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Abstract 

For purposive samples, design-based methods are clearly not suitable. There is the 
possibility of using model-based methods but there are concerns about the design being 
informative and potential misspecification of the model mean.  An alternative approach 
termed Model-Over-Design (MOD)-Integration for a simplified problem is proposed under 
the joint design-model randomization when the purposive sample is available as a 
supplement to the core probability sample. A design-based estimate such as GREG for the 
population total is first constructed using the probability sample which uses the synthetic 
estimator based on the systematic part of the model mean containing fixed parameters, and 
then corrects it for the total model error corresponding to the random part of the model. 
Next, the above model-error correction is improved by using another estimator from the 
additional seen observations in the purposive sample.  The initial probability sample is used 
for both estimation of model parameters to obtain a synthetic estimator and for estimation 
or prediction of the total model-error, the purposive supplement is used only to improve 
the model-error correction from the additional seen units. The MSE of the resulting 
estimator can be estimated under the joint randomization of man-made probability sample 
design, nature-made purposive sample design, and the model for the finite population.  
Key Words: Fit-For-Purpose Samples; Informative Designs; Joint design-model-based 
inference; Non-probability or purposive samples; Probability samples; Selection bias 
 

1. Introduction 
There is a resurgence of interest and controversy among practitioners in the 

feasibility of making valid inferences from purposive or nonprobability samples in the 21st 
century even though a similar controversy in the early 20th century was addressed in the 
fundamental paper by Neyman (1934) who emphasized the need of probability samples 
and randomization-based inference in survey sampling, and in the contributions to the 
theory of probability-based survey sampling in the early books by Hansen, Hurvitz, and 
Madow (1953) and Cochran (1953, 1st ed.). The main reason for such a renewed interest in 
purposive samples is the desire to obtain more precise estimators than the commonly used 
design-based estimators such as generalized regression (GREG) estimator when dealing 
with lower level geographies or small subpopulations. This is a very practical problem that 
arises in using low cost big data (such as administrative data, registries and other extant 
data) and data from Fit-For-Purpose Surveys that do not adhere to rigorous probability 
sampling protocols in design and data collection as an alternative to the costly option of 
increasing the sample size of traditional probability surveys.  

The recent AAPOR Task Report (Baker et al., 2013) shows clearly the conundrum 
in using purposive samples for the following reasons. First we note that the term ‘purposive 
sample’ used in this paper is preferred over the term ‘nonprobability sample’ because the 
nonprobability sample (to be denoted by 𝑠𝑠∗) can be perceived as a conceptual nature-made 
probability sample (instead of the man-made sample design) with unknown selection 
probabilities 𝜋𝜋𝑘𝑘∗’s for units k in the target universe U; here 𝜋𝜋𝑘𝑘∗  can be 0 for units omitted on 
purpose leading to undercoverage of U, and is likely to be strictly less than 1 due to unit 
nonresponse which is difficult to distinguish from self-selection.  On the one hand, use of 
purposive samples is rather attractive as it promotes use of low cost extant data or other 
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data such as internet opt-in panel data to obtain more detailed information about small 
subpopulations and specialized domains. On the other hand, there is the conceptual 
problem in its representativeness of the target universe resulting in biased estimates, and 
lack of any reasonable randomization framework for measuring precision of resulting 
estimates without making strong untestable assumptions. In this paper, we attempt to 
provide a solution by first reviewing the assumptions underlying the two basic principled 
approaches to inference from probability samples in surveys—design-based using the 
probability sample 𝑠𝑠 given the target universe U  (Hansen and Hurvitz, 1943, Narain, 1951, 
Horvitz and Thompson, 1952, Särndal, 1980) and model-based given the particular 
probability sample (𝑠𝑠) as in Royall (1970, 1976) and Valliant, Dorfman, and Royall (2000). 
We then propose a solution for a simplified problem in which the purposive sample (𝑠𝑠∗) 
serves as a supplement to the core probability sample 𝑠𝑠 rather than the problem of making 
inference from 𝑠𝑠∗ alone.  

