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Sampling with minimal strata size requirements

Stas Kolenikov* Igor Griva'

Abstract

We consider the problem of optimal stratified single stage sampling design where minimal sample size requirements
are specified for all strata. We show that the problem reduces to unidimensional optimization, and present an algorithm
that solves it. We discuss the substantive interpretation of the algorithm and Lagrange multipliers in terms of the
sampling problem at hand. An illustrative numerical example is provided.

Keywords: stratified sampling design, survey cost, nonlinear optimization, statistical computing.

1. Introduction

In nearly all practical situations where probability sampling is used, it is used for the reasons of limited
available resources for data collection. While a census data collection from a finite human or establishment
population will provide an exact answer conceptually, the feasibility of a census data collection is usually
ruled out for all but the specially mandated situations (such as the regular censuses required by law) or
relatively small populations with readily available contact information (such as students of a university who
are required to have an email in the university domain). In most other situations, a sample is taken so as
not to expend the resources for the full population, and the sample size is dictated either by the statistical
power calculations when the researcher or the agency collecting the data are at liberty of asking for sufficient
resources, or, more often, by the available budget.

One of the founding papers of design-based inference, Neyman (1934), explicitly incorporates cost of
data collection in what is now known as Neyman or Neyman-Tchuprow optimal allocation, and derives
the optimal sampling design scheme that acknowledges the budget constraint. We reconsider the problem
with a requirement that is often imposed by the survey stakeholders to provide minimum sample sizes in
each stratum. For instance, in the U.S., Behavioral Risk Factor Surveillance Survey (BRFSS) requires
an effective minimum sample size of 2,500 observations in each state (Centers for Disease Control and
Prevention 2013), and some large states have sub-state data collection programs with specific sample size
requirements per county—for instance, New York Expanded BRFSS requires at least 400 interviews in
each county (New York State Department of Health 2014). The problem has been considered recently by
Choudhry, Rao & Hidiroglou (2012). We extend on their treatment by providing the Lagrangian function
and solution to the problem via an explicit algorithm that can highlight the derivation and the properties of

the solution. Another interesting contribution to the problem is Wright (2012) who proposed a connection
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to elections and presented another explicit algorithm that builds the sample sizes selecting, one by one, the

strata to which the next available unit should be assigned.

2. Basic problem

Consider a finite population ¢/ divided into H strata of sizes N, h =1,..., H, Ny+...+ Ny = N, with a
variable of interest y;;h = 1,...,H;i = 1,..., Nj. Let the population variance for stratum h be S2, and
the cost of data collection for one completed interview be cj. If a simple random sample with replacement

(SRSWR) of size ny, is taken in each strata, and the stratified mean is given by
H

: i L
sir = O Walh, Wi = Nu/N, g = P thu )]
h=1 =1
then the Neyman-Tchuprow allocation (Neyman 1934, Tchuprow 1923) is obtained as the solution to the
nonlinear optimization problem
2

2 S},
V[ ¥str] Z Wh —h — ?111%

S.t. Z ChNp = )
and is given by
ShWh - ShWh/\/cn C
Ven 7 Zl[il SZVVZ/\/a leil SII/VI\/EI

rounding as necessary. For standalone derivations, see Thompson (1992), Section 11.7, or Hansen, Hurwitz

3)

np X

& Madow (1953), Section 5.11. This result will also follow from our consideration of the following more
general problem.

The following sampling problem is often encountered in practice: develop a sampling design with the
total sample size n and minimal strata sizes my,, where m = ), mj;, < n, so that additional n — m units
need to be freely distributed across the strata. This can be seen as a special case of the sampling problem
with the varying strata costs, where ¢;, = ¢ in each stratum, and the overall budget constraint is replaced by
the total sample size constraint. From now on, we will consider this more general problem in our derivations.

