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Abstract 
It is difficult to design a survey because prior information on response rates and the like is likely generated from a 
different random process than the target one governing the survey to be designed, and the impact on the properties of 
the estimator can be significant.  We are concerned with reducing the side effect of error-prone prior information on 
the precision of the estimator of the parameter of interest.  Nowadays, computer-assisted data collection methods 
provide an instant variety of observations on the target random process governing the survey under consideration. 
These data and paradata enable the survey producer to make decisions regarding the need for methodology-process 
revision, which involves consideration of both a model that represents how the target information relates to the prior 
information and the design that describes how the observations are obtained. We think of the prior and target 
information as a random process that has a joint distribution with some probability function. Then at each phase of data 
collection, after receiving the information that the target random process has taken specific values, we update the joint 
probability distribution, to revise the design specification in the course of the data collection period. A coefficient of 
reliability for a survey as a whole set of processes as well for a single process is also discussed. 

Key Words:  Adaptive design; Misclassification; Optimal resources allocation; Paradata; Partially observed units; 
Two sources of information. 

1. Introduction

Survey or census studies start with a collection of distinct units of interest; termed population. There are multiple 
random variables attached to each unit, as each holds their own individual characteristics and attitudes. Each particular 
study targets a small subset of these random variables and involves a questionnaire to collect the data of sampled 
respondents in order to draw inferences at the estimation stage about the parameter of interest. Measurements on these 
variables of interest are intended to be collected during data collection stage from each selected unit. 

At the planning stage of a survey the question of resources determination and allocation within stages of the survey 
design is a difficult and critical one. Survey developers must justify resources to be used, and the survey producer 
should review the justification to ensure the survey produces results within resources, quality and timing constraints. 
Efficiency is a very important issue because inefficient allocation may lead to: a) imprecise results; and b) waste of 
time, resources, and  money. To determine optimally : i) the duration of the survey; and ii) the amount of resources and 
their allocation within stages of the survey design, design pre-specification requires the following: a) specification of 
the parameter of interest, and the associated estimator to be used; b) specification of the desired precision or the global 
cost; c) specification of the cost function; d) specification of the precision function; e) obtaining prior information, 
from the sampling frame, administrative files, or from previous surveys, needed to compute unknown quantities in 
formulas for both precision and cost functions; and, f)  optimization of some utility function ‒ that perhaps involves 
both precision and cost functions.  

Suppose previous surveys suggest that the conditional probability of responding )(rqh  (in a time period) is constant over 
time, where the superscript " rq " stands for "response to questionnaire". When the conditional response probability )(rqh

is constant over time, then the marginal response probability over I  time periods is given by I)()(
;I )1(1 rqrq

k h . To reach 
a marginal probability of response close to 1 under constant conditional response probability, it will take around 17 
time periods when 5.)( rqh , and over 100 time periods when 1.)( rqh . Since collecting data over such a long data 
collection period is time consuming, costly and the results may vary from one time period to another, the way survey 
sampling handles the problem of capturing information from, or estimating parameters with respect to, finite 
population generated from such random processes is as follows: a) selecting a random sample of units from the 
population; and b) increasing level of efforts in term of follow-up treatments to improve units cooperation. Sampling is 
based on the idea that, within a certain margin of error, one can infer something about the parameter of interest from a 
small sample, as long as the sample is chosen at random. Efficient follow-up requires information on the error-free 
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target random process governing the survey under consideration. It is difficult to pre-specify the design for certain 
surveys because prior information is likely generated from a different random process than the one under 
consideration. A naive approach simplifies the problem under the assumption that resources should be big enough to 
have good estimates. However, often a survey has limited budget and timing, and those in turn, in combination with the 
resources allocation used within stages of the survey design based on prior information, determine the achievable 
precision. Nowadays, computer-assisted data collection methods provide an instant variety of observations about the 
target random process that can be used to revise survey design during the course of its data collection. Although, 
previous survey designs are mostly done deterministically using prior information, there is a wide spread need for 
responsive design where the design is revised during the data collection period. The intent of such revision is to reduce 
errors attached to design pre-specification on prior information grounds. Objectives of responsive design are 
formulated in Groves and Heeringa (2006). Starting with an expected design based on prior information, then, 
cumulative collected data can be used to: 1) update information used for design specification; and, 2) revise, if 
necessary, specification of the design at each phase of data collection.  Estimates with a certain margin of error can be 
obtained using few time periods, since prior information provides information about the joint probability distribution.   

Design pre-specification is a special case of measurement error which refers here to the case where the prior (or error-
prone) information, say χ , is not necessarily identical to the target (or error-free) information, say ψ , of the processes 
underlying the finite population. We assume that the assessment of  error in χ  can be carried out on the basis of 
observations on ψ . We also assume that the error-prone information χ  has a potential bias b  when used to estimate ψ
and that the error-free information ψ  has no error. Thus, the assessment of errors allows quantification of such bias. 
Under two random processes, we are interested in the error-free random variable ψ , knowing its probability density 
function, the probability density function of another random variable χ , together with the joint probability density 
function with vector parameter denoted by λ . We assume that census parameter 

Nλ associated with the vector model
parameter λ  is defined as solution to an estimating equation (EE) of the form 0ψsS(ψ  );,();, λχλχ kkk

, where 
k is 

the sum over all the population units. It is assumed that the sampling frame has no coverage bias. It is also assumed 
that values of the error-prone variable are available for all units in the population, while values of the error-free 
variable are unknown but observable. 

Once an estimate of λ , 
kψ , or of the parameter of interest is obtained, the question follows; what is the reliability of 

this estimate? In a general sense, reliability of an estimate refers to the degree to which the estimate is free from error 
and therefore truly measures the quantity which it is intended to measure. When reliability measures are available at all 
various stages of the survey process, they can serve as performance measures. Such measures enable the survey 
producer to make decisions regarding the need for methodology-process modification. As there is no general reliability 
measure that would capture all information on the impact of each stage of the survey design on the ultimate estimate, 
the survey producer tends to combine various measures to get a broader effect and interactions between different 
factors. A key step in defining reliability was the introduction of an error criterion that measures, in a probabilistic 
sense, the error between the desired quantity θ  and an estimate θ̂  of it. Possible sources of error in surveys include 
sampling frame, sampling scheme, nonresponse, measurement, disclosure-avoidance, etc. A criterion which is 
commonly used in judging the performance of an estimator θ̂  of a quantity θ  is its Mean Square Error (MSE) defined 
by })θθ̂{()θ̂( 2 EMSE , where E  denotes total expectation under random processes involved. We can also interpret this 
via the MSE decomposition. For any random variable z , we have 222 )}({})]({[)( zEzEzEzE  . Applying this to 

θθ̂ z  we get 
222 )}θθ̂({})]θθ̂()θθ̂{[(})θθ̂{(  EEEE . (1.1) 

The first term of (1.1) is the variance of θθ̂  . It is the error of the estimator due to the random processes involved. The 
second term of (1.1) is the square of the bias of θ̂ , the best one can do is make this zero. 

