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Abstract
Experiments embedded in surveys are a valuable way to test potential survey improvements; how-
ever, inference from these experiments can be difficult because one must account for the survey
design aspects. Operational issues can restrict possible experimental design choices. In this paper,
we discuss a design-based and a randomization-based approach to inference for experiments in an
embedded survey. Additionally, some surveys are ongoing and present the option of utilizing data
from previous time periods as well as the data from the test period. We discuss and compare an
estimator that utilizes data only from the test period with one that compares outcome differences
between the study period and a prior period across study treatment groups. Using an example from
the American Community Survey (ACS) as well as a simulation, we compare the two inferential
approaches and estimators. We find that the permutation-based inferential approach is a flexible
and robust method for analyzing embedded experiments and that when the correlation is large be-
tween time periods, the difference in time-period differences may provide inferences with greater
precision.
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1. Introduction

Randomized controlled experiments are the ideal way to evaluate the impact of interven-
tions, but when an experiment is embedded in a probability sample survey certain survey
design and administrative field aspects can make analysis and inference difficult. For exam-
ple, it may not be possible to completely randomize treatments to individual units because
of an administrative structure, making it necessary to instead randomize clusters of units.
These complicating factors must be taken into account when conducting the analysis of the
experiment and may cause the assumptions for typical approaches to inference to be in-
valid. In this paper we discuss two aspects of survey-embedded field experiments. The first
is how to account for a complicated randomization structure, and the second is the utility
of incorporating data from previous time periods in an ongoing survey.

As motivation, we consider an embedded experiment from the American Community
Survey (ACS). The ACS is an ongoing national survey that samples approximately 295,000
housing unit addresses per month. It uses a multi-mode collection strategy in which sam-
pled addresses are initially contacted by mail. Then further contact attempts may be made
to non-respondents by each of mail, computer-assisted telephone interviewing (CATI), and
computer-assisted personal interviewing (CAPI). In each of these modes, multiple attempts
may be made. This data collection strategy can be perceived as overly intrusive to some
respondents. In response to these concerns, the Census Bureau conducts ongoing research
into methods for reducing respondent burden. One of the lines of research is to develop a
stopping rule for CAPI based on a cumulative burden score. The idea is that each contact
attempt counts as a separate increment of burden, and once the cumulative burden score
exceeds a certain threshold, no further attempts are to be made. Each contact attempt is
given a numerical score based on its type and outcome. Contact attempts judged to be
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more burdensome are given larger scores. For example, an in-person contact attempt that
resulted in a firm refusal would contribute a larger amount to the cumulative burden score
than a personal visit in which no one was available at the sampled household.

Based on earlier research and development of such a stopping rule (Griffin, Slud, and
Erdman 2015), a pilot study was undertaken in the ACS CAPI data collection month of
August 2015 to test the effects of the stopping rule on costs, data quality and perceived
contact burden (Hughes, Slud, Ashmead, and Walsh 2016). The pilot took place in roughly
one quarter of all ACS interviewing areas and randomized clusters of field representatives
to one of three groups. The first group was the control group, while the second and third
group instituted the burden score stopping rule. While both the second and third group used
the burden score stopping rule, only the second group of field representatives could view
the cumulative burden score themselves during the pilot. The results from the pilot showed
that the stopping rule had a small negative impact on response rates, but was effective at
reducing some measures of perceived contact burden (Hughes, Slud, Ashmead, and Walsh
2016).

The analysis of the burden reduction pilot was complicated by the fact that the treatment
randomization scheme was constrained by operational concerns and an attempt to balance
the interview difficulty between treatments. In the pilot, clusters of field representatives
were randomized to three treatment groups. The clusters were defined as Field Supervisory
Areas (FSAs) within which all field representatives shared the same supervisor, which was
deemed to be an operational necessity. In an attempt to balance the difficulty of interviews
between treatments, FSAs were ordered into successive tiers of three by metrics of inter-
view difficulty within each Survey Statistician Field Area (SSFA). Then within each tier
of three, each of the three treatments was randomly assigned to exactly one FSA. There-
fore, the experimental design used both clusters and strata. Adding to the challenges of the
analysis, the number of field representatives in a FSA varied as did the number of cases
(sampled households) that a field representative attempted to interview. Lastly, though
treatment groups were assigned to field representatives, we were ultimately interested in
the treatment effects at the case-level, that is, at the single housing-unit level.

In order to perform a rigorous statistical analysis in an experiment such as the burden
score reduction pilot of the ACS, it is necessary to properly account for all the aspects of
the experimental design. In this paper we first discuss approaches to inference and analysis
to take experimental design into account. Additionally, an ongoing survey such as the ACS
presents the opportunity to utilize data from previous data collection periods as well as the
pilot period. We also explore the utility of using data from a previous collection period to
help estimate the treatment effect.