For a problem with required minimum sample sizes per stratum, let us parameterize the stratum sample
size as

np = my, + tp, @

where ¢, > 0. Then the sample design problem is

H
str) — mi 5
V0o Z "y, + th I{rtl;?}1 ©)
Z (mp +tp) = C, (6)

h
tp, > O0forall h (7

537



JSM 2016 - Survey Research Methods Section

Equations (5] . ) describe the optimization problem in variables {t,,h = 1,..., H}. Additionally, to

ensure that a non-trivial solution exists, we need to require that
C > Z CpMp, (8)
h

Substantively, it means that there is enough budget to collect at least the minimum required samples in each
stratum, and more than the minimum in some strata. For practical purposes, the sample sizes have to be
integer numbers, so once real-valued t; are obtained, they need to be rounded or truncated down to the
nearest integer.

Nonlinear constrained optimization (Griva, Nash & Sofer 2008) proceeds by setting up the Lagrangian

function which combines the objective function and the constraints:

H 2
L({tn}; A {vn}) = Z % A[ZCh(thrth } ZVhth 9

h— "+t h

The first order (Karush-Kuhn-Tucker, KKT) conditions are

oL W2s?

— = Acp, —vp =0forall h 10
ot mh+th)2+ Ch — Up orall h, (10)
a—L—Zc(m +1,)—C=0 (11)
N . r{Mp + 1k =

l/hth = 0, Vp, > 0, th > 0 for all h (12)

where v, > 0 are the Lagrange multipliers corresponding to inequalities ¢;, > 0 for all A.
From (10), the budget constraint Lagrangian multiplier is
WiSh v

A= hPh
cnimp +t1)?  cn

13)

where the expression in the right hand side is invariant with respect to h.

This invariance is an important property, as it allows to recast the whole problem essentially as a univari-
ate problem with respect to A, with all other quantities derived from it. In particular, the additional sample
sizes can be determined as
WS,

h
—mp,0f, A>0 14
Jior 0] (14)

The cost of the survey with these additional sample sizes is

th(A) = max[

= en[mn +ta(N)] (15)
h

which may be greater or less than the available budget C'. Finally, the Lagrange multipliers v, for non-
negativity constraints on tj are
Wi s

vp(A) = cph — —2—2—
n(A) h [mh—l-th()\)]Q

(16)

538



JSM 2016 - Survey Research Methods Section

Due to (T4), we have v, > 0. These Lagrange multipliers are equal to zero in those strata » where the
constraint ¢, > 0 is not binding, i.e., t5 > 0. Put differently, t; > 0 for some stratum h means that
additional sample elements are drawn from this stratum. On the other hand, if 7, > 0, then it must be that
t, = 0, i.e., the stratum size in stratum h has to be limited to the required minimum my, only. In other
words, the sign of v, may serve as an indicator of whether additional units are to be taken from stratum h
on top of my. A common interpretation of the Lagrange multiplier in nonlinear optimization problems is
a “shadow price” of the constraint, i.e., the impact that the constraint has. A zero value indicates that the
constraint is not active, and thus “costs” nothing to accommodate, in terms of adjusting other parameters of
the optimization problem. Positive values of v}, indicate that the relevant constraints are active, i.e., t, = 0,
and greater values additionally indicate that modifying the corresponding constraint has relatively greater
impact on the value of the objective function at optimum.

With the above definitions (I4)—(L6) as functions of a single parameter A, the optimization problem is
that of finding such A* that C'(A*) = C'. Then the additional sample sizes can be evaluated from (14).

Note that from (I3)), A > 0, as the first term is strictly positive, and the second one is non-negative. Two

characteristic values of the main Lagrange multiplier are

A7

corresponding to the range of the minimum sample size requirements plugged into (13). They serve as

natural bounds for the Lagrange multiplier as established later in Lemma[2]

2.1 Optimization algorithm

The following procedure can be implemented to find the optimal design parameters in practice using bisec-
tion method.
Algorithm 1.

1. Set the convergence criteria € (e.g., e = C' - 1079).
2. Find the upper bound \ using .
3. Find the lower bound \ using (I7).