In an attempt to discuss side effect reduction of prior information on the ultimate estimator, our work below is 
organized as follows: in Section 2 stochastic models underlying nonresponse follow-up strategy, mode of data 
collection, and response behaviour are presented; in Section 3, basic ingredients for designing a survey are defined; in 
Section 4, design pre-specification and revision in the course of data collection is studied; in Section 5, estimator of the 
regression parameter as well as estimator of the parameter of interest are derived; in Section 6, surveys requiring units 
contactibility and eligibility identification are briefly discussed; and, in Section 7, a reliability coefficient is discussed. 
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2. Stochastic Models

To revise the survey design in discrete intervals, we divided the continuous time of the entire data collection period 
into a sequence of continuous time periods: 1, 2, and so on, and let's minI  denote the minimum length of data collection 
period to obtain full responses. Suppose the survey limited length of duration of data collection is made up of maxP
phases, the thp being of size pn time periods, so that the limited duration of data collection is made up of p

P
1pmax

maxI n

time periods, with minmax II  . So we shall be dealing with maxPN  rectangular array of phases of data collection, where 
N is the size of the finite population. In this Section, we consider stochastic models for nonresponse follow-up 
strategy, mode of data collection, and response behaviour. Such models are based on the paradigm of a random 
experiment modeled by a probability measure on an underlying sample space; i.e., an experiment whose outcome 
cannot be predicted with certainty, before the experiment is run.

2.1 Nonresponse Follow-up Strategy Model 
Suppose we have S  nonresponse follow-up strategies, and define a vector of strategy indicator variables as 1)(

;p| f

ksJ  if 
unit k  is assigned to strategy s  at phase p , and 0)(

;p| f

ksJ  if not, where  Tf

kS

f

k

f

k JJ ),...,( )(
;p|

)(
;p|1

)(
p;| J are realizations of 

independent distributed variables according to a multinomial distribution, ),1( )(
;p|
f

kSMult φ , )(),...,( )(
;p|

)(
;p|

)(
;p|1

)(
;p|

f

kf

Tf

kS

f

k

f

k E Jφ    is 
the vector of strategy probabilities with 1)(

;p|1  

f

ks

S

s  , fE denotes expectation under the strategy allocation model, and the 
superscript " f " stands for "follow-up". We consider the thS strategy as an omitted or reference strategy. For the 
multinomial logistic regression model, logits of the first 1S  strategies are constructed with the reference strategy in 
the denominator 

p|;p|
)(
;p|

)(
;p| )/log( ηvT

kf

f

kS

f

ks  , 1,...,1  Ss , 
where kf ;p|v  is the 1)1(

p| fq  vector of explanatory variables and TT

S

T ),...,( p|)1(p|1p|  ηηη is the 1)1()1(
p|p|  Sqq ff  unknown vector 

parameter to be estimated. It follows that the S  conditional probabilities given the vector of explanatory variables are 
1

p|;p|
1
1

)(
;p| )}exp(1{ 

 s

T

kf

S

s

f

kS ηv , 
and for 1,...,1  Ss  )exp( p|;p|

)(
;p|

)(
;p| s

T

kf

f

kS

f

ks ηv  . 
Let's )(

;p|
)( f

ks

t c and )(
;p|

)( f

ks

e c denote respectively the error-free and error-prone cost associated with follow-up strategy s

( Ss ,...,1 ) for unit k  during phase p , where the superscripts " t " and " e " stand for "error-free" and "error-prone" 
respectively. 

2.2 Data Collection Models 
Similarly, suppose we have M  modes of data collection, and define a vector of error-free data collection mode 
indicator variables as 1)(

;
)( dc

km

t J  if unit k  uses mode m , and 0)(
;

)( dc

km

t J  if not, where Tdc

kM

tdc

k

tdc

k

t JJ ),...,( )(
;

)()(
;1

)()()( J are 
realizations of independent distributed random variables according to a multinomial distribution, ),1( )()( dc

k

t

MMult φ , 
)(),...,( )()()(

;
)()(

;1
)()()( dc

k

t

dc

Tdc

kM

tdc

k

tdc

k

t E Jφ    is the vector of data collection mode probabilities with 1)(
;

)(
1  

dc

km

tM

m  , and 
dcE denotes

expectation with respect to the data collection model. We consider the thM mode as a reference mode. For the
multinomial logistic regression model, logits of the first 1M  modes are constructed with the reference mode in the 
denominator 

m

tT

kdc

dc

kM

tdc

km

t αv )(
;

)(
;

)()(
;

)( )/log(  , 1,...,1  Mm , 
where kdc;v  is the 1)1( dcq  vector of explanatory variables and TT

M

tTtt ),...,( 1
)(

1
)()(

 ααα is the 1)1()1()(  Mqqt

dcdc  unknown vector 
parameter to be estimated. It follows that the M  conditional probabilities given the vector of explanatory variables are 

1)(
;

1
1

)(
;

)( )}exp(1{ 

 m

tT

kdc

M

m

dc

kM

t αv , 
and for 1,...,1  Mm  )exp( )(

;
)(

;
)()(

;
)(

m

tT

kdc

dc

kM

tdc

km

t αv  . 

