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Abstract 
Kalton and Kish (1984) suggested fractional imputation as an efficient hot deck 
imputation method. Fully efficient fractional imputation is the limit case in which the 
estimated conditional distribution is imputed for each missing item. Improved 
computational power has made fully efficient fractional imputation possible in many 
cases. Sampling of respondents is required in others. We discuss developments in 
replication variance estimation, in parametric imputation, approximations to fully 
efficient fractional imputation, and extensions to multivariate imputation. 
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Research on fractional imputation dates from the work of Kalton and Kish in the 1980’s. 
The monograph of Kalton (1983) contains a discussion of several aspects of adjusting for 
missing data, “Compensation” as Kalton called it. He listed three important attributes of a 
good procedure. First, the estimates should have good precision and he has considerable 
discussion on the use of sampling techniques in selecting donors. The second of his 
criteria concerns standard error estimation. He pointed out that recording donors is 
important for standard error estimation. Kalton called the third criterion, “general 
applicability”. (Kalton 1983, p. 32). Any compensation procedure should be suitable for 
different parameters because the data will be used for many analyses. That is, the imputed 
data set should provide a consistent estimator of the distribution function of any variable. 
 
Kalton’s discussion of general applicability illustrates one of the ways that people 
approach the problem of missing data. Kalton had responsibility for producing a data set 
whose uses were imperfectly known. In such a situation, one is certain that people will 
compute estimates for parameters that were not considered at the time of data set 
construction. Those with responsibility for a general purpose data set look for procedures 
that rely on as few assumptions as possible and that have the widest possible 
applicability. Efficiency is secondary to general applicability. 
 
Subject matter specialists or those who work with them often begin by constructing a 
model for some of the data and looking for efficient estimation schemes. The outlook of 
such individuals differs from that expressed by Kalton because of the different primary 
responsibilities. People can have both types of responsibilities, but one’s primary task 
dominates one’s view of imputation and compensation. 
 
A very simple missing data illustration is given in Table 1. There are five observations, 
and two variables, x and y. Assume the sample is a simple random sample. If we are 
estimating the mean, each element will have a weight of 0.20. The y is missing on 
observation 5 and the variable x can be used to define imputed values. Notice that x has 
two values; 1 and 2.  The missing value has an x of 2. Hence, a reasonable procedure 
would be to choose at random one of the 3 (x,y) pairs where x is equal to 2 and place the 
chosen y value in the missing spot. If we chose observation 2 then the missing y value 
would be replaced with 1. 
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Table 1. Missing Data Illustration 
Observation iw  ix  iy  

1 0.2 1 1 
2 0.2 2 1 
3 0.2 2 1 
4 0.2 2 2 
5 0.2 2 Miss 

 
To increase efficiency of the imputation estimator of the mean, Kalton and Kish 
(1981,1984) suggested that one assign M donors to each of the non-respondents and 
assign a weight of 1/M times the original weight to each of the donated values. They 
discuss methods of selecting donors to give good efficiency. For example, if we have mn  
missing, we can construct an efficient estimator of the mean by selecting mMn  donors 
and assigning M to each respondent. Then the grand mean estimate would be close to the 
mean of the respondents because we would use each potential donor nearly an equal 
number of times. 
 
In the example of Table 1, assume that we set 2=M  and that we chose units 2 and 4 as 
our donors. Then each donated value would have a weight of one half of the original 
weight. The new data set has one more line of data. The total weight for observation 5 
stays the same but we have a more efficient estimator of the mean of y because, instead of 
a single donor, we have two. 
 
We can carry the idea of multiple donors a bit further and use all available donors for 
each recipient. We call the resulting estimator “fully efficient.” In our example we use all 
three donors. Our estimator for the missing observation is the observed cumulative 
distribution function. Each of the three possible donors get one third of the total weight. 
The total weight for observation 5 remains 0.20, and the imputed “observation” contains 
all that we know about observations with x = 2. Because there are only two possible 
values for y we can simplify the data set. Only two rows are required. One row for 
observations of the type (x,y) = (2,1) and one row for observations (x,y) = (2,2). See 
Table 2. 
 
Table 2.  Missing Discrete Data Fully Efficient Imputation 

Observation iw  *
ijw  *

iw  x y  

1 0.2 1.00 0.200 1 1 
2 0.2 1.00 0.200 2 1 
3 0.2 1.00 0.200 2 1 
4 0.2 1.00 0.200 2 2 

5* 0.2 0.67 0.133 2 1 
5* 0.2 0.33 0.067 2 2 

 
If we carry out imputation in this manner, we have a data set “generally applicable”. For 
example, estimates for a domain are fully efficient in the sense that the missing data are 
suitable for estimation of the cumulative distribution function of y for the domain. We 
should say that the estimation is fully efficient in a class of imputation estimators. 
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To this point we have not explicitly specified the model basis for our imputation. A 
classical model uses the population divided into G cells. In our example there were two 
cells;  one with x = 1 and one with x = 2. The y values can be decomposed into a mean for 
the cell plus an error, and a model is 
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where we add the assumption that the errors are iid. The model assumes that the 
representation is appropriate for both respondents and nonrespondents. Given the 
assumptions, we can use the respondents to estimate the cell mean. 
 
The imputation procedure we have been using is called hot deck imputation. The missing 
value is replaced with a value that exists in the data set. Hot deck imputation has the 
“general applicability” property that the imputed value is known to exist in the 
population. 
 