4. If C(A) < C, none of the constraints in are binding, and the optimal allocation is the Neyman-

Tchuprow allocation, as demonstrated by the Lemma | below.
5. 1 CA) > Cset AP« X AP e Ak 1.
6. Set \®) «— (AP 1 APy /2,

7. Compute t;,(\¥),h =1,..., H.
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8. Evaluate the budget constraint C'(A(%),
9. If |C — C| < ¢, goto step

10. If the sample size is too large, and the tentative design based on the k-th iteration is over budget
(C(A®) > ), increase A: set A\F) «— AB) &« &+ 1.

11. If the sample size is too small, and the tentative design based on the k-th iteration is under budget
(C(/\(k)) < (), decrease \: set /\&k) VNG TPy P

12. Re-iterate to step [0]

13. Set t), = t;,(A®)), rounding down to the integer part as needed. Exit.

2.2 Properties of the proposed algorithm
The following lemmas establish the properties of the algorithm.

Lemma 1. I[fC()A) < C, then \* < )\, none of the constraints in @ are binding, and the optimal allocation
is the Neyman-Tchuprow allocation (3).

In other words, before embarking on the actual optimization via Algorithm 1, this simple check can be
conducted to see if the budget is sufficient to support the minimum sample sizes for all strata.

Proof of Lemma

From the definitions of ¢,(\) and C'()), it follows that they are monotonic in \. In particular, 5 () are
non-increasing in \, and are strictly decreasing if A\ < (W72S32)/(cp,m3). Hence, C()) is strictly decreasing
as long as some t5(\) > 0 for a given \. Therefore, since C'(A) < C = C(\*), we have \* < \.

Assume, without loss of generality, that the strata are numbered in the increasing order of the quantity
(W2S2)/(cym?). Then the minimum of (W72S2)/(cpm3) is achieved in the first stratum, meaning that
A= (WESE)/(erm?) < (WPS?)/(cpm3) for all h. Then

wh S
t1(A) :max[\/éTi —ml,O} = max(mj —my,0) =0,
WhSh WhSh C1
th()) = — mp, 0| = RO e — im0
n(A) max{@ mh] max[Wlsl chml mp
WhS}“/Cl
= ——Y " my — >t1(\) =0, h>1
Wlslﬁml mp, > t1(A) =0,

As ty () are strictly decreasing in \ for 0 < A < A, all of ¢, (\) are strictly positive in this interval. In
particular, t;(A*) > 0 for all h, including b = 1, since \* < A.

O

The proof of Lemma [1|demonstrates that the value A is the lowest value of A at which some strata are

constrained by the minimum sample size requirements. However, if the cost C'(}) is too high, then more

strata sizes may need to be constrained. This more general case is treated in the following lemma.
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Lemma 2. If C(\) < C < C()), the optimal Lagrange multiplier for the problem —@ is contained
between the upper and lower bounds of Algorithm 1.

Proof of Lemma

As was done in the proof of Lemma I} assume, without loss of generality, that the strata are numbered
in the increasing order of (W72S32)/(cpm3), so that the maximum of W2S? /c;,m? is achieved in the last
stratum, A = (WZS%)/(cam?;) > (W7S2)/(cpym?). Then

tn(V) :mhmax[m—l 0] —mhmax[ W"ji”;fVSCH —1,0} =0 forallh
Acp, Mp/Ch WHOH

since the first argument of the maximum is non-positive for all 4 (and is identically zero for h = H). Hence

X) :Zchmh <C
h

according to the assumption . On the other hand, C'(A) > C as stated in the assumptions of the Lemma,
and as assured on step E] of Algorithm 1. Since C'()) is a continuous function of A, the optimal point such
that C'(\*) = C is contained in [\, \]. O

Lemma 3. If C < C()), then no solution can be found.

Proof of Lemma

As was done in proofs of Lemmas|I|and[2] assume without loss of generality that the strata are numbered
in the increasing order of (W72S32)/(cpm3), so that the maximum of W2S? /c;,m? is achieved in the last
stratum, A = (WZS%)/(cam?;) > (W7S2)/(cpym?). Then

ty(\) = max[v\[;f%[
H

_ Wy Sh+/
th(\) = max[WhS;L\ — mh,O} = max[#}{cim}[ — mh,O} =0, h<H
Ch \%

—my, 0] = max(mg — mg,0) =0,

WhSh/CH
since Wy SH@mH —my < 0.