Similarly, the vector of error-prone data collection mode indicator variables Tdc

kM

edc

k

edc

k

e JJ ),...,( )(
;

)()(
;1

)()()( J  are realizations of 
independent distributed random variables according to a multinomial distribution, ),1( )(

k

e

MMult φ , 
)(),...,( )()()(

;
)()(

;1
)()()( dc

k

e

dc

Tdc

kM

edc

k

edc

k

e E Jφ    is the vector of probabilities with 1)(
;

)(
1  

dc

km

eM

m  . The error-prone data collection mode 
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for unit k  is characterized by the matrix )()|( dc

k

te Φ  which consists of the conditional probability )(
;|

)|( dc

kji

te   of assigning mode 
i given that unit k should have been assigned mode j defined by its components 

)1|1Pr( )(
;

)()(
;

)()(
;|

)|(  dc

kj

tdc

ki

edc

kji

te JJ . 
The marginal distribution of )(

;
)( dc

ki

e J  is: 
)(

;
)()(

;|
)|(

1
)(

;
)()(

;
)( )1Pr( dc

kj

tdc

kji

teM

j

dc

ki

edc

ki

e J   , Mi ,...,1 , 
where 1)(

;|
)|(

1  

dc

kji

teM

i  . We consider the thM  mode as the reference mode. For the multinomial logistic regression model, 
logits of the first 1M  conditional modes are constructed with the reference mode in the denominator 

αv )(|
;

)(|)(
;|

)|()(
;|

)|( )/log( jT

kdc

jdc

kjM

tedc

kji

te  , 1,...,1  Mi , 
where kdc

j

;
)(| v  is the 1)(| qj  vector of explanatory variables, TTjMTjj ),...,( )|1()|1()(| ααα   and TTMTe ),...,( )(|)1(|)( ααα   is the 1)( dc

e q

unknown vector parameter to be estimated, with )1()(|
1

)(   Mqq jM

jdc

e . It follows that the M  conditional probabilities of 
each mode given mode j  and the vector of explanatory variables are 

1)(|
;

)(|1
1

)(
;|

)|( )}exp(1{ 

 m

jT

kdc

jM

m

dc

kjM

te αv , 
and for 1,...,1  Mm  )exp( )(|

;
)(|)(

;|
)|()(

;|
)|(

m

jT

kdc

jdc

kjM

tedc

kjm

te αv  . 
Let's )(

;
)( dc

km

t c  and )(
;

)( dc

km

e c  denote respectively the error-free and error-prone cost associated with data collection mode m

( Mm ,...,1 ) for unit k . 

2.3 Response Models 
Let )()( rqa t  represent the discrete random variable that indicates the time period i  when the response occurs under 
random process a  with }|,,{ tetea  for a randomly selected unit from the sample, where e , t , and te |  are used to 
indicate error-prone, error-free and conditional random processes respectively. After P  phases (or equivalently 

p
P

1pPI n  time periods) of data collection, each unit k  is observed from the )(dc

ke  time period until the period k

a

;P
)( I , with

P;P
)( II k

a , where )(dc

ke  denotes the entry time period for unit k  into data collection window. Usually )(dc

ke  equals 0. 
Observation of the unit could be discontinued for two reasons: 1) the unit responds; or 2) the phase P  of data collection 
ends. In the first case, k

arq

k

a t ;P
)()()( I . In the second case, it is only know that P

)()( Irq

k

a t . Units with P
)()( Irq

k

a t  are right-
censored ‒ it is unknown when they respond. Note that )()( rqa t  is defined only when the unit will respond eventually 
using appropriate follow-up strategy. Since censoring is planned and observation is terminated at the end of data 
collection, the censuring mechanism is noninformative (Lagakos, 1979) in the sense that the act of censoring imparts 
no information about the response mechanism. The overall response indicator from the )(dc

ke  to the PI  time period, with 

P
)( Idc

ke , is given by )()(I

1
)()(I

1
)(

;P
)( ;P

)(
;P

)( )1(1 rq

ki

a

ei

rq

ki

a

ei

rq

k

a rrr k

dc
k

k

dc
k 

 , where )()( rq

ki

a r is a sequence of response indicators defined 

for each unit k  whose values are defined as 1)( rq

ki

(a)r if the unit does respond in period i , and 0)( rq

ki

(a)r  if the unit does
not respond in period i . Because response occurrence is intrinsically conditional, Demnati (2015) characterized )()( rqa t  
by its conditional probability function ‒ the distribution of the probability that a response will occur in each time period 
given that it has not already occurred in a previous time period ‒ known as the discrete-time hazard function. Discrete-
time hazard, ),( )(

;
)()()( βv a

krq

arq

ki

a h , )()( rq

ki

a h  for short, is defined as the conditional probability that unit k  will respond in time 
period i , given that the unit did not respond prior to i : 

)|Pr( )()()()()()( itith rq

k

arq

k

arq

ki

a  , 
where krq

a

;
)( v  refers to both time-invariant and time-varying explanatory variables and β)(a is the unknown 1)( rq

a q

vector parameter to be estimated. For unit with it rq

k

a )()( , the probability of obtaining a response at time period i  could 
be expressed in terms of the hazard as 

)1()Pr( )()(1
1

)()()()(
)(

rq

kj

ai

ej

rq

ki

arq

k

a hhit dc
k

 


. 

For units with it rq

k

a )()( , the probability of obtaining a response can be expressed as 
)1()Pr( )()(

1
)()(

)(
rq

kj

ai

ej

rq

k

a hit dc
k




. 
After P  phases of data collection, we have 

)(
;I

)(1
;P

)()()(
;P

)()()()()(
P

)()()()(

)}I{Pr()}I{Pr()( rq

k

a

k

arq

k

a

k

arq

k

arq

k

a gtttg
dc

k
adc

k
a


  , 
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where 1)()( dc

k

a   if unit k  is uncensored (responds) and 0)()( dc

k

a   if unit k  is censored under process a . When unit k  is 
censored, it is unknown when the unit responds. The joint distribution of ),(

)()( )()( rqrq

k

t

k

e tt  is characterized by the matrix 
)()|( rq

k

te G  defined by its components 
  )|Pr(

)()( )()()(
;|

)|( jtitg
rqrq

k

t

k

erq

kji

te  , P
)( I,...,1,  dc

keji . 
The marginal distribution of )()( rq

k

e t  is: 
 )(

;
)()(

;|;I
)|(I

1
)(

;I
)(

P
P

)(P

rq

kj

trq

kjk

te

ej

rq

k

e ggg dc
k 

 , P
)(

;P I,...,1I  dc

kk e . 

The marginal probability of obtaining a response from the )(dc

ke  to the PI  time period is given by 
 )Pr()1(1 )()(I

1
)()(I

1
)(

;P
)( P

)(
P

)( ith rq

ki

a

ei

rq

ki

a

ei

rq

k

a
dc

k
dc

k




 . 
 