The main contribution of the proposed approach for integrating 𝑠𝑠 and 𝑠𝑠∗ can be 
summarized as follows. For efficient estimation, models are often used to incorporate 
auxiliary information from multiple sources such as administrative data, censuses, and 
related sample surveys. In the context of using models for estimating finite population 
quantities such as totals, models refer to super-population models governing selection of 
the finite population under consideration. As is commonly done in model-based approach, 
a linear regression model is first assumed for the finite population. Now with 𝑠𝑠∗, there are 
obvious concerns about representativeness and selection bias since the underlying nature-
made random mechanism for 𝑠𝑠∗ is unknown. To address these concerns and in the interest 
of avoiding strong model assumptions and possible bias, we propose to use only the 
probability sample (𝑠𝑠) to estimate fixed model parameters. The estimated regression 
parameters are then used to obtain the synthetic estimator; i.e., total of the systematic part 
of the model mean. Next, given the regression parameters, instead of simply using the 
observed model errors from 𝑠𝑠 for estimating the total model error (this is the random part 
of the model mean) as in the case of commonly used GREG estimator of Särndal (1980), 
we propose to combine it  with the additional observed model errors provided by 𝑠𝑠∗. The 
underlying premise is that although 𝑠𝑠∗ may not be deemed fit for estimating model 
parameters, it does provide valid information about model errors from additional observed 
units which can be beneficially used for efficiency gains (i.e., variance reduction) under a 
suitable joint randomization framework for the man-made probability sample design (𝜋𝜋), 
nature-made purposive sample (𝜋𝜋∗), and the postulated model (𝜉𝜉) for the finite population.   

Thus, the proposed approach starts with a design-based estimator (such as GREG) 
using the core probability sample 𝑠𝑠 which for large samples has the desirable asymptotic 
design consistency (ADC) property for robustness against possible model misspecification. 
It then improves its efficiency without increasing the sample size by integrating the model-
based estimator of the total model error from the purposive supplementary sample 𝑠𝑠∗ under 
the joint randomization. It relies only on 𝑠𝑠 (and not on 𝑠𝑠∗) for any adjustments for biases 
due to noncoverage or nonresponse but takes advantage of 𝑠𝑠∗ for variance efficiency. This 
approach, termed in this paper as the Model-Over-Design (MOD) integration, builds 
model-based enhancements over the design-based approach. The term ‘integration’ 
signifies that it uses ideas from both design-based and model-based approaches. It uses a 
nonoptimal combination, on purpose, of the two estimates of the total model error so that 
it can be robust to model misspecification by maintaining the ADC property of the basic 
design-based estimator GREG. The main reason for the preference of a nonoptimal 
combination is to avoid overshrinkage of the design-based estimator of the total model 
error to the model-based estimator based on somewhat tenuous assumptions. 
Overshrinkage could happen because the model-based estimator of the total model error 
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from 𝑠𝑠∗ tends to have much smaller variance than the design-based estimator from 𝑠𝑠 due 
to the absence of design weights. In addition, the nonoptimal combination allows for the 
new estimator to have an expansion form involving one set of final weights that can be 
used for other study variables as well.  

We remark that although the MOD integration method does not provide a solution 
to the original inference problem from a single purposive sample 𝑠𝑠∗, it does provide a 
solution to a simplified version of the original problem by assuming that  𝑠𝑠∗ is available as 
a supplement to 𝑠𝑠. For the simplified problem, there are other methods proposed in the 
literature that blend 𝑠𝑠∗ and 𝑠𝑠. Elliott (2009) provides an innovative approach using 
propensity score modeling to obtain pseudo-weights for 𝑠𝑠∗where 𝑠𝑠 is used as the control 
group and 𝑠𝑠∗ as the treatment group. Another innovative approach is due to Disogra et al. 
(2011) who use a dual frame approach and sampling weight calibration methods where an 
initial weight of 1 is assigned to 𝑠𝑠∗. Although these are among the few serious attempts to 
address the challenging but important practical problem of blending 𝑠𝑠 and 𝑠𝑠∗, the 
underlying assumptions seem difficult to justify. In all these papers and as is the case in 
this paper, 𝑠𝑠∗ is conceptually treated as a probability sample with an unknown random 
selection mechanism.  

