the population average and the
variance and covariance of the site-specific direct and indirect effects are specified to be 0
in the first scenario, which is designed for examining the Type I error rates in hypothesis
testing. All the parameter values increase from set 2 to set 3. Appendix D explains how we
generate the simulation data.

The number of sampled sites, J , the number of sampled individuals per site, nj , and
the probability of treatment assignment at a site, Pr(Tij = 1|Sij = j), are manipulated to
represent the range observed in past multi-site studies. For example, the Job Corps study
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had over 100 sites with an average of about 130 individuals per site. The multi-site sample
analyzed by Seltzer (1994) had 20 sites with an average of about 29 individuals per site.
Therefore, we generate balanced data sets comprised of 100 or 20 sites of either a small site
size (nj = 20) or a moderate site size (nj = 150), while Pr(Tij = 1|Sij = j) is specified
to be 0.5 across all the sites. In addition, we generate an imbalanced data set similar to
the Job Corps data with varying site size and varying site-specific probability of treatment
assignment.

We make 1,000 replications for each of these scenarios, and then fit analytic models
to each data set. We focus on assessing the amount of bias in the parameter estimates
when implementing the proposed procedure. Table 2 reports the simulation results for
the estimation of the population average effects and the between-site variances with the
proposed method under 15 different scenarios (three sets of population causal parameters
by five sets of sample sizes) when the propensity score models are correctly specified. As
shown in Table 2, the sample estimates of the population average direct effect and indirect
effect contain minimal bias. The variance and covariance estimates appear to be unbiased
when N is relatively large and show a slight increase in bias when N is small. The type I
error rate for variance testing is always close to the nominal rate.

In addition, we compare the estimated standard error for the population average di-
rect effect and indirect effect estimates between the proposed estimation procedure, the
procedure that ignores the sampling variability of the weight estimates, and the fully non-
parametric bootstrap procedure (Goldstein, 2011). For the latter, we generate a bootstrap
sample through a simple random resampling with replacement of the sites, estimate pop-
ulation average direct and indirect effects based on this sample, and repeat this procedure
1000 times. The standard deviation of the bootstrapped estimates provides an estimate of
the standard error of each population average causal effect estimate. We construct 95%
confidence intervals bounded by the 2.5th and 97.5th percentiles of the bootstrapped esti-
mates.

Table 3 and Table 4 present the simulation results for the standard error estimates and
confidence interval coverage rates of the population average direct and indirect effects. For
the population average direct effect estimator, all the three approaches to standard error
estimation seem to provide acceptable results. For the population average indirect effect
estimator, the standard error estimated through the proposed estimation procedure always
closely approximates the standard deviation of the sampling distribution. In contrast, the
standard error tends to be underestimated by the estimation procedure ignoring the uncer-
tainty in weight when the site size is relatively small. In those scenarios, the weights, es-
timated through a multilevel logistic regression in the first step, are more correlated across
sites, leading to a higher correlation among the site-specific effect estimates. However, the
correlation is overlooked in the procedure ignoring the uncertainty in weight. Moreover,
the standard error tends to be overestimated by bootstrap when the site size is relatively
small. We also note that, the confidence interval coverage rates obtained from all three
approaches tend to show some deviations from the nominal rate when the number of sites
and the site size are relatively small. The procedure ignoring the uncertainty in weight
shows the greatest amount of deviation. In general, the confidence interval coverage rates
converge to the nominal rate with the increase of the number of sites and of the site size.
Finally, we need to highlight that, with its closed-form expression for the standard error
estimator, the proposed method requires much less computation than the bootstrap. For
example, it takes less than one minute to run one replication for the scenario of J = 100
and nj = 150 with the proposed procedure, while it takes 5.5 hours with the bootstrap.

We also run simulations when the site-specific direct effect and indirect effect are not
normal or when the outcome follows other distributions. In all these cases, we obtain simi-
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lar findings as above. These additional results suggest that our estimation procedure is not
restricted to normally distributed outcomes or normally distributed site-specific effects.

5. Empirical Application

In this section, we apply the above estimation procedure to the Job Corps data. Our sub-
stantive research questions are, for the population of sites represented in this study: (a)
What is the average indirect effect of the treatment assignment on earnings transmitted
through educational attainment? (b) What is the direct effect of the treatment assignment
on earnings? (c) To what extent did the indirect effect vary across the experimental sites?
(d) To what extent did the direct effect vary across the sites? (e) Was there an association
between the site-specific indirect effect and direct effect?

The study included 103 experimental sites with one Job Corps center at each site. The
sample size at each site ranges from 34 to 656, with a mean of 131. In total, 9,409 appli-
cants were randomly assigned to the experimental group and 5,977 to the control group.
The weekly earnings at 48 months after randomization ranged from 0 to $1,289, with a
mean of $145.30 and a standard deviation of $115.13. On average, about 38% of the sam-
pled individuals obtained an education or training credential during the 30 months after
randomization. We select 26 pretreatment covariates that are theoretically associated with
the mediator and the outcome, including age, gender, race, education, criminal involve-
ment, drug use, employment, and earnings at the baseline. The analytic sample includes
8,659 individuals with non-missing outcome and non-missing mediator in the 48-month
follow-up interview. We use sample weights to account for the sample and survey designs.
Table 5 lists the sample means of the outcome and some pretreatment covariates across the
combinations of treatment and mediator levels.