2. Approaches to Inference

2.1 Designed-based and Permutation-based Inference

In a randomized controlled experiment, imagine that each unit (household in our example)
has a potential outcome (Neyman, 1923) for each of two treatments. We are only ever
able to observe one of the two treatments for each unit, but we would like to estimate the
population-level treatment means in order to estimate the treatment effect. Next, consider
that the units selected for the experiment are actually a probability sample from a larger
population. After being selected for inclusion in the survey, the units are randomized to
the treatment groups using some specified design. We consider two different approaches to
inference in this setting, design-based and permutation-based. In general, we can use the
same point estimator of the treatment effect for both methods, but the methods to estimate
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the variance of that treatment effect and make inference are different.
Thinking about the problem from a design-based perspective and drawing from survey

sampling theory, we can view the units in each treatment assignment as a random subsam-
ple from the main survey sample and then use the inverse probability of treatment selection
to estimate population-level quantities. Variance estimates can be made using slight modifi-
cations of existing survey variance formulas. This is the approach taken by Van den Brakel
and Renssen (1998 and 2005) to estimate variances of mean differences in embedded sur-
vey experiments.

In the example of the ACS burden reduction pilot, the primary goal of the pilot was
to understand the effects of the intervention. As a result, geographies to be in included in
the sample were chosen deliberately, making estimating population-level effects improper.
Still, we can use the concept of design-based inference to estimate treatment effects and
associated variances where our population of interest is all units in the pilot. Applying this
method to our example, the design was a stratified cluster design.

Another way to think about making inference is under a permutation test approach (Zi-
effler, Harring, Long 2011). Under the null hypothesis that there is no difference between
the treatments, the treatment assignments are simply labels assigned at random to obser-
vations. Therefore, if we create permutations of the treatment assignments following the
same randomization scheme, and apply these permutations of the treatment assignments
to the actual data, we get an exact distribution of the test statistic under the null hypothe-
sis. This permutation-based null distribution can be used in conjunction with the observed
test statistic to give a p-value from a hypothesis test and a test-based confidence inter-
val. Rather than calculating all possible treatment assignment permutations, we can simply
take a Monte Carlo sample of all possible permutations to get an appropriate sample from
the null distribution. In our ACS example, we are not interested in applying probability
sampling weights, but if we did, it is not clear how to incorporate them with a permutation-
based estimator, which is a major disadvantage.

2.2 Difference in Difference Estimator

In an experiment, the typical estimate of the treatment effect is simply the difference in
means of the treatment groups. In our example, the difference in means for any two treat-
ment groups during the test period can we written as:

∆̂D =

∑n
i=1 zimiȳi∑n
i=1 zimi

−
∑n

i=1(1− zi)miȳi∑n
i=1(1− zi)mi

(1)

mi for i = 1, . . . , n;

yij for i = 1, . . . , n and j = 1, . . . ,mi;

zi for i = 1, . . . , n;

ȳi =
1
mi

∑mi
j=1 yij ,

where n is the number of FSAs, mi is the number of cases (households) in FSA i during
the test period, yij is the outcome for case j in FSA i, ȳi is the FSA mean outcome during
the test period, and zi is the indicator of treatment assignment in FSA i during the test
period. In the ACS example, the outcomes of interest, yij , are metrics such as the number
of contact attempts or firm refusals. For reference, we call ∆̂D the difference within test
period estimator.

The ACS is an ongoing monthly survey with differences in response behavior observed
across months as well as across geographies, so we might try to use the data from prior
months to help inform the treatment effect. In comparison to (1), we might use a difference
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in difference estimator to utilize prior data. In the case of the ACS burden score reduction
pilot, we write the difference in difference estimator as:

∆̂DD =

∑n
i=1 zi(mi +m∗

i )(ȳ
∗
i − ȳi)∑n

i=1 zi(mi +m∗
i )

−
∑n

i=1(1− zi)(mi +m∗
i )(ȳ

∗
i − ȳi)∑n

i=1(1− zi)(mi +m∗
i )

, (2)

mi, m
∗
i for i = 1, . . . , n;

yij for i = 1, . . . , n and j = 1, . . . ,mi; y
∗
ij for i = 1, . . . , n and j = 1, . . . ,m∗

i ;

zi for i = 1, . . . , n;

ȳi =
1
mi

∑mi
j=1 yij ; ȳ

∗
i = 1

m∗
i

∑m∗
i

j=1 y
∗
ij ,

where n is the number of FSAs, mi and m∗
i are the number of cases (households) in FSA

i during the test period and previous time period respectively, yij and y∗ij are the outcomes
for case j in FSA i during the test period and previous time period respectively, ȳi and ȳ∗i
are the FSA mean outcomes during the test period and previous time period respectively,
and zi is the indicator of treatment assignment in FSA i during the test period.