2.4 Modeling Sample Selection Probability 
For sampling, we parameterize the probability of selection as )}exp(1/{)}exp({ ;;  T

k

T

kk ublb   vv , where lb  and ub  are 
respectively the lower and upper bounds with 10  ublb , 

k;v  is the 1q  vector of explanatory variables and   is the 
1q  unknown vector parameter to be determined. Unlike the customary probability of selection 

kkc np; , where n  is 
the expected sample size and 

kp  is a measure of size, this expression for 
k  fulfill the two criterions: : a) 

10  ublb k ; and b) ubk   as Nn . It is common practice to set )1,0(),( ublb .  
 

3. Basic Ingredients for Designing a Survey 
 
In this Section, we elaborate on each step of the technical steps mentioned in the introduction. These steps are required 
in designing a survey. We consider examples of parameter of interest and an associated estimator, a precision function, 
a cost function, and an utility function. 
 
3.1 Parameter of Interest 
We assume that census parameter )(ψΘN

 associated with the variable of interest ψ  is defined as solution to an EE of 
the form  
 0ΘvΘψsΘS(ψ  )();(); kk

, (3.1) 
where the known function );( Θψs k

 is a 
q -dimensional vector-valued function of 

kψ  and the known function )(Θv  
allows for explicitly defined parameters. For linear and logistic regression models, ))(();( ΘΘψs T

kkkkk y xx   and 
0Θv )( , where )()( yEy

T

k Θx , T

qxx ),...,( 1 
x  is a 1q  vector of explanatory variables, T

q ),...,( 1 
Θ  is the 

1q vector of model parameter and yE  denotes model expectation on the variable of interest y . For the special case of 
the finite population total 

kk yY  , 
kk y);( Θψs , )()( ψΘv N , and YN  )(ψ . The finite population parameter )(ψΘN

, 
obtained as the solution of (3.1), under the assumed ideal situation which consists of census case with complete 
response and without any measurement error, plays the role of a "gold standard".  
 
3.2 Estimator of the Parameter of Interest 
Suppose that the response probability, )( )(

;P
)(

;P
rq

kr

rq

k rE , during P  phases of data collection, is known for every unit in the 
population, where )(

;P
rq

kr  is the overall response indicator for unit k , and 
rE  denotes expectation under the response 

mechanism. For general sampling design with known positive inclusion probabilities, 
k , a design-response unbiased 

estimator of the EE defined by (3.1) is given by  
 0ΘvΘψsΘ(ψS  )();()/)((); )(

;P
)(

;P k

rq

k

rq

kkk rd 


, (3.2) 
where 

kkkd /)(1)(   are the design weights, )(1)(1  kk
 is the sample   membership indicator variable for unit k , 

)(1 condition  is the truth  function, i.e., 1)(1 condition  if the condition is true and 0)(1 condition  if not, )}(1{   kk E  is the 
sample   inclusion probability for unit k , and E  denotes expectation with respect to the sampling design. The 
solution obtained by a Newton-Raphson-type iterative method gives the estimator )(P ψΘ


 of )(ψΘN

.  
 
3.3 Derivation of the Variance Function 
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We assume that P  phases of data collection are completed, with maxPP1  , and we consider for illustration the simple 
estimator )(;P ψΘ k


 of )(ψΘN

 solution to (3.2). We first consider the derivation of the variance of a compact form given 
by 
 )(

;P)(ˆ rq

kkkk rd  uU , (3.3) 
where 

ku  is a vector of constants. We may decompose the variance of Û  as 
 )()ˆ()ˆ()ˆ( uVVVUUU   rrr EVarVarE=Var , (3.4) 
where 

Var  and 
rVar  denote variance with respect to sampling design and response mechanism respectively. 

Under independent mechanism on kr ;P , the first component )ˆ(UV rr VarE  of )ˆ(UVar  given by (3.4) is given by 
 T

k

rq

k

rq

kkkkr uu )1()/1( )(
;P

)(
;P  V . (3.4a) 

The second component })({ )(
;P
rq

kkkk dVar   uV  of )ˆ(UVar  given by (3.4) is given by 
 T

l

rq

l

rq

kkklkllk uu )(
;P

)(
;P

1 )1(   

V , (3.4b) 
where 

lkklkl  1 , 
kkkk    and )}(1)(1{   lkkl E . The sum of (3.4a) and (3.4b) constitutes 

 VVV r)(u , the 
variance of Û  given by (3.3).   
 
It follows that the compact form given by (3.3) can be used to derive the linearization variance )}({ P ψΘ


LVar  of )(P ψΘ


 

using )(
;P

1 /))(;())}(({ rq

kNkNk ψΘψsψΘJ u , where ΘΘψSΘJ  /);()( T . It is easily shown that, under stratified simple 
random sample and Poisson sampling, we can express the linearization variance )}({ P ψΘ


LVar  of )(P ψΘ


in the separate 

form as 
 }/{)(/)()()}({ )(

;P;;0P
rq

kkkrkkkkLVar  ψψψψΘ   vvv


, 
where )(0 ψv , )(; ψkv , and )(; ψkrv  are functions independents of 

k  and )(
;P
rq

k . We denote in operator notation the 
estimator )(P ψΘ


 and its linearization variance )}({ P ψΘ


LVar  by )}(,{ ψAΘ λ


 and )}}(,{{ ψAΘ λ


LVar  respectively, where )(ψA  

is an N -column matrix with thk  column 
kψ . 

 
3.4 Specification of the Cost Function 
We may decompose the global cost over P  phases of data collection as 
 p

P
1pP)( CC  , (3.5) 

with maxPP1  . The P  components of the global cost are 
 )(

1
)(

1
)(

111
dcf CCCcC   , 

and for P,...,2p   )(
p

)(
ppp

dcf CCcC  , 
where )()(

1 )(1   kkk cC  is the component associated with sampling cost, )(
;p|

)(
;p|1

)(
;1-p

)(
p )1)((1 f

ks

f

ks

S

s

rq

kkk

f cJrC   is the 
component associated with nonresponse follow-up cost for phase p , with 0)(

;0 rq

kr , and 
)(
;p|

)(
;p

)(
;|1

)(
;p|1

)(
;1-p

)(
p )1)((1 dc

km

rq

k

dc

ksm

M

m

f

ks

S

s

rq

kkk

dc crJJrC    is the component associated with data collection cost for phase p . Here  pc  
is the fixed cost for phase p , and )(

kc  is the sampling cost for unit k . 
 