Analyzing the data from each treatment group through a multilevel logistic regression
as described in Section 3.2, we predict a Job Corps participant’s propensity score for ob-
taining an education or training credential 30 months after being assigned to Job Corps as
a function of the individual’s observed pretreatment characteristics and site membership.
Applying the coefficient estimates obtained from analyzing the control group data, we pre-
dict a Job Corps participant’s propensity score for having educational attainment under the
counterfactual control condition. We then construct the weight as defined in Equation (7).
Subsequently, we estimate the population average direct and indirect effects by aggregating
the estimated site-specific effects over all the sites. Finally, we estimate the between-site
variance and covariance of these causal effects and conduct hypothesis testing as described
in Section 3.3.

Total Program Impact. The results indicate that the probability of obtaining an educa-
tion or training credential during the 30 months after randomization among the individuals
assigned to the Job Corps program was 18.27% higher than those assigned to the control
group (SE = 0.01, t = 18.27, P¡0.001), but the difference did not vary significantly across
sites. Job Corps programs had a significant positive impact on earnings on average; the
impact varied considerably across the sites. The estimated population average ITT effect
is $22.12 (SE = 5.01, t = 4.42, p < 0.001), which amounts to about 11.80% of a stan-
dard deviation of the outcome. The between-site standard deviation of the ITT effect is
estimated to be $25.21 (p = 0.05). Therefore, if we assume that the site-specific ITT ef-
fect is approximately normally distributed, in 95% of the sites, the ITT effect may range
from -$27.30 to $71.54. Apparently, the Job Corps centers were not equally effective in
improving earnings.

Population Average Direct and Indirect Effects. We decompose the total ITT effect
on earnings into an indirect effect mediated through educational attainment and a direct
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Table 2: Simulation Results for the Estimation of the Population Average Effects and
Between-Site Variances

J = 100 J = 20

nj = 20 nj = 150
Job Corps

nj = 20 nj = 150
site size

Parameter Set 1
Direct Effect
Bias of γ̂(D)1 -0.002 0.000 0.000 -0.007 0.002
Bias of σ̂2

D
2 0.030 0.002 0.004 0.041 0.003

Type I error (%)3
5.90 5.70 4.90 5.30 4.60

of H0 : σ
2
D = 0

Inirect Effect
Bias of γ̂(I) 0.002 0.000 0.000 0.001 0.000
Bias of σ̂2

I 0.002 0.000 0.000 0.003 0.000
Type I error (%)

5.10 6.00 4.90 5.30 5.40
of H0 : σ

2
I = 0

Bias of σ̂D,I -0.004 0.000 0.000 -0.007 0.000

Parameter Set 2
Direct Effect
Bias of γ̂(D) 0.004 0.000 0.001 0.001 -0.001
Bias of σ̂2

D 0.022 0.000 0.001 0.027 -0.002
Inirect Effect
Bias of γ̂(I) -0.004 0.000 -0.001 -0.004 -0.003
Bias of σ̂2

I -0.002 0.001 0.001 -0.004 0.000
Bias of σ̂D,I 0.001 0.000 0.000 0.000 -0.001

Parameter Set 3
Direct Effect
Bias of γ̂(D) 0.011 -0.001 0.001 0.003 -0.004
Bias of σ̂2

D 0.017 -0.003 -0.002 0.013 -0.003
Inirect Effect
Bias of γ̂(I) -0.010 0.000 -0.001 -0.004 0.001
Bias of σ̂2

I -0.005 0.002 0.001 -0.005 0.001
Bias of σ̂D,I 0.007 0.000 0.000 0.007 0.001

Note. a. To enable comparisons between the different scenarios, bias of the population average effect
estimate is computed as the difference between the average of the estimates across the 1000 replications
and the true value, standardized by the average within-site standard deviation of the outcome in the control
group. b. To make different scenarios comparable, bias of the variance estimate is computed as the
difference between the average of the variance estimates across the 1000 replications and the true value,
standardized by the average within-site variance of the outcome in the control group. c. The Type I error
rate is computed for the null hypothesis test of the between-site variance of the direct effect and that of
the indirect effect when the nominal level is set to 0.05.
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Table 3: Simulation Results for the Standard Error Estimate and Confidence Interval Cov-
erage Rate of the Population Average Direct Effect Estimate (γ̂(D))