The estimated mean using fractional imputation is a weighted average of the respondent 
values. The weight for respondent i is the original weight plus the sum of the fractional 
weights for respondent i donating to recipient j. The estimator for a simple random 
sample is 
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ijw  = the fractional weight, ijd  is an indicator with ijd  = 1 if respondent i donates to 

recipient j and is zero otherwise, A is the index set for the sample, RA  is the index set for 
the respondents, and mA  is the index set for the recipients. 
 
We can combine the weights for a respondent so that the grand mean is the mean of the 
cell means plus a weighted average of the e’s. It follows that the variance of a fractionally 
weighted estimator is the variance of the mean of the individual cell means plus the 
expected value of the variance of the weighted average of the e’s. That is,  
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The terms in }ˆ{µV  can be estimated. If we’re constructing a general use data set then 
replication procedures, such as the jackknife, are preferred variance estimation 
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procedures. For our imputation procedure, a natural way to construct jackknife replicates 
would be; delete a respondent and delete the corresponding imputed values. Then, 
increase the weights for remaining units and increase the fractional weights for the 
remaining donors so the sum of the fractions is one. This direct estimation procedure is 
biased because of a “degrees of freedom” problem. The jackknife for a simple random 
sample of size n requires a correction factor of ./)1( nn −  If we delete one of the M 
respondents, something like an nMM /)1( −  adjustment would be appropriate for that 
individual recipient. Given a more complex sample or a more complex donor procedure, 
the adjustment is more complicated, but the basic requirement for adjustment remains. 
The bias in the direct procedure is small for large n and large M. Using the cell mean 
model, it is possible, but difficult, to construct jackknife weights for unbiased variance 
estimation. See Kim and Fuller (2004). 
 
In large surveys, one may choose to sample donors rather than use the fully efficient 
procedure. As mentioned earlier, Kalton and Kish (1984) addressed the problem of donor 
selection. For example, by defining M strata of donors and selecting one from each 
stratum, one can create an efficient sample for each respondent. In the same way that was 
discussed by Kalton and Kish (1984), we can assure marginal efficiency by balancing the 
sample of respondents across recipients. One way to do this is use a rejective procedure 
Fuller (2009) in the selection of donors or to use the regression estimator. 
 
Kim (2011) showed that fractional imputation provides an efficient way to estimate 
parametric models for data sets with missing items. Assume we have a parametric model 
for the data and a model for the response. One way to estimate the model is to start with a 
set of donors for each missing value with fractional weights that sum to one. Using those 
donors to define a complete data set, estimate the parameters of the model. Using the 
estimated parameters, update the fractional weights on the donated values, and iterate. 
Note that the donated values need not change at each step, only the fractional weights. To 
illustrate those ideas, we use the data set of Table 3 with 10 observations and three 
variables. The 1y  is missing for observation 3, 3y  is missing for 6, and both 2y  and 3y  

are missing for observation 7. Observation 7 has 1y  value of 2 with ),( 32 yy missing. 
There are four possible donors for observation 7 with three unique vectors. The unique 
vectors are (2,1,2), (2,1,1) and (2,2,1). 
 
Table 3.  Multivariable Data Set with Missing Items 

Unit 1y  2y  3y  
1 1 1 1 
2 2 1 2 
3 M 2 1 
4 2 1 1 
5 2 2 1 
6 1 1 M 
7 2 M M 
8 2 2 1 
9 1 1 2 
10 1 2 1 
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Table 4. Estimated Probabilities for Observed Vectors 

),,( 321 yyy  Fraction of 
Respondents Probability 

(1, 1, 1) 0.143 0.150 
(1, 1, 2) 0.143 0.150 
(1, 2, 1) 0.143 0.128 
(2, 1, 1) 0.143 0.121 
(2, 1, 2) 0.143 0.121 
(2, 2, 1) 0.286 0.330 

 
There are six unique values for the vector ),,( 321 yyy  in the data set, listed in Table 4. 
The fraction of the complete respondents in each category is given in column two. There 
is one observation for each of six vectors except the category (2,2,1), where two of the 
original seven respondents have the value. The third column is the estimated probability 
for each type of respondent calculated by the iterative procedure of Kim (2011). The 
vector (2,2,1) has an estimated probability greater than one seventh. 
 
Using the estimated probabilities, the fractional weights are 0.21, 0.21, and 0.58 for the 
three possible imputed values for unit seven. (Table 5) If we had used the weights from 
the respondents, the fractions would be 0.25, 0.25, and 0.50. 

 
Table 5. Unit Seven Imputed 

Unit Frac. Wt 1y  2y  3y  
7 0.21 2 1 1 
7 0.21 2 1 2 
7 0.58 2 2 1 

 
Table 6 contains the final data set with imputed values and the fractions.  The imputed 
values are starred in the table. 
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Table 6.  Imputed Data Set 

Unit Frac. Wt 1y  2y  3y  
1 1 1 1 1 
2 1 2 1 2 

3* 0.28 1 2 1 
3* 0.72 2 2 1 
4 1 2 1 1 
5 1 2 2 1 

6* 0.50 1 1 1 
6* 0.50 1 1 2 
7* 0.21 2 1 1 
7* 0.21 2 1 2 
7* 0.58 2 2 1 
8 1 2 2 1 
9 1 1 1 2 

10 1 1 2 1 
 
The outlined estimation-imputation procedure is available in SAS®. See SAS Institute 
(2015). The computation is exactly as described. The jackknife weights are available, 
where those jackknife weights will yield somewhat biased estimates of variance. 
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