For all A > ), all of the constraints are binding, t,(\) = 0, nj, = my, C(A) = >, cpmy, = C(X). On
the other hand, since £ (\) > 0 when A\ < ), the overall budget C'()\) is a strictly decreasing function of
in that interval. Hence C'((\) > C(X) > C for A < . Therefore there is no A* such that C(\*) = C.

O

In terms of the sampling design problem, the condition C' < C'(\) of Lemma (3) means that the budget
constraint (8) is violated. Thus the lemma establishes the existence of a feasible sampling design given the
available budget.

Combining these lemmas together, the general properties of the optimal design can be established de-

pending on the relation between the available budget C' and the characteristics values A, A:
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1. If C < C(\), no solutions exist, as the budget is insufficient even for the required minimum sample

sizes.

2. If C(A) < C < C(A), then the solution exists, and the constraints on the minimum sample sizes are

active in at least one stratum.

3. If C(A\) < C, none of the constraints on the minimum sample sizes are active, and the optimal

allocation is Neyman-Tchuprow.

We also need to establish some technical conditions required for the proof that the algorithm converges

to the optimal point.
Lemma 4. The optimal values t} that solve the optimization problem (E])—([7]) exists and is unique.

Proof of Lemma

The existence of the solution follows from the fact that the objective function (5) being minimized is
continuous in its arguments ¢y, and the feasible set (i.e., the set of values ¢;, such that the conditions (6)—(7)
are satisfied) is nonempty and compact (in fact, it is a bounded closed polytop).

The objective function (5)) being minimized is a strictly convex function of its parameters t;. The
constraints are linear. Uniqueness of the solution {¢;,h = 1,..., H} follows from the standard convex
optimization theory results (Griva et al. 2008).

g

Lemma 5. The Lagrange multipliers \* and vy, h = 1, ..., H that satisfy the first order optimality KKT

conditions ((6)—(7) exist and are unique.

Proof of Lemma 5] The existence of the Lagrange multipliers follows from the fact the problem (5)—
(7) satisfies the constraint qualification (e.g. the Slaters condition; see Griva et al. (2008)). To prove the
uniqueness we note that due to and (15), C((\) is a monotonically decreasing function of A. Moreover,
by (8) there exists a stratum number hy € {1,..., H} such that th, > 0. Since ¢; must satisfy for
any optimal A*, C'(\) is strictly monotonically decreasing function of A in the neighborhood of any optimal
A*. As C()) is nonincreasing for any A and is strictly monotonic in the neighborhood of an optimal \*,
we conclude that there cannot be A} # A} such that C(A]) = C(\3). Therefore there is only one A\* that
satisfies the KKT conditions.
Due to Lemma {4} the solution to the problem ¢;, h = 1,..., H is uniquely defined. Therefore the
uniqueness of vy, h = 1, ..., H follows from the uniqueness of ¢}, h = 1, ..., H, \*, and .
O

The main result is thus the following.

Theorem 1. Algorithm I generates sequence {t,(\¥)), k = 1,2, ...} that converges to the optimal solution

as the algorithm is iterated without stopping, limy,_,oo tj,(A#)) = ty.
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Proof of Theorem The result follows from the existence and uniqueness of the solution {¢; , \*, v, h =
1,...H} that must satisfy the optimality conditions (10)—(12) (Lemmas [4] and [5), and the fact that the
algorithm generates a sequence {t,(A(*)), \(!) 1, (\(¥))} that in the limit satisfies the first order conditions
(10)—~(12).

0

Note that conditions and are satisfied exactly by definitions of 5, (\) and v () (16), while
the condition is being satisfied in the limit due to the general properties of the bisection algorithm.

In terms of the practical implementation of the algorithm, since at each step the length of the interval
()\l(k), Agk)) is being cut in half, the convergence condition of step @) will be satisfied after at most K =

[logy(A/€)], i.e., rounded up to the nearest integer.