J = 100 J = 20

nj = 20 nj = 150
Job Corps

nj = 20 nj = 150
site size

Parameter Set 1

Empirical SE1 0.045 0.016 0.020 0.101 0.037
Relative bias of SE (%)2

Proposed Method -1.90 1.10 1.60 -3.50 -3.00
Ignore Uncertainty in Ŵij -1.80 1.30 1.70 -3.40 -2.90
Bootstrap 3.40 3.30 3.40 -1.60 -5.00

95% CI coverage (%)3

Proposed Method 94.30 94.50 94.70 92.50 94.10
Ignore Uncertainty in Ŵij 94.20 94.70 94.70 92.60 94.10
Bootstrap 94.00 95.10 95.00 93.50 93.30

Parameter Set 2

Empirical SE 0.047 0.025 0.026 0.104 0.056
Relative bias of SE (%)

Proposed Method -1.10 -1.30 6.40 -0.10 -2.80
Ignore Uncertainty in Ŵij -0.30 -0.80 6.90 0.90 -2.20
Bootstrap -1.90 -0.40 -4.50 -1.80 -5.70

95% CI coverage (%)
Proposed Method 94.50 94.80 96.10 93.80 92.80
Ignore Uncertainty in Ŵij 94.70 94.90 96.10 94.20 92.90
Bootstrap 94.20 94.80 93.10 94.60 92.20

Parameter Set 3

Empirical SE 0.047 0.029 0.033 0.104 0.063
Relative bias of SE (%)

Proposed Method 1.40 -0.70 -4.50 -0.10 0.20
Ignore Uncertainty in Ŵij 6.50 1.70 -2.30 5.60 2.90
Bootstrap -6.70 0.10 -2.90 -1.80 -2.80

95% CI coverage (%)
Proposed Method 94.40 95.00 93.70 93.50 92.80
Ignore Uncertainty in Ŵij 95.90 95.60 94.10 95.20 93.80
Bootstrap 94.40 96.10 95.20 93.70 92.30

Note. a. Empirical SE (standard error), SE(γ̂(D)), is the standard deviation of the sampling distribution
of the average direct effect estimates, approximated by the standard deviation of the sample estimates of
direct effects over the 1,000 replications. It is also standardized. b. Relative bias of SE is the relative
bias of the estimated standard error, computed as E[ŜE(γ̂(D))]/SE(γ̂(D)) − 1. c. 95% CI coverage rate
is the coverage probability of the 95% confidence interval estimate of the direct effect. We construct
the bootstrap confidence intervals nonparametrically from the 2.5th and 97.5th percentiles of the set of
empirical bootstrap values.

JSM 2016 - Survey Research Methods Section

925



Table 4: Simulation Results for the Standard Error Estimate and Confidence Interval Cov-
erage Rate of the Population Average Indirect Effect Estimate (γ̂(I))

J = 100 J = 20

nj = 20 nj = 150
Job Corps

nj = 20 nj = 150
site size

Parameter Set 1

Empirical SE1 0.011 0.004 0.005 0.029 0.009
Relative bias of SE (%)2

Proposed Method -2.30 -2.20 -1.10 -3.80 -0.50
Ignore Uncertainty in Ŵij -1.00 0.60 0.90 -2.10 2.50
Bootstrap 43.5 6.60 5.40 38.10 6.40

95% CI coverage (%)3

Proposed Method 94.40 94.80 94.70 94.50 93.70
Ignore Uncertainty in Ŵij 94.40 95.10 94.80 93.90 94.70
Bootstrap 97.60 95.00 95.00 99.40 95.80

Parameter Set 2

Empirical SE 0.022 0.020 0.021 0.056 0.045
Relative bias of SE (%)

Proposed Method 2.40 2.70 -0.90 -3.90 -0.20
Ignore Uncertainty in Ŵij -5.00 1.30 -2.40 -9.80 -1.10
Bootstrap 29.50 5.80 3.80 21.30 0.90

95% CI coverage (%)
Proposed Method 92.90 96.60 94.40 92.10 93.10
Ignore Uncertainty in Ŵij 91.90 96.10 93.80 90.40 92.80
Bootstrap 95.30 95.90 94.00 97.20 93.50

Parameter Set 3

Empirical SE 0.033 0.027 0.028 0.078 0.063
Relative bias of SE (%)

Proposed Method 1.40 -0.40 -1.70 1.10 -3.50
Ignore Uncertainty in Ŵij -21.60 -5.30 -7.20 -18.90 -8.10
Bootstrap 18.30 4.40 1.60 17.00 -3.10

95% CI coverage (%)
Proposed Method 93.10 95.40 94.50 92.10 93.70
Ignore Uncertainty in Ŵij 82.70 93.80 92.10 84.40 91.90
Bootstrap 96.20 95.30 94.10 96.00 93.50