While we can use either the design-based or permutation-based approach to estimate
the variance of the estimator with the difference within test period estimator (1), it is not
clear how to use a design-based approach with the difference in difference estimator (2).
However, because of its flexibility we can still use the permutation approach with the dif-
ference in difference estimator.

3. Results

In this paper we are interested in the results of two main questions. First, do we get sim-
ilar results when estimating the variance using the design-based approach compared with
permutation-based approach. Second, should we prefer the difference in difference estima-
tor or the typical difference within test period estimator in analyzing our experiment?

The design of the example ACS experiment makes it analogous to a stratified cluster
survey; however in the example there was generally only a single cluster in each strata.
Therefore we ignored the stratification aspect for the purposes of estimating variance in
the design-based approach. Under the design-based method, we estimated the variance of
∆̂D by an approximation of the differences between two treatment groups using a standard
survey sampling formula for the variance of a ratio estimator in a cluster sample of clusters
with unequal size (Lohr, 2009). We estimated the variance of ∆̂D under the design-based
approach by

ˆvar(∆̂D) =
1

n1m̄2
1

n∑
i=1

zim
2
i (ȳi − ˆ̄y1)

2

n1 − 1
+

1

n0m̄2
0

n∑
i=1

(1− zi)m
2
i (ȳi − ˆ̄y0)

2

n0 − 1

n1 =
∑n

i=1 zi; n0 =
∑n

i=1(1− zi);

m̄1 =
1
n1

∑n
i=1 zimi; m̄0 =

1
n0

∑n
i=1(1− zi)mi;

ˆ̄y1 =
∑n

i=1 zimiȳi∑n
i=1 zimi

; ˆ̄y0 =
∑n

i=1(1−zi)miȳi∑n
i=1(1−zi)mi

.

In order to make inference for the design-based approach we used a p-value calculated
from the tail of a normal distribution using the test statistic ∆̂D divided by its design-based
estimated standard error. This approach relies on having a relatively large sample size to
provide justification for the normality assumption. Table 1 shows sample sizes for the three
treatment groups in the ACS burden reduction pilot.

In Table 2 we show the permutation-based p-value and the design-based p-value for
hypothesis tests of a difference in the outcomes between the control group and the union of
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Table 1: Sample sizes for the ACS burden reduction pilot
Control Treatment 1 Treatment 2

FSAs 46 46 46
Total cases, test month 4,299 4,135 4,213
Total cases, prior month 4,299 4,147 4,245

Source: Hughes, Slud, Ashmead, and Walsh (2016).

the two treatment groups in the ACS burden reduction pilot. Overall, we see that the two
approaches give very similar results, which makes sense because in this case the design-
based method is a normal approximation of the permutational approach. We note that the
three outcomes with slight differences between the two methods (telephone hours per case,
miles per case, and response rate per case) had test statistics with permutation null distri-
butions that were slightly non-normal in the tails. Though in this example we observed
that the design-based and permutation approaches gave similar inferential results, in gen-
eral, the permutation-based approach will be more robust. For a complete discussion of the
importance of the results in Table 2 to the ACS burden reduction pilot see Hughes, Slud,
Ashmead, and Walsh (2016).

Table 2: P-value comparisons using ∆̂D, permutation vs. design
Outcome Permutation-based p-value Design-based p-value
Attempts per case 0.074 0.071
Contacts per case 0.067 0.073
Firm refusals per case 0.032 0.029
Personal visits per case 0.198 0.208
Telephone attempts per case 0.101 0.053
Interviewing hours per case 0.854 0.831
Miles per case 0.615 0.679
Response rate per case 0.104 0.127

Source: Hughes, Slud, Ashmead, and Walsh (2016).

Next, we explore the results of utilizing additional data from a reference period, com-
paring estimators (1) and (2). In the ACS burden reduction pilot example, we used the
previous month’s data (July) as the reference period. While the field representatives in each
FSA were not exactly the same in July and August, a large majority of field representatives
did not change. Additionally, FSAs are defined geographically, so while the households
sampled were not the same between the two months, they should share similar character-
istics. Therefore, we think that there will be some level of consistency in the metrics for
FSAs across months. This kind of consistency is not guaranteed for all ongoing surveys.