3.5 Specification of the Utility Function 
Suppose guessed values pλ  and )( pψA are available for λ  and for )(ψA  respectively. To create a design in the case of 
one parameter of interest,  we minimize the linearization variance, )}}(,{Θ{ pp ψAλ


LVar  subject to constraints on the 

duration of the data collection and on the conditional expected global cost: maxPP1   and maxpp )}(,{ CCC ψAλ , where 
)}(,{ pp ψAλCC  denotes the conditional expectation of the cost function P)(C  given by (3.5), and maxC  is the survey global 

cost limit. 
 
In the case of )1(  parameters of interest, let 

Θ  denote the parameter of interest  ,  ,...,1 . To create a design, we 
optimize the conditional expected global cost given by )}(,{ pp ψAλCC  subject to constraints on the duration of data 
collection and on   variances:  
 maxPP1  , 
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and  ;ppp V)}}(,{Θ{ ψAλ


LVar ,  ,...,1 , 
where ;pV  are specified tolerances, and )}}(,{Θ{ pp ψAλ


LVar  is the linearization variance of the estimator )}(,{Θ pp ψAλ


 for 

the th  parameter of interest  ,...,1 . For example, one could specify an upper limit, ;p , on the coefficient of 
variation of )}(,{Θ pp ψAλ


 so that 2

pp;p;p }})}(,{ΘE{{V ψAλ


 . One may repeat the optimization process with different 

value of ;p   ,...,1  to obtain the desired minimum cost. 
 

4. Design Pre-specification and Revision 
  
The complete data for sampled unit k  is given by TT

k

T

k ),( χψ , where 
k

t

k )(ψ , 
k

e

k )(χ , 
TT

k

T

k

T

k

Tdc

k

dc

kkk ),,,,,I( )()()()()()()()()( cvyJ    , TTdc

k

Tf

kk ),( )()()()()( ccc   , and },{ et . The vectors parameter associated with the 
marginal distributions of 

k )(  is TT

c

T

y

TT ),,,( )()()()()( γγβαλ   , where yγ
)(  is the vector parameter associated with the vector 

of variables of interest y)( , and 
cγ

)(  is the vector parameter associated with  the vector cost c)( . We set λλ )(
0

)( et   and 
kk χ;0ψ  for design pre-specification. In this Section, we discuss survey design pre-specification, and the Observation-

Revision-Optimization steps for design revision in the course of its data collection period. 
  
4.1 Pre-specification of the Survey Design  
Suppose guessed values are available for design pre-specification. Since the above global cost given by (3.5) under the 
models comes from what we think of as random, we consider its expectation under the sampling design and models for 
strategy, mode and response behaviour, given by 
  )}(,{)}P({ p

P
1p ψAλCCCCE  

. (4.1) 
The P  components of the expected global cost are 
 )(

1
)(

1
)(

111
dcf CCCcC   , 

and for P,...,2p   )(
p

)(
ppp

dcf CCcC  , 
where )()(

1
  kkk cC  , )(

;p|
)(
;p|1

)(
;1-p

)(
p )1( f

ks

f

ks

S

s

rq

kkk

f cC   , and )(
;p|

)(
;p

)(
;|1

)(
;p|1

)(
;1-p

)(
p )1( dc

km

rq

k

dc

ksm

M

m

f

ks

S

s

rq

kkk

dc cC    , with 0)(
;0 rq

k . 
 
To create a pre-design using guessed values 0λ , and )( 0ψA , the conditional expected cost )}(,{ 00 ψAλCC , and the 
variance )}}(,{{ 00 ψAΘ λ


LVar , we determine the optimal P ,  , and η  by optimizing the utility function. We denote the 

solution by  , 0P  and 0η , then we draw the sample   using  . 
 
4.2 Revision of a Design in the Course of its Progress 
Our method basically consists of a series of optimizations using additional information on the error-free target random 
process. After optimization using additional information from a certain phase of data collection is completed, the result 
indicates if the active design should be revised. We do not, therefore, use a fixed design, although an expected design is 
always specified in the survey design. Starting with an expected pre-specified design, then for ,...2,1p   design update is 
made using the Observation-Revision-Optimization (ORO) steps: 
 Observation Step: Obtain next phase p  of observations on the error-free process. 
 Revision Step:  

 Maximization: Update 1pλ  to get pλ  using pD  and the update step given in Subsection 4.3, where pD  denotes all 
observed information until the end of phase p  of data collection. 

 Imputation: Impute missing values of each component ψ  of ψ  to get ),|ψ(ψ ppψ;p λDkk E , where ψE  denotes 
expectation with respect to the random process governing the component ψ . Note that kk ψψ ;p   when item 

kψ  is 
observed. 

 Conditional Expectation of the Cost Function: Compute the conditional expectation of the global cost to get 
)}(,{ pp ψAλCC  

 Conditional Expectation of the Precision Function: Compute the conditional expectation of the variance to 
get )}}(,{{ pp ψAΘ λ


LVar . 

 Optimization Step: 
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 Determine the optimal P , and η  conditional on  , )(
;1-p|

)(
;1| ,..., f

k

f

k JJ , )(
;1-p

rq

kr , pλ , and )( pψA  under the usual constraints 
and the following additional constraint maxPPp  , using )}(,{ pp ψAλCC  and )}}(,{Θ{ pp ψAλ


LVar . The solution is 

denoted by pP , and pη . 
The three steps are repeated until pPp  . 
 
4.3 Revision ‒ Maximization Step 
When the duration of data collection period is taken into account, the likelihood function of the joint distribution under 
census data is defined for unit k  as 
 ),()( )I(

I
)I(

;I
min

min
min

min kkk fL χλ ψ , (4.1) 
where the subscript I  in )()I(

I
min ζf  denotes that ζ  is observed during the interval ]I,0[ . Hence when data collection 

period is taken into account, the census case means that minII   and 1)(1)(  kkkd  . To simplify our notation we 
drop the superscript minI , and write (4.1) as ),()(

minmin I;I kkk fL χλ ψ . After observing pI  time periods of data collection, the 
joint observations on χ , and ψ  are known for respondents during the pI  time periods, while only observations on χ  
are known for nonrespondents during the rest of the periods. Consequently, we decompose the likelihood of observed 
data for unit k  in two parts 
 )|()()(

pmaxp II;I kkkk ffL χχλ ψ , (4.2) 
in which case the log-likelihood is given by 
 )|(log)(log)(

pmaxp II;I kkkk ff χχλ ψ , (4.3) 
where 

kkkk dff ψψ ),()(
maxmax II χχ  , and )(/),()|(

ppp III kkkkk fff χχχ ψψ  . Note that ),()|()(
maxpmax III kkkkk fff χχχ ψψ   as maxp II  . 