Note. a. Empirical SE (standard error), SE(γ̂(I)), is the standard deviation of the sampling distribution
of the average indirect effect estimates, approximated by the standard deviation of the sample estimates
of indirect effects over the 1,000 replications. It is also standardized. b. Relative bias of SE is the relative
bias of the estimated standard error, computed as E[ŜE(γ̂(I))]/SE(γ̂(I)) − 1. c. 95% CI coverage rate
is the coverage probability of the 95% confidence interval estimate of the indirect effect. We construct
the bootstrap confidence intervals nonparametrically from the 2.5th and 97.5th percentiles of the set of
empirical bootstrap values.
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Table 5: Sample Statistics by Treatment and Mediator
Variable Treatment Group Control Group

Educational Attainment Yes No Yes No
Outcome Measure (in 1995 dollars)

Weekly Earnings 244.89 193.14 224.28 181.94
Part of the Pretreatment Covariates (percentage)

Gender
Female 0.44 0.45 0.47 0.44
Male 0.56 0.55 0.53 0.56

Age
16-17 0.44 0.39 0.50 0.41
18-19 0.33 0.31 0.32 0.32
20-24 0.23 0.3 0.19 0.27

Race
Hispanic 0.17 0.16 0.20 0.16
Black 0.45 0.51 0.45 0.49

Arrested Before Application
Serious 0.04 0.05 0.05 0.04
Non-Serious 0.18 0.17 0.19 0.18

Baseline Earnings
No Earnings 0.32 0.36 0.33 0.36
0 to 1,000 0.10 0.11 0.13 0.11
1,000 to 5,000 0.30 0.27 0.28 0.27
5,000 to 10,000 0.16 0.12 0.13 0.13
¿=10,000 0.06 0.07 0.07 0.06

Baseline Education
Had a HS diploma 0.13 0.23 0.10 0.21
Had a GED 0.03 0.06 0.03 0.06
Had a vocational degree 0.01 0.02 0.01 0.02

Sample Size 2,081 3,121 779 2,678
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effect that channels the Job Corps impact through other services. The estimated population
average indirect effect is $8.48 (SE = 1.40, t = 6.06, p < 0.001), about 4.52% of a
standard deviation of the outcome. The estimated population average direct effect is $13.36
(SE = 5.20, t = 2.57, p = 0.01), about 7.12% of a standard deviation of the outcome.
According to these results, on average, the change in educational attainment induced by
the program significantly increased earnings, while other supplemental services available
to the Job Corps participants in contrast with services available to those under the control
condition also seemed to play a crucial role in explaining the program mechanisms.

Between-Site Variance of Direct and Indirect Effects. To explain why some sites seemed
to be more effective than others, we further investigate between-site heterogeneity in the
causal mediation mechanism. The between-site standard deviation of the indirect effect is
estimated to be only $5.60 (p = 0.05), while the estimated between-site standard deviation
of the direct effect is as large as $24.65 (p = 0.045). Based on these estimates, we can infer
that the mediating role of educational attainment was nearly universal over all the sites. Yet
the site-specific direct effect may range widely from negative to positive, suggesting that
some sites were much more effective than others in promoting economic independence
through services above and beyond increasing educational attainment. Hence, the variation
in the Job Corps impact across the sites is mainly explained by the heterogeneity in the di-
rect effect. Indeed, the national Job Corps office and regional offices centrally standardized
the provision of education and strictly regulated vocational training programs for all the Job
Corps centers, which might greatly limit between-site variation in education and training.
In contrast, the management of other services was left largely to the discretion of each local
center. As revealed in a qualitative process analysis (Johnson et al., 1999), the quantity and
quality of supplemental services varied by a great amount across the Job Corps centers. We
have additionally found that the estimated covariance between the site-specific direct and
indirect effects is only 3.61, which corresponds to a correlation of 0.03.

Sensitivity Analysis. As discussed in Section 2.2, the proposed procedure identifies
the causal parameters only when the sequential ignorability assumption holds. In a multi-
site randomized trial, the assumption of ignorable treatment assignment within each site
may be easy to satisfy. However, the assumption of ignorable mediator value assignment
under each treatment condition within levels of the observed pretreatment covariates is
particularly strong. This assumption becomes implausible if posttreatment or unmeasured
pretreatment covariates imply hidden bias that could alter the conclusion. Hence, compre-
hensive measurement of pretreatment and posttreatment covariates is an essential premise
for valid causal inference in mediation analysis. If a pretreatment covariate that affects
both the mediator and the outcome is unobserved, sensitivity analysis could be employed
(Imai et al., 010a; Imai et al., 010b;VanderWeele, 010a) to assess the extent to which the
possible omission might invalidate inference about the joint distribution of the site-specific
direct and indirect effects. We extend the bias formulas proposed by VanderWeele (010a)
to multisite mediation analysis. In addition to assessing the potential bias in the estimated
population average direct effect and indirect effect, we also assess the potential bias in
the between-site variance of the direct effect and indirect effect. The details can be found
in Appendix E. We speculate that an omitted pretreatment confounder, such as academic
achievement or self-regulation skills at the baseline, might have an impact comparable to
the confounding impact of race, gender or baseline earnings that, if omitted, would con-
tribute the greatest amount of bias among the observed pretreatment covariates. After addi-
tionally removing the potential bias of such an omitted confounder, the population average
direct effect and indirect effect estimates remain statistically significant. The same is true
with the between-site variance of the direct effect. Hence, we tentatively conclude that our
results are insensitive to the existence of unmeasured pretreatment confounders.