Figure 1 shows the ratio of the widths of 95% confidence intervals for the difference
within test period estimators and the difference in differences estimator comparing the con-
trol group and the union of the two treatment groups for 18 different outcomes measured
in the ACS burden reduction pilot. Ratios less than one indicate that the difference in dif-
ference estimator has a smaller 95% confidence interval and is therefore more precise. The
figure shows that most, but not all, outcomes have a ratio less than one.

In order to further investigate the differences between the two estimators we created
a simulation to mimic the ACS burden reduction experiment. In total, we allowed for
n = 100 clusters of units over two time periods (test and reference). First, for each cluster
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Figure 1: Ratio of the widths of 95% confidence intervals of ∆̂DD compared with ∆̂D for
18 outcomes
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Source: Hughes, Slud, Ashmead, and Walsh (2016).

i we randomly selected a number of cases mi for the test period between 10 and 100, where
the number of cases was simulated from a uniform distribution rounded to a whole number.
We then chose a related number of cases m∗

i for the reference period by multiplying mi by a
random uniform variable with support (0.9, 1.1), rounding that number and adding 1. Next,
a random cluster effect, γi ∼ N (0, σ2), was simulated for each cluster i = 1, . . . , 100 for a
given σ2 value. For each iteration of the simulation we randomly sampled 50 of the clusters
to the treatment group and 50 to the control group using zi as the indicator of treatment.
Next, for a treatment effect ∆, we simulated individual case outcomes in the test period yij
and the reference period y∗ij by

yij = 1 + λij + zi∆, where λij ∼ Poisson(λ = 5 + γi), and

y∗ij = 1 + λ∗
ij , where λ∗

ij ∼ Poisson(λ = 5 + γi).

The parameter σ2 is responsible for inducing correlation between cluster outcomes in the
test and reference period. In our simulation we used the values (0, 0.25, 0.4, 0.5) for σ2

and ∆ = (0, 0.1). For each combination of the parameters σ2 and ∆, we repeated the
simulation 10, 000 times.

Table 3 shows the results of the simulation. The estimated correlation calculated in the
table is the correlation among control units in the two time periods. We found that when
the correlation was small, then the differences in test period estimator (1) was better in
terms of the precision. In those settings with small correlation, using the outcomes from
the previous time period only added noise to the estimator. However, as the correlation
increased, the differences in differences estimator (2) became more precise, to the point
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Table 3: Simulation Results

Trt Effect σ2 Est. Correlation MSE Ratio CI Width Ratio
0 0 0.007 2.157 1.410

0.1 0 0.012 1.933 1.395
0 0.25 0.300 1.088 1.043

0.1 0.25 0.289 1.280 1.084
0 0.4 0.535 0.665 0.817

0.1 0.4 0.541 0.783 0.886
0 0.5 0.640 0.440 0.691

0.1 0.5 0.687 0.410 0.645

where the precision was about twice that of the differences in test period estimator. In the
simulation, the bias of each of the estimators was negligible for all cases and therefore not
included in Table 3.

Keeping the results from the simulation in mind, we calculated the correlation between
time periods among the control units for 18 outcomes in the ACS example. In Figure 2 we
plotted those correlations against the 95% confidence interval width ratios from Figure 1.
Again, ratios less than 1 suggest that the difference in difference estimator is more precise
than the difference in test period estimator. We see from the figure that correlations between
time periods are relatively large for most of the 18 outcomes in the example. Further the
figure shows that as the correlation increases, the difference in difference estimator does
increasingly better compared with the difference in test period estimator. This is exactly
the result we would expect given the results from the simulation.

Figure 2: The correlation between time periods plotted against the ratio of the widths of the
95% confidence intervals of ∆̂DD compared with ∆̂D for 18 outcomes in the ACS burden
reduction pilot
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2015.
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4. Discussion

Experiments embedded in surveys can often have complex designs because of the practi-
cal constraints of the field environment, and the necessity of taking design features into
account can make statistical analysis difficult. In this paper we discussed two approaches
to inference when faced with an embedded survey. We found that both the design-based
and permutation-based approaches yielded similar results in our ACS example, but the
permutation-based approach was a more flexible and robust method. In the actual analy-
sis of the ACS burden reduction pilot, we decided to use the permutation-based method.
However, one downside to the permutation approach is that it is unclear how exactly to
incorporate survey weights in the analysis. We also discussed how data from previous time
periods might be utilized in an ongoing survey using a differences in differences estimator.
We found that when the correlation between outcomes in the two time periods was large,
the difference in difference estimator was more precise than an estimator that ignores the
data from the previous time period. In our example, the large correlation was due to the fact
that a large percentage of the same field representatives were working the same geographic
areas across the two time periods.
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