The organization of this paper is as follows. Section 2 provides background and 
motivation of the proposed approach. In particular, the two basic approaches of design-
based and model-based for estimation in survey sampling with a single probability sample 
are reviewed in detail in order to motivate the proposed approach and consider some 
variations used later on for integration with the purposive sample. To this end, we make 
two basic assumptions which are quite natural for the problem at hand.  

C1: The model mean is correctly specified but other aspects such as the model 
covariance structure may not be;   
C2: Given covariates, the model errors are uncorrelated with the conceptual 
selection probabilities 𝜋𝜋𝑘𝑘∗  of units that could be selected in the purposive sample. 

The assumption C2 may be deemed to be satisfied in general because of the nature-made 
design 𝜋𝜋∗ for 𝑠𝑠∗ as  𝜋𝜋𝑘𝑘∗’s are expected to be functions of unit covariates or its profile, and 
not as complex as in the case of the man-made design 𝜋𝜋 for 𝑠𝑠.  Thus, C2 would be valid if 
the model includes suitable covariates that are expected to govern nature’s random 
mechanism for selection of 𝑠𝑠∗. In Section 3, we consider how the two estimates (one each 
from 𝑠𝑠 and 𝑠𝑠∗) of the total model error can be combined under the joint randomization of 
the superpopulation model (𝜉𝜉), the known probability sample design 𝜋𝜋 for 𝑠𝑠, and the 
unknown random design 𝜋𝜋∗ for 𝑠𝑠∗. Note that under this joint framework, the two estimates 
can be made (approximately) unbiased for the total model error—the common finite 
population parameter which makes it convenient to compare the new estimator in terms of 
variance efficiency without the burden of bias considerations. The appendix shows how 
suitable variance estimates of all estimators considered can be obtained under the joint 
random mechanism. Analogous to GREG, the proposed estimator can be expressed in an 
expansion form due to the use of a nonoptimal combination and the original auxiliary 
control totals for GREG continue to be satisfied by the new set of weights. However, unlike 
the case of dual frame samples, the final estimator is not a calibration estimator in the strict 
sense because there are no suitable initial weights that can be attached to the purposive 
sample. A modification of MOD-Integration is considered in Section 4 to deal with 
subpopulation or domain estimation where GREG may not be reliable due to insufficient 
sample size but can be made so in combination with a purposive sample from the domain 
of interest.  
 

2. Background and Motivation 
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As mentioned in the introduction, purposive surveys such as fit-for-purpose 
surveys being in demand by users for time and cost efficiency do not follow a rigorous 
probability sampling deign protocol. It is therefore difficult to obtain theoretically 
justifiable point estimates and their standard errors from such survey data without making 
strong modeling assumptions. However, with purposive supplements to a core probability 
sample, it is possible to make suitable inferences about the population. The proposed 
method is motivated from the two basic approaches to estimation that form the foundation 
of survey sampling inference. These are design-based and model-based approaches. In the 
design-based approach, one relies on the likely behavior of sample estimates under the 
man-made random mechanism 𝜋𝜋 of probability sampling from a given finite target 
population U. On the other hand, in the model-based approach given a sample, one relies 
on the likely behavior of sample estimates under the nature-made random mechanism 𝜉𝜉 
governing the creation of the target population from a conceptual infinite universe or a 
super-population.  