If a posttreatment covariate exists, one may extend the proposed approach to a causal
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mediation analysis involving two consecutive mediators by viewing the posttreatment co-
variate as a mediator that precedes the focal mediator (Hong, 2015; Huber, 2014). For
example, we have found that Job Corps programs reduced victimization and criminal in-
volvement and in the meantime increased access to drug and alcohol treatment during the
12 months after randomization. These intermediate experiences, in theory, might remove
barriers to educational attainment and to future earnings. Extending the RMPW strategy to
an analysis of multiple mediators (Hong, 2015; Huber, 2014; Lange et al., 2014) in multi-
site trials is an immediate topic on the research agenda. Sensitivity analysis for unobserved
posttreatment confounders is a topic of emerging interest (e.g., Albert and Nelson, 2011;
Tchetgen et al., 2012; Imai and Yamamoto, 2013).

6. Discussion

This paper has shown that, aided by methodological development in multi-site causal me-
diation analysis, researchers can generate new empirical evidence important for advancing
social scientific knowledge. Interventions such as Job Corps must be delivered by local
agents who differ in their professional capacity for engaging participants in critical ele-
ments of the program. The composition of the client population and their needs may not
be identical across the sites. Moreover, the job market and alternative programs available
to the client population may differ across the localities as well. A multi-site randomized
trial offers unique opportunities to empirically examine the program theory across these
different contexts.

Estimating and testing the between-site variance of the indirect effect in addition to that
of the direct effect and quantifying the correlation between the two have been a major chal-
lenge in multi-site causal mediation analysis. This is because, in the standard regression-
based approach, the indirect effect is represented as a product of multiple regression coef-
ficients that may vary and co-vary between the sites. The complexity increases exponen-
tially in the presence of treatment-by-mediator interaction as well as treatment-by-covariate
or mediator-by-covariate interactions. The standard regression approach tends to be con-
strained, with few exceptions, to mediators and outcomes that are multivariate normal. A
computationally intensive bootstrap procedure has been typically recommended for assess-
ing the standard error of each causal effect estimate.

In this study, we have extended the RMPW strategy to multi-site causal mediation anal-
ysis. The simplicity of this weighting strategy brings multiple benefits. It does not require
any assumption about the functional form of the outcome model; nor does it invoke any dis-
tributional assumption about the site-specific effects. Therefore, the method can be applied
to outcomes measured on various scales as long as each causal effect can be defined as a
mean contrast between two potential outcomes. A method-of-moments procedure applied
to the weighted data generates estimates of all the causal parameters that define the joint
distribution of the site-specific direct effect and indirect effect. In addition, there is virtu-
ally no constraint on the mediator distribution because RMPW is suitable for any discrete
mediators (Hong, 2015; Hong et al., 2011, 2015) and because a mathematical equivalent of
RMPW (Huber, 2014) easily handles continuous mediators. Hence, we conclude that the
proposed strategy has considerably greater applicability than the existing methods.

We have additionally made several improvements to the estimation and hypothesis test-
ing. The propensity score-based weights must be estimated from the sample data pooled
over all the sites in the first step before the causal parameters can be estimated in the sec-
ond step. To fully account for the sampling variability in the two-step estimation, we have
derived a consistent estimator of the asymptotic standard error for each causal effect es-
timator. This solution may be applied generally to other propensity score-based two-step
estimation problems in analyses of multilevel data. The results of our simulation compar-
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isons suggest that the estimated asymptotic standard errors often outperform not only the
standard error estimators ignoring the step 1 estimation but also the bootstrapped standard
errors. Finally, given that the test statistic for the between-site variance of the direct ef-
fect and that for the indirect effect do not follow a theoretical Chi-squared distribution,
we have implemented a permutation test that produces valid statistical inference. We ac-
knowledge other potential limitations of the proposed procedure. Although our simulations
have shown satisfactory results under a number of common scenarios represented by past
multi-site trials, we anticipate that the current procedure may not be optimal when site sizes
and the number of sites are extremely small. Moreover, when selection mechanisms vary
across sites each of a relatively small sample size, propensity score models may become
overfitted. In such scenarios, the lack of precision of the site-specific causal effect estimates
would likely destabilize the estimation of the between-site variance-covariance matrix. In
general, a reduction in site size reduces the amount of information and hence minimizes
the statistical power for detecting meaningful between-site differences regardless of what
analytic strategy one employs. This has direct implications for the design of a multi-site
trial. The proposed MOM procedure is robust to the violation of distributional assump-
tions, at the cost of losing efficiency. In contrast, MLE improves efficiency by relying on
stronger assumptions, as discussed at the beginning of Section3. In future research, we will
investigate the feasibility of employing MLE in step 2 and derive the asymptotic standard
error estimator accordingly. We will also explore an alternative estimation procedure based
on Bayesian methods. The Bayesian perspective views parameters as random and natu-
rally accounts for uncertainty in the propensity score weighting through the specification
of prior distributions of propensity score model parameters. Compared to the proposed
MOM approach, the Bayesian method is unconstrained by a small sample size per site and
is expected to be more flexible for investigating complex mediation mechanisms and their
between-site heterogeneity.
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7. Appendix A. Asymptotic sampling variance of the estimators in the two steps

As a supplement to Section 3.2.4, this Appendix shows the details of the asymptotic sam-
pling variance of the estimators in the two steps.