2.3 Interpretation

In substantive terms, the Neyman-Tchuprow allocation is the optimal allocation with a generous enough
budget, C'(A\) < C'. In fact Algorithm 1 can find this allocation when the initial lower bound is set to zero or
any value X such that C (5\) > (), rather than to A. In terms of the proof of existence (Lemma , by taking
an arbitrarily small )\, the budget C'(\) can be made arbitrarily large to ensure C'(\) > C'. As setting A = 0
makes the cost function C'(0) go to infinity, in practice the initial lower bound )\l(l) can be set to an arbitrary
small value such as a small multiple of the machine precision. When the algorithm is implemented that way,
the step 4] of Algorithm 1 is superfluous, as Neyman-Tchuprow allocation will be found as a special case of

the more general problem that it solves.

3. Example: ethnicity in the North-Eastern region of the U.S.

In this example, we shall demonstrate the technique in an application to the proportion of persons of Hispanic
ethnicity in the Northeastern region of the United States. The population parameters obtained from the 2014
American Community Survey data are given in Table|[I] and states are considered to be the sampling strata.
The population variances are those of the binary indicator of being Hispanic, S,% = pp(1 — pp). Larger
states with bigger cities have higher proportions of Hispanics. This population shows both large differences

in strata sizes and strata variances.

3.1 Allocations that account for unequal variances

Suppose that a sample of size n = 1, 000 is to be taken from this population, and the data collection costs are
the same across strata: C' = 1,000; ¢, = 1 for all h. The starting point is the Neyman-Tchuprow allocation,
which can also be thought of as the allocation with the minimal sample size requirement of m; = 1. The
smallest sample size is ng = 5 for the smallest state of Vermont. Note that in this case, the solution can be

obtained via the proposed algorithm, albeit A* < A.
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Table 1: Hispanic ethnicity, Northeastern region of the U.S.

Total pop  Hispanic pop % Hispanic S}QL
Connecticut (CT) 3,592,053 512,795 14.28% 0.12238
Maine (ME) 1,328,535 18,592 1.40% 0.01380
Massachusetts (MA) 6,657,291 681,824 10.24% 0.09193
New Hampshire (NH) | 1,321,069 40,301 3.05% 0.02958
New Jersey (NJ) 8,874,374 1,649,784 18.59% 0.15134
New York (NY) 19,594,330 3,559,644 18.17% 0.14866
Pennsylvania (PA) 12,758,729 784,562 6.15% 0.05771
Rhode Island (RI) 1,053,252 139,832 13.28% 0.11514
Vermont (VT) 626,358 10,226 1.63% 0.01606

The solutions for mj; = 20, 50 and 100 are also demonstrated in the table. As the sample size require-
ments increase, the constraints become binding for the smallest states, with their respective ¢;,(\) values be-
coming zeroes. Finally, for the most demanding allocation problem with mj, = 100, only n—>_, mj, = 100
cases can be freely allocated, and they are all allocated to the largest state of New York. Note that, as a frac-
tion of )\, the optimal value of the Lagrange multiplier \* moves from being a tiny fraction of A for the
Neyman-Chuprow mj, = 1 allocation to about 1/4 of the value of A for mj; = 100. In terms of the interpre-
tation of the Lagrange multiplier as the “shadow price” of a constraint, growing values of \* reflect that the
constraint features more and more prominently in the optimization problem as the increasing minimal strata
sample size requirements become more restrictive. This is also highlighted by the “% free” row that shows
the sample sizes in the states that are freely allocated with nonzero values of ¢;. Finally, the design effect
row provides the comparison against the variance attained by the Neyman-Tchuprow allocation. Higher
values of the design effects indicate the sacrifices that the sampling design makes in order to satisfy the

minimal sample size constraints.

3.2 Allocations that do not account for unequal variances

If the tentative survey is an omnibus, the strata variances can be set to be equal (say to 1), and the resulting
allocation without constraints is the proportional allocation. For this particular population, it provides larger
sample sizes to the states that have the proportion of Hispanic population that is lower than the overall
population one.

If the same strata-specific sample sizes are imposed as in the previous section, the resulting optimal
designs are provided in Table[3] Design effect DFFF1 measures efficiency losses relative to the proportional

allocation, and design effect DEFF2, relative to Neyman-Tchuprow allocation.
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Table 2: Sampling designs with minimal sample size requirements.