A commonly used design-based method GREG for estimating population totals 
consists of first obtaining an estimate of the fixed part under a model (i.e., the synthetic 
part) and then correcting it by adding an estimate of the model error given by a weighted 
estimator from observed errors in the sample. The model postulated here is a regression 
model for predicting the outcome of interest by auxiliary variables. The synthetic estimator 
of the population total is simply the sum of model predictions based on the systematic part 
for each individual in the population. The synthetic predictions require known values of 
auxiliaries and estimates of regression coefficients in the model mean function. The 
regression coefficients are estimated by solving weighted estimates of census estimating 
functions (EFs) where weights refer to inverse of individual selection probabilities in the 
sample, and census EFs are usual quasi-likelihood EFs when the sample is the full finite 
population. The resulting estimator (GREG) is natural to consider in connection with a 
model-based estimator (to be denoted by PRED as in Brewer, 2000, signifying the 
prediction approach of Royall, 1970, 1976) because both use models to start with, although 
unlike mainstream statistics, the parameters of interest are not model parameters but the 
finite population totals involving random effects (or model errors) also. In the following, 
we first review GREG followed by PRED in some details for a single probability sample 
because it lays down the necessary theoretical foundation for the proposed estimator. For 
interesting comparisons of design-based and model-based approaches, see Hansen et al. 
(1983) and Little (2004).  

 
2.1 Design-based Approach  

Specifically, consider a linear model 𝜉𝜉 for 𝑦𝑦𝑘𝑘 with covariates (𝑥𝑥𝑖𝑖𝑘𝑘)1≤𝑖𝑖≤𝑝𝑝 for the 
kth unit, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁, given by 

𝜉𝜉: 𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘′ 𝛽𝛽 + 𝜀𝜀𝑘𝑘 , 𝜀𝜀𝑘𝑘~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜀𝜀2𝑐𝑐𝑘𝑘)   (1) 
where 𝛽𝛽 is a p-vector of regression coefficients, 𝑐𝑐𝑘𝑘’s are known constants and 𝑁𝑁 is the 
finite population size. We will assume for convenience that 𝛽𝛽 is known initially but later 
on we will substitute it with a design-weighted estimator as in GREG based on the 
probability sample 𝑠𝑠 of size 𝑛𝑛 under design 𝜋𝜋. The synthetic estimator of 𝑇𝑇𝑦𝑦 is then given 
by  

𝑡𝑡𝑦𝑦,𝑠𝑠𝑦𝑦𝑠𝑠(𝛽𝛽) =  𝑇𝑇𝑥𝑥′𝛽𝛽     (2) 
where 𝑇𝑇𝑥𝑥 = ∑ 𝑥𝑥𝑘𝑘𝑈𝑈  and the finite population total parameter 𝑇𝑇𝑦𝑦 is similarly ∑ 𝑦𝑦𝑘𝑘𝑈𝑈 ; the 
summation notations ∑ 𝑦𝑦𝑘𝑘𝑈𝑈  and ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑈𝑈  will be used interchangeably. The design bias of 
the synthetic estimator is 𝑇𝑇𝑥𝑥′𝛽𝛽 − 𝑇𝑇𝑦𝑦 or  −∑ 𝜀𝜀𝑘𝑘𝑈𝑈  where 𝜀𝜀𝑘𝑘 = 𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽. The GREG 
estimator corrects this bias (which is simply minus the total model error) by using a design-
based unbiased estimator such as Horvitz-Thompson, or HT for short. It is given by 
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GREG:  𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) =  𝑇𝑇𝑥𝑥′𝛽𝛽 +  ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑘𝑘∈𝑠𝑠                (3a) 
                         =  𝑡𝑡𝑦𝑦𝑦𝑦 + 𝛽𝛽′(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑦𝑦)    (3b) 