In arriving to (4.2), we decomposed χ  in two parts: TTT

e
dc

k

),( ]I,1I[]I,[ maxpp
)(  χχχ , where 

]I,[ p
)(dc

ke
χ  denotes observation during the 

interval ]I,[ p
)(dc

ke , while ]I,1I[ m axp
χ  denotes observation during the interval ]I1,[I maxp  . The joint distribution is given by 

 )|()()|()|()(),,(),(
]I,[]I,[]I,[]I,1I[]I,[]I,1I[]I,[ p

)(
p

)(
p

)(maxpp
)(maxpp

)( dc
k

dc
k

dc
k

dc
k

dc
k eeeee

fffffff χχχχχχχχχ ψψψψ  
. 

Taking the derivatives of (4.3) and adjusting for unequal probability of selection, we get the weighted EE  
 0ψssψS  )}|;();(){();,(ˆ

pmaxp III kkkkk d χλλχλχ , (4.4) 
where λχλχ  /)(log);(

maxmax II kk fs  and λχχλ  /)|(log);(
pp II kkkk f ψ|ψs . 

The estimator pλ̂  of λ  is obtained using the following update step. 
Update Step of λ : Starting with a guessed value, 1-p

)0( λλ  , then for ,...2,1b  updates are made using 
 );,(ˆ)}(ˆ{ )1(

I
1)1(

I
)1()(

pp

  bbbb λχλλλ ψSJ ,  

where λλχλ  /);,(ˆ)(ˆ
pp II ψSJ T . The solution to (4.4) gives the estimator pλ̂  of λ .  

 
To update only the vector  parameter β  associated with the response mechanism after observing p  phases of data 
collection, we set )()( rq

k

e

k tχ , )()( rq

k

t

k tψ , βλ  , 
 

)(
;

)(

}{)( )(
;

)()(
;|

)|(I
1

I
1I

rq
ki

e trq

kj

trq

kji

te

jik ggf  χ , 

and 
)(

;
)()(

;
)(

pp

p
}{),( )(

;
)()(

;|
)|(I

1
I

1I

rq
kj

trq
ki

e ttrq

kj

trq

kji

te

jikk ggf  χψ , 
where )(1 )()()(

;
)( itt rq

k

arq

ki

a   for maxI,...,1i . 
 
After observing the first phase of data collection, the joint distribution is given by )|()(),(

1max II χχχ ψψ fff  , and the 
conditional distribution of ψ  given χ  is given by  

 )(
)(

)|(
)|(

1

1

1

1 I
I

I
I ψ

ψ
ψ f

f

f
f

χ
χ

χ  , 

where the factor )}(/)|({
11 II χχ ff ψ  represents the impact of the error-prone information χ  on the distribution of the 

target error-free information ψ . After observing two phases of data collection, we may decompose the conditional 
distribution as  
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 )|(
)|(

),|(
)|()|(

]I,1[]I,1I[

]I,1[]I,1I[

]I,1I[]I,1[]I,1I[

II
1

)21

1
)21

211
)21

12 





 dc
k

dc
k

dc
k

e

e

e
f

f

f
ff ψψ

ψ

ψψ
ψψ

χ

χ
χχ , 

where the factor )}|(/{)},|({
]I,1[]I,1I[]I,1I[]I,1[]I,1I[

1
)21211

)21  dc
k

dc
k ee

ff ψψψ χχ  represents the partial impact of the information ]I,1I[ 21
χ  

during phase 2 on the conditional distribution of ]I,1I[ 21
ψ  during phase 2 given observation 

]I,1[ 1
)


dc
ke

ψ  during phase 1, 

provided 1
) Idc

ke . 
 
4.4 Revision ‒ Imputation Step 
Our interest here is in estimating the variable ψ  by an estimator θ  using the well known mean square approach. One 
may estimate the unknown quantity ψ  as follows: a) set the lost function to the square error 2)θψ()θψ,( SE ; then, b) 
pick estimate θ  to minimize )}ψ,θ({ψ SEE . If all of the available information on ψ  is summarised in its distribution 

)ψ(f , then we need to solve ψ)ψ()θψ(min)}ψ,θ({min 2

θψθ
dfSEE  . Differentiating with respect to θ  gives the optimal 

estimate )ψ(θ ψE . Thus, the case of no additional information the minimum MSE estimator is simply the expected 
value )ψ(θ ψE . When we have additional information in the form of observed information χ  that is related somehow 
to ψ . We could use that information to get a better estimation than its mean. A simple model assumes that b ψχ , 
where b  is a random variable that represents error. Suppose that ψ  and b  are independent, ψ  has a normal distribution 
with mean ψ  and variance 2

ψ , and b  has a normal distribution with mean 0 and variance 2
b . Then the conditional 

expectation of ψ  given χ  is )/()χ()χ|ψ( 22
ψψ

2
ψψψ bE   , and the conditional variance of ψ  given χ  is given by 

)}/(1{)χ|ψ( 22
ψ

2
ψ

2
ψψ bVar   . When the variance of the error is smaller, ψ  becomes closer to χ , i.e. )χ|ψ(ψVar  

becomes closer to 0. Hence, the conditional variance of ψ  given χ  decreases as χ  becomes closer to ψ . More 
generally, if the form of the joint distribution )ψχ,(f is known, then our estimator of ψ  given χ  is of course some 
function of χ  , say )χ(θ  and our aim now is to minimize ψ)χ|ψ()}χ(θψ{min}]χ|)χ(θψ,{[min 2

)χ(θψ)χ(θ
dfSEE  . Exactly the same 

calculations as in the case of no additional information then show that )χ|ψ()χ(θ ψE , the conditional expectation of ψ  
given χ . The updated probability distribution of ψ  is the conditional probability distribution of ψ  given χ . If ψ  and 
χ  are independent, then all conditional expectation of ψ  are independent of χ , and coincide with the unconditional 
expectation )ψ(ψE . 
 