Specifically, the step-1 estimators η̂t = (α̂′
t, v(F̂t)

′)′ for t = 0, 1, where v(F̂t) is a
vector of all the elements on or below the diagonal of F̂t, solve the following estimating
equations,

1

N

J∑
j=1

nj∑
i=1

h
(1)
tij (Mij , Tij ,Xtij ,Ctij ,θtj ,ηt) = 0,

where N =
∑J

j=1 nj is the total sample size of individuals and h
(1)
tij are score functions

with the same dimension as ηt = (α′
t, v(Ft)

′)′. The above equation is essentially the first-
order condition for the maximum-likelihood estimators in multilevel logistic regression.
We use h

(1)
ij = (h

(1)′

0ij ,h
(1)′

1ij )
′ to denote the moment functions for the step-1 estimators

η̂ = (η̂′
0, η̂

′
1)

′. Details on the derivation of h(1)
ij can be found in the supplementary material.

In step 2, in order to estimate the site-specific direct and indirect effects, we estimate
the site-specific means of the three potential outcomes identified by µ = (µ′

1, . . . ,µ
′
J)

′, in
which µj = (µ0j , µ∗j , µ1j)

′, for j = 1, . . . , J . We obtain the estimators specifically for
site s, µ̂s = (µ̂0s, µ̂∗s, µ̂1s)

′, by solving the following moment conditions:

1

N

J∑
j=1

nj∑
i=1

h
(2)
ij,0s(Yij , Tij , µ0s) =

1

N

J∑
j=1

nj∑
i=1

(Yij − µ0s)(1− Tij)I(Sij = s) = 0,

1

N

J∑
j=1

nj∑
i=1

h
(2)
ij,∗s(Yij , Tij ,Wij , µ∗s) =

1

N

J∑
j=1

nj∑
i=1

(Yij − µ∗s)WijTijI(Sij = s) = 0,

1

N

J∑
j=1

nj∑
i=1

h
(2)
ij,1s(Yij , Tij , µ1s) =

1

N

J∑
j=1

nj∑
i=1

(Yij − µ1s)TijI(Sij = s) = 0,

in which Wij is estimated based on the first-step estimators, η̂, while I(Sij = s) is an
indicator taking value 1 if individual i is from site s and 0 otherwise. In this second-step es-
timation, the moment functions are h

(2)
ij = (h

(2)
ij,01, h

(2)
ij,∗1, h

(2)
ij,11, . . . , h

(2)
ij,0J , h

(2)
ij,∗J , h

(2)
ij,1J)

′.

The estimators in the two steps can be rewritten as a one-step estimator ϑ̂ = (η̂′, µ̂′)′.
Stacking the moment functions from both steps, we have that hij = (h

(1)′

ij ,h
(2)′

ij )′. The

asymptotic covariance matrix of ϑ̂− ϑ is ṽar(ϑ̂− ϑ)/N , as shown in Equation (17).

ṽar(ϑ̂− ϑ) =

(
ṽar(η̂ − η) c̃ov(η̂ − η, µ̂− µ)

c̃ov(µ̂− µ, η̂ − η) ṽar(µ̂− µ)

)
= R−1H(R−1)′,

where

H = E
[
hijh

′
ij

]
= E

[
h
(1)
ij h

(1)′
ij h

(1)
ij h

(2)′
ij

h
(2)
ij h

(1)′
ij h

(2)
ij h

(2)′
ij

]
;

R = E

[
∂hij

∂ϑ

]
= E

 ∂h
(1)
ij

∂η 0

∂h
(2)
ij

∂η

∂h
(2)
ij

∂µ

 .

Details on the derivation of ṽar(ϑ̂−ϑ) are included in the supplementary material. We esti-
mate H with Ĥ = 1

N

∑J
j=1

∑nj

i=1 ĥijĥ
′
ij , and estimate R with R̂ = 1

N

∑J
j=1

∑nj

i=1
∂hij

∂ϑ |
ϑ̂

.
According to Lemma 3.3 of Hansen (1982), plim R̂−1Ĥ(R̂−1)′ = R−1H(R−1)′. We thus
obtain the consistent estimator of the asymptotic sampling variance of the estimators in the
two steps.
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8. Appendix B. Method-of-moments estimator for the between-site variance

Applying the method-of-moments approach, we estimate the between-site variance as fol-
lows.