where the design weight 𝑤𝑤𝑘𝑘= 𝜋𝜋𝑘𝑘−1, 𝜋𝜋𝑘𝑘 is the sample inclusion probability of unit 𝑘𝑘, and 
𝑡𝑡𝑦𝑦𝑦𝑦, for example, is ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 , the HT-estimator. With known 𝛽𝛽, 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) as an estimate 
of 𝑇𝑇𝑦𝑦 is design-or 𝜋𝜋 −unbiased and is also 𝜋𝜋 −consistent (or ADC—asymptotically design 
consistent) as 𝑛𝑛,𝑁𝑁 get large under general regularity conditions (see the asymptotic 
framework of Isaki and Fuller, 1982, and the book by Fuller, 2009, Section 1.3 ); i.e., with 
high 𝜋𝜋 −probability, it is close to the true value 𝑇𝑇𝑦𝑦. Here and in what follows, all the 
asymptotic properties are with respect to the mean estimator (such as 𝑁𝑁−1𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 ) of the 
population mean 𝑁𝑁−1𝑇𝑇𝑦𝑦. It is interesting and important to remark that even if the model 
mean function is misspecified, the GREG estimator remains ADC; i.e., under 
𝜋𝜋 −randomization, 𝑁𝑁−1�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) − 𝑇𝑇𝑦𝑦� = 𝑁𝑁−1(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑘𝑘∈𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘) = 𝑜𝑜𝑝𝑝(1)𝑘𝑘∈𝑈𝑈 . This 
robustness property of GREG is desirable in practice because as is well known no model 
is perfect. Note that the model does play an important role in GREG for improving 
efficiency of HT estimators. However, its validity is not vital for its ADC property and 
hence GREG is also referred to as model-assisted.  For the proposed method for combining 
𝑠𝑠 and 𝑠𝑠∗, we also strive for the ADC property analogous to GREG. 

In practice, the regression parameters are replaced by weighted estimators 
motivated by census EFs where all the population totals are replaced by HT estimators to 
obtain sample EFs; see Binder (1983) and also Särndal (1980). In particular, the census 
EFs for 𝛽𝛽 are given by  

∑ 𝑥𝑥𝑘𝑘 (𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)/𝑐𝑐𝑘𝑘 𝑘𝑘∈𝑈𝑈 = 0    (4a) 
and the corresponding sample EFs are given by  

∑ 𝑥𝑥𝑘𝑘 (𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 𝑘𝑘∈𝑠𝑠 = 0    (4b) 
It is easily seen that  

�̂�𝛽𝑦𝑦 = (∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑥𝑥𝑘𝑘′ 𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 )−1(∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 ) = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑋𝑋)−1𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑦𝑦  (5)  
The estimator �̂�𝛽𝑦𝑦 is optimal under the joint 𝜋𝜋𝜉𝜉 −randomization as defined by Godambe 
and Thompson (1986). However, under 𝜋𝜋 −randomization given 𝜉𝜉, it is not optimal in the 
usual sense; i.e., the regression coefficient �̂�𝛽𝑦𝑦 does not correspond to optimal regression in 
the sense of minimizing the 𝜋𝜋|𝜉𝜉 −MSE of the regression estimator about 𝑇𝑇𝑦𝑦 where MSE 
denotes mean square error. Although, GREG with �̂�𝛽𝑦𝑦 (to be denoted by 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 instead of 
𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔��̂�𝛽𝑦𝑦� ) is no longer unbiased, it remains asymptotically design unbiased (ADU) as 
well as ADC under general conditions; see Robinson and Särndal (1983). It is also in 
general more efficient than the HT estimator in view of the observations that the model 
residuals 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦) = 𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ �̂�𝛽𝑦𝑦 tend to be less variable than 𝑦𝑦𝑘𝑘’s, and 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 yields perfect 
estimates (i.e., with no error) of totals of covariates 𝑥𝑥𝑘𝑘’s when 𝑦𝑦𝑘𝑘 is replaced by 𝑥𝑥