4.5 Revision ‒ Cost Conditional Expectation Step  
Consider for simplicity the case of 2P  . In this case, the global cost given by (3.5) reduces to 21P)( CCC  . After 
observing the first phase of data collection, the first part )(

1
)(

1
)(

111
dcf CCCcC    is known, while the second part 

)(
2

)(
222

dcf CCcC   is partially unknown; and the resulting conditional expected cost is given by 
 2111 )}(,{ CCCCC ψAλ , 
with  )(

2
)(

2122 )( dcf CCCCcCC  λ , 
where ))(()()1)((1 1

)(
;2|1

)(
;2|1

)(
;1

)(
2 ψAf

ks

f

ks

S

s

rq

kkk

f crCC λ , and ))(()()()()1)((1 1
)(
;2|1

)(
;21

)(
;|11

)(
;2|1

)(
;1

)(
2 ψAdc

km

rq

k

dc

ksm

M

m

f

ks

S

s

rq

kkk

dc crCC λλλ    . Note 
that the remaining cost is given by 1max CC  . 
 

5. Estimation 
 
5.1 Estimation of the Regression Parameter 
Once data collection is completed, observed values of the target information in combination with prior information 
values are used in the EE given by (4.4) at the estimation stage to get estimate of regression parameter.  However it 
may happens that prior information is ignored in the estimation stage, and only observed values of the target 
information are used. In this case, the likelihood for unit k  is given by 
 )()( P;P kk fL ψλ , 
Taking the derivatives of the log-likelihood, and adjusting for sampling unequal probabilities, we get the weighted EE 
 0ψsψS  );()();(ˆ

P λλ kkk d , (5.1) 
where λλ  /)(log);( P kk f ψψs . Starting with a guessed value, )0(λ , then for ,...2,1b  updates are made using 
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 );(ˆ)};(ˆ{ )1(
P

1)1(
P

)1()(   bbbb λλλλ ψSψJ ,  
where λλλ  /);(ˆ);(ˆ

PP ψSψJ T . The solution of (5.1) obtained by a Newton-Raphson-type iterative method gives the 
estimator λ̂  of λ)(t . Let's consider our case which consists on models for strategy, mode and response behaviour. Since, 
the mode of data collection is known for a unit that responds at any time of data collection, while it is unknown for a 
unit that is censored, the likelihood  for unit k  may be decomposed as 
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kk f
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LLfL
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Jλ  , 
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Jrq
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dc
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tfL



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rq

km

dc
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M

mkM
tfL
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


JJJ

, 

where TTTT ),,( βαηλ  , TTf

k

Tf

k

f

k ),...,( )(
P;|

)(
1;|

)( JJJ   is the stochastic process representing the evolution of nonresponse follow-up 
strategies over data collection phases, )(

p;|
f

kJ  indicates which follow-up strategy is assigned to unit k  at phase p , and 
)( )(

| )(
rq

km
tf f

kJ
 is )( )(rq

ktf  for mode m  of data collection under follow-up stochastic process )( f

kJ . It remains to specify the 

joint probability distribution of the random process TTf

k

Tf

k

f

k ),...,( )(
P;|

)(
1;|

)( JJJ  . It maybe informative in our context to use 
Markov chains model with S  states. Markov chains model is characterized by ‒ the probability of the next follow-up 
strategy depends only on the current follow-up strategy and not on the sequence of follow-up strategies that proceed it 
‒ the matrix which consists of the conditional probability defined by its components 
 )1|1Pr( )(

;p|
)(

;1p| 

f

kj

f

ki JJ , Sji ,...,1,  , and 1P,...,1p  . 
An excellent source of information on Marcov Chains estimation is the volume by Brémaud (1998). 
 
5.2 Estimation of the Parameter of Interest 
 Since the probability of response is unknown, estimated response probability )ˆ(ˆ

;P;P λkk    is used in the EE given by 
(3.2) to get  
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;P k
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k
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kkk rd  , (5.2) 
and the solution gives the estimator )(ˆ

P ψΘ  of )(ψΘN
. As noted by Rosenbaum (1987) and others, estimator )(ˆ

P ψΘ  
using the estimated response probability can be more efficient than estimator )(P ψΘ


 using the true response probability. 

 
If prior information values are used, then the likelihood for unit k  in given by 
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kk ffL ;P
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in which case the weighed EE is given by  
 0ΘψsΘsΘψS  )|;()ˆ/)(();();,(ˆ

Pmax I;P;PIP kkkkkkkk rd χχχ  , 
where ΘΘs  /)(log);(

maxmax II kk f χχ  and Θψ|Θψs  /)|(log);(
PP II kkkk f χχ . 

 
For the simple model defined in Section 4.4, where the vectors T

kk )ψ,χ(  are realizations of independent distributed 
random variables according to a bivariate Normal distribution, 
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6. Quick Look at Surveys Requiring Contactibility and Eligibility Identification   
 
The process of determining the contactibility and the eligibility status of each sampled unit is another stage of the 
survey design where the side effect of prior information can be reduced during its phase of follow-up to establish a first 
contact.  In the following, we sketch the necessitate ingredients.  
 
6.1 Contactibility Models 
Let )()( fca t  represent the discrete random variable that indicates the time period i  when the first contact occurs under 
random process a , where the superscript " fc " stands for  "first contact". The process of follow-up to reach unit k  at 
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specified time periods is conducted until some period )(
I)( fc

k

a , with )(
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)( II
)( fc

k

a fc

 , where )(
maxI fc  is the maximum time periods 

for follow-up to get a first contact, and max
)(

max II fc . The process of reaching a first contact could be discontinued for two 
reasons: 1) the unit is contacted for the first time; or 2) the period to reach sampled unit ends. In the first case, 

)()(
I)()( fcfc

k

a

k

a t  . In the second case, it is only known that )(
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t   are right-censored ‒ it is 
unknown whether they are contactable during survey data collection period. The overall contactibility indicator over 
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a r  is a sequence of contactibility indicators defined 
for each unit k  whose values are defined as 1)()( fc
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a r  if the unit is contacted in time period i , and 0)()( fc

ki

a r  if not, and 
)()( fc
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a z  denote the 0/1 variable indicating whether a unit k  is to be contacted at time period i . Because contactibility 
occurrence is intrinsically conditional, we characterized )()( fca t  by its discrete-time hazard function 
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)( v  refers to both time-invariant and time-varying explanatory variables and )()( fca β  is 
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a )()( , the probability of obtaining a first 
contact at time period i  could be expressed in terms of the hazard as  
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For units with it fc

k

a )()( , the probability of obtaining a response can be expressed as  
 

)()(

)1()Pr( )()(
1

)()(
fc

kj
a zfc

kj

ai

j

fc

k

a hit  
. 