Let G =
∑J

j=1(β̂j − γ̂)(β̂j − γ̂)′, then

E(G) =

J∑
j=1

E[(β̂j − γ)− (γ̂ − γ)][(β̂j − γ)− (γ̂ − γ)]′

=

J∑
j=1

E[(β̂j − γ)(β̂j − γ)′ − (γ̂ − γ)(β̂j − γ)′ − (β̂j − γ)(γ̂ − γ)′ + (γ̂ − γ)(γ̂ − γ)′]

in which

E(β̂j − γ)(β̂j − γ)′ = var(β̂j) = var(β̂j − βj + βj) = var(β̂j − βj) + var(βj);

E(γ̂ − γ)(β̂j − γ)′ = E(
1

J

∑
j′

β̂j′ − γ)(β̂j − γ)′ =
1

J

∑
j′

E(β̂j′ − γ)(β̂j − γ)′;

E(β̂j − γ)(γ̂ − γ)′ = E(β̂j − γ)(
1

J

∑
j′

β̂j′ − γ)′ =
1

J

∑
j′

E(β̂j − γ)(β̂j′ − γ)′;

E(γ̂−γ)(γ̂−γ)′ = E(
1

J

∑
j

β̂j−γ)(
1

J

∑
j′

β̂j′−γ)′ =
1

J2

∑
j

∑
j′

E(β̂j−γ)(β̂j′−γ)′.

Therefore,

E(G) =

J∑
j=1

(var(β̂j − βj) + var(βj))−
1

J

∑
j

∑
j′

E(β̂j − γ)(β̂j′ − γ)′

=

J∑
j=1

var(β̂j − βj) + Jvar(βj)−
1

J
Ψ′var(β̂)Ψ

=
J∑

j=1

var(β̂j − βj) + Jvar(βj)−
1

J
Ψ′(var(β̂ − β) + var(β))Ψ

=

J∑
j=1

var(β̂j − βj) + Jvar(βj)−
1

J
Ψ′(var(β̂ − β))Ψ− var(βj)

= (J − 1)var(βj) +

J∑
j=1

var(β̂j − βj)−
1

J
Ψ′var(β̂ − β)Ψ

Replacing var(β̂j −βj) and var(β̂−β) with the corresponding consistent estimators,
as shown in Section 3.2.4, we obtain the consistent estimator for the between-site variance:

v̂ar(βj) =
1

J − 1
[

J∑
j=1

(β̂j − γ̂)(β̂j − γ̂)′ −
J∑

j=1

v̂ar(β̂j − βj) +
1

J
Ψ′v̂ar(β̂ − β)Ψ]
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9. Appendix C. Test for the between-site variance

As a supplement to Section 3.3, this Appendix explicates a hypothesis testing procedure for
the between-site variance of the direct and indirect effects. Under the null hypothesis that
the between-site variance σ2

D is zero, that is, β(D)
j = γ(D) for all j, according to the Central

Limit Theorem, β̂(D)
j converges in distribution to a normal distribution as the sample size

at the site goes to infinity,
β̂
(D)
j − γ(D)√
var(β̂(D)

j )

d−→ N(0, 1),

in which
var(β̂(D)

j ) = var(β̂(D)
j − β

(D)
j ).

As the sample size at each site goes to infinity, the weights estimated in the first step are
independent across sites, so that β̂(D)

1 , . . . , β̂
(D)
J can be viewed as independent. There-

fore, the sum of squares of the standardized site-specific effect estimates converges to a χ2

distribution,
J∑

j=1

(β̂
(D)
j − γ(D))2

var(β̂(D)
j − β

(D)
j )

d−→ χ2(J).

We lose one degree of freedom by replacing γ(D) with γ̂(D),

J∑
j=1

(β̂
(D)
j − γ̂(D))2

var(β̂(D)
j − β

(D)
j )

d−→ χ2(J − 1).

In the test statistic, we replace var(β̂(D)
j − β

(D)
j ) with v̂ar(β̂(D)

j − β
(D)
j ) :

Q(D) =

J∑
j=1

(β̂
(D)
j − γ̂(D))2

v̂ar(β̂(D)
j − β

(D)
j )

.

Due to this approximation, the distribution of the sample test statistic is not exactly χ2(J −
1). We therefore employ a permutation test proposed by (Fitzmaurice et al., 2007). The
test randomly permutes the site indices, based on the idea that all permutations of the site
indices are equally likely under the null. The algorithm is as follows:

Step 1. Calculate the test statistic, Q(D)
obs , for the original sample.

Step 2. Randomly permute the site indices while holding fixed the site size, nj . Calcu-
late the test statistic for the permutation sample. By repeating this step 200 times, we can
obtain 200 test statistics, Q(D)

p , p = 1, . . . , 200.
Step 3. Calculate the p-value of this test as the proportion of the permutation samples

with Q
(D)
p ≥ Q

(D)
obs .