Neyman-Tchuprow myp, = 20 myp, = 50 myp, = 100
(mp =1)

th(N) nh th(A)  nn o t(N) np te(A) my
CT 67.87 69 46.49 67 781 58 0 100
ME 7.55 9 0 20 0 50 0 100
MA 109.62 111 86.80 107 42.86 93 0 100
NH 11.45 13 0 20 0 50 0 100
NJ 188.21 190 162.67 183 108.84 159 0 100
NY 413.06 415 379.73 400 297.58 348 99.61 200
PA 166.98 168 142.17 163  91.01 142 100
RI 18.59 20 0 20 50 100
VT 3.35 5 0 20 50 100
Total 1000 1000 1000 1000
% free 100% 92% 80% 10%
DEFF 1 1.023 1.152 1.688
A 2.02-1076 5.06 - 107 8.09-10710  2.02-10710
A\* 1.069 - 10~ 1.15-1077 1.52-1077 4.60-1077
A 0.0183 4.58-107° 7.33-1076 1.83-10°6
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Table 3: Sampling designs with minimal sample size requirements.

Proportional my, = 20 myp, = 50 myp, = 100
(mp =1)

th(N) np th(A)  np th(N) mp o (A g
CT 63.14 64 4352 64 560 56 0 100
ME 2272 23 349 24 0 50 0 100
MA 117.88 118 9771 118 53.05 104 0 100
NH 2259 23 336 24 0 50 0 100
NJ 157.47 158 13692 157 8737 138 0 100
NY 348.89 349 32647 347 25332 304 181.07 182
PA 226.83 227 205.60 226 147.50 198 11791 118
RI 17.81 18 0 20 0 50 0 100
VT 10.18 11 0 20 0 50 0 100
Total 1000 1000 1000 1000
% free 100% 96% 80% 20%
DEFF1 1 1.004 1.096 1.573
DEFF2 1.055 1.063 1.191 1.730
A 1.26-107% 3.15-1077 5.04-1078 1.26-1078
\* 1.01-1076 1.03-10°6 1.34-10°6 3.76-107°
A 0.1233 3.08-107% 4.93-107° 1.23-107°
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4. Discussion

The presented work builds a foundation for a number of extensions.

First, sample size requirements may be given by the stakeholders for some but not all strata. To accom-
modate such a set of sampling design requirements, dummy constraints my; = 1 can be introduced for such
strata, as demonstrated by the first column of Tables 2H3|

Second, most practical sampling designs are those in which sampling is taken without replacement
(SRSWOR). The differences between SRSWR and SRSWOR are immaterial when sampling fractions are
small. In the optimization problem considered here, incorporating sampling with replacement would require

modifying the objective function () to

HW252 11
hZ:l h h<n7h_ﬁh>’

and boils down to an additive constant that does not affect the solution. In other words, the case of SR-
SWOR with strata, or even a mix of SRSWR in some strata and SRSWOR in others, is fully covered by the
results and methods of this paper. We chose to only present SRSWR simply because the formulae are more
compact.

Finally, more complex sampling designs within strata can be incorporated if they produce contributions
to the variance that scale exactly as V}, /ny, for some fixed effective variance V;,. That is to say, if the sam-
pling designs within each stratum are cluster sampling designs, multiple frame designs, unequal probability
of selection designs, two-phase sampling designs such as those screening for a rare population, etc., that
produce a sample with a fixed design effect that does not depend on the overall nominal sample size ny, (at
least for a given variable of interest), then the proposed approach and Algorithm 1 can be utilized to arrive
at the optimal allocation. This covers the important case of BRFSS mentioned in the introduction, where the
two frames are the landline and cell phone random digit dialing. (ignoring the cell phone cases that reside in
states other than those that they were dialed in). Even if the complex designs are not scalable with a single
design effect per stratum, the presentation of the optimization problem and the algorithm as given in this

paper lay out the groundwork for the steps necessary to solve this problem.
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