We have 
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where 1)()( fc

k

a   if unit k  is uncensored (contacted) and 0)()( fc

k

a   if unit k  is censored under process a . When unit k  
is censored, either unit k  will be reachable at some future time period )(
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a t   or the unit will not be contactable 
during survey period. The joint distribution of ),( )()()()( fc
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The marginal probability of obtaining a first contact after )(
maxI fc  time periods is given by 
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6.2 Parameter of Interest and Associated Estimator 
We now define the census parameter for eligible subpopulation as the solution to  
 0ΘvΘψsΘS(ψ  )();(); )(

k

el

kk J , (6.2) 
where )(el

kJ  denotes the eligibility indicator for unit k , i.e., 1)( el

kJ  if unit k  is eligible for the given survey and 0)( el

kJ  
if unit k  is not eligible. Suppose that the probability, )( kk E  , of getting a response to questionnaire during P  phases 
of follow-ups to both establish a contact and get response to questionnaire is known for every eligible unit in the 
population, where )()( rq

k
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kk rr , )( fc

kr  is the overall contactibility indicator, and )(rq

kr  is the overall response indicator for 
eligible unit k . A design-response unbiased estimator of the EE defined by (6.2) is given by  
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where the probability of getting response to questionnaire for eligible unit k  is given by 
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 and )Pr( )( it fc

k   is given by (6.1). 
 
The variance of the estimator obtained as the solution to (6.3) can be derived along the lines of Section 3.3 by replacing 

)(
;P
rq

kr  and )(
;P
rq

k  by 
k  and 

k  respectively. 
 
6.3 Specification of the Cost Function 
We may decompose the global cost over P  phases of follow-ups and data collection as 
 p

P
1pP)( CC  , 

with maxPP1  . The P  components of the global cost are 
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where the extra component associated with the establishment of a first contact is  
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6.4 Estimation of the Regression Parameter 
The eligibility indicator )(el

kJ , with }1,0{)( el

kJ , is known for a unit that have been contacted during any time of the 
contactibility period, while it is unknown for a unit that is censored, where the superscript " el " stands for "eligible".  
Consequently the likelihood for the census observed data associated with (4.1) may be decomposed as 
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kik JL λ  for ineligible units, and )(λkL  is given by (4.1). In likelihood 
components that incorporate a contactibility piece, appropriate conditioning would be assumed. 
 

7. Coefficient of Reliability 
 
To start our discussion on the reliability coefficient, suppose interest is in estimating the variable ψ  by an estimator θ  
rather than evaluating the reliability of an estimator. In the case of no additional information, the minimum MSE of 

)ψ(θ E  is the variance of ψ , namely })]ψ(ψ{[)ψ( 2EEVar  ; while in the case in which we have additional information, 
the min MSE of )|ψ()(θ  E  is also the variance, }|)]|ψ(ψ{[)|ψ( 2  EEVar  , but of the conditional density 

)|ψ( f . This conditional variance characterizes the spread of ψ  about its conditional expectation )|ψ( E  for a given 
value of  . If   and ψ  are independent, then )ψ()|ψ( VarVar  . The remaining relative error (or the missed 
information) of ψ  based on the knowledge of   is given by )ψ(/)|ψ( VarVar  ; so that the proportion of knowledge (or 
the attained information) about ψ  obtained after observing   constitutes our coefficient of reliability given by 

 
)ψ(

)|ψ(1};ψ{K
Var

Var 
  . (7.1) 

If )ψ()|ψ( VarVar   then 0};ψ{K  , and if 0)|ψ( Var  then 1};ψ{K  .  
 
Suppose that ψ  and   have a correlation coefficient ψ , ψ  has a normal distribution with mean ψ  and variance 2

ψ , 
and   has a normal distribution with mean   and variance 2

 . Then the conditional distribution has 
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and )1()|ψ( 2

ψ
2
ψ  Var . 

As shown by Goldberger (1962), the linear estimator given by (7.2) is the best linear unbiased predictor of ψ  under the 
general linear model. In this case under the normality assumption, the coefficient of reliability of ψ  based on the 
knowledge   given by (7.1) reduces to 
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Tenenbein (1970) introduced the square of the correlation coefficient given by (7.3) as a measure of reliability between 
the error-prone and error-free classification variables to measure the strength of the relationship between the true and 
fallible classifications; i.e., it measures how well the true classification can be predicted from the fallible classification 
on a given sampling unit. Expression (7.3) gives a convenient way to derive the coefficient of reliability: It is 
reasonable in practice to replace conditional variance, which depends on the joint distribution, with correlation which 
can be calculated more easily. That being said, conditional independence is more meaningful and preferable than zero-
correlation. 
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For the survey case, where the estimator )(ˆ
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coefficient of reliability under the normality assumption is 

 
))(ˆ())((

))}(ˆ),(({)}(ˆ);({K
P

2
P2

)(ˆ)(P P ψψ
ψψψψ

ψψ






VarVar

Cov

N

N

N
N

 . 

 
Suppose 
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Suppose now a third set of information   was available previously to  , with 
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 2),(  . Then, the conditional variance-covariance matrix of ),ψ(   given   under the normality assumption is 
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and the resulting partial coefficient of reliability after removing the effect of   from each variable is 
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provided 1|| ψ   and 1||  . 
  
The quality of an estimate is usually characterized by MSE. However, coefficients of reliability for each survey process 
as well as for a survey as a whole set of processes when supplied with MSE enhance the quality of information on a) 
the survey results; b) the comparisons between surveys; and c) the contribution of the given survey as addition to prior 
information.  
 

Concluding Remarks 
 
We formulated an optimization problem for designing a survey, and we identified steps for its revision in the course of 
the data collection period. We considered the error-prone and error-free information as a random variable with a joint 
distribution with some probability function. Then, we updated the joint probability distribution after observing some of 
realizations of the error-free random process at each phase of data collection, to revise the design specification in the 
course of the data collection period. The proposed approach makes full use of error-prone information while requiring 
only few observations from the error-free and expensive random process. Since revision of a design indicates when a 
design is nearly "optimal", and how the error-free random process varies from the error-prone random process, the 
revision of the design has an important role to play in survey quality and cost. In the case of insufficient sample size on 
prior information grounds, our approach can be extended to increase the sample in the course of data collection. Details 
are omitted to focus on the response mechanism. A reliability coefficient for a survey as a whole set of processes, as 
well as for a single process, is also discussed. Such a coefficient when supplied with MSE enhances information on a) 
the survey results; b) the comparisons between surveys; and c) the contribution of the given survey as addition to prior 
information. 
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