Although many have suggested generating 1,000 permutation samples (Manly, 1997;
Drikvandi et al., 2013), our simulation results have replicated the finding in Fitzmaurice
et al. (2007) that 200 permutation samples are enough to give a nominal type I error rate.

10. Appendix D. Generation of simulation data

This Appendix explains how we generate the simulation data in Section 4. The goal is to
assess the finite-sample performance of the multilevel RMPW procedure in estimating the
population average and between-site variance of the direct effect and indirect effect. In the
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basic mediation framework, the treatment affects the mediator, which in turn affects the
outcome. Therefore, we generate the data using the following models:

Tij |j ∼ B(1,Pr(Tij = 1|j)),

logit{Pr(Mij = 1|Tij ,Xij)} = α0j + α1jTij + α
(1)
j X1ij + α

(2)
j X2ij + α

(3)
j X3ij

+α
(4)
j X1ijTij + α

(5)
j X2ijTij + α

(6)
j X3ijTij ,

Yij = θ0j + θ1jTij + θ2jMij + θ3jTijMij + θ
(1)
j X1ij + θ

(2)
j X2ij + θ

(3)
j X3ij + εij ,

in which the confounding factors X1, X2, and X3 are generated from identical distribu-
tions: Xkij = X̄kj + eXkij

for individual i in site j, in which X̄kj ∼ N(0, 0.1) and
eXkij

∼ N(0, 1) for k = 1, 2, 3, so that the ICC of each confounding factor is 0.09, similar
to that in the Job Corps data.

In the mediator model, we specify the values of the parameters as α0j ∼ N(−1, 0.01),
α
(1)
j ∼ N(0.4, 0.01), α(2)

j = 0.15, α(3)
j = 0.02, α1j ∼ N(0.8, 0.01), α(4)

j ∼ N(0.01, 0.0001),

α
(5)
j = 0.05, α(6)

j = 0.1, so that the population average of Pr(Mij = 1|Tij = 0,Xij) is
0.28, with a standard deviation of 0.09, and the population average of Pr(Mij = 1|Tij =
1,Xij) is 0.46, with a standard deviation of 0.12, which resemble the Job Corps data. We
then generate for each individual observation a binary mediator Mij from B(1,Pr(Mij =
1|Tij ,Xij)).

In the outcome model, θ1j , θ2j and θ3j are determined by the specified values of the
site-specific direct and indirect effects. Based on the expressions derived by Valeri and
VanderWeele (2013) for the direct effect and indirect effect under the potential outcomes
causal framework, as defined in Section 2.1, these parameters can be computed as follows:

θ2j =
β
(I)
j

E(Pr(Mij = 1|Tij = 1,Xij , j))− E(Pr(Mij = 1|Tij = 0,Xij , j))
− θ3j

θ1j = β
(D)
j − θ3jE(Pr(Mij = 1|Tij = 0,Xij , j))

To resemble the Job Corps data, we specify the values of the other parameters in the
outcome model as θ0j ∼ N(2, 9), θ(1)j ∼ N(1, 1), θ(2)j = 1.6, θ(3)j = 1.9, and εij ∼
N(0, 100).

11. Appendix E. Bias formulas for sensitivity analysis

As a supplement to sensitivity analysis in Section 5, this Appendix quantifies the bias for
both the population average and betwen-site variance of the natural direct and indirect
effects caused by the omission of a pretreatment confounder of the mediator-outcome re-
lationship. We extend extend the bias fomulas proposed by VanderWeele (010a) to the
multi-site trials.

Directly applying the result from VanderWeele (010a) for sensitivity analysis in single-
site mediation analysis, we first quantify the bias at site j caused by the omission of
a pretreatment confounder of the mediator-outcome relationship denoted by U . Under
the assumptions that (1) U ⊥⊥ X|S = j, (2) Y (t,m) ⊥⊥ T |S = j, (3) Y (t,m) ⊥⊥
M |T,X, U, S = j, (4) M(t) ⊥⊥ T |S = j, (5) Y (t,m) ⊥⊥ M(t′)| T,X, U, S = j, (6)
U is binary, (7) E(Y |t,m,x, U = 1, S = j) − E(Y |t,m,x, U = 0, S = j) = λj across
strata of t,m,x at site j, and (8) Pr(U = 1|t,m,x, S = j) − Pr(U = 1|t′,m,x, S = j)
= δj across strata of m,x at site j, in which t = 1, t′ = 0, the bias for the direct effect
at site j is λjδj . The bias for the indirect effect at site j is −λjδj . Correspondingly, the
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bias in the population average direct effect and indirect effect are E(λjδj) and −E(λjδj),
respectively. Finally, the respective bias in the between-site variance of the direct effect and
that of the indirect effect are

var(β(D)
j + λjδj)− var(β(D)

j ) = var(λjδj) + 2cov(β(D)
j , λjδj),

var(β(I)
j − λjδj)− var(β(I)

j ) = var(λjδj)− 2cov(β(I)
j , λjδj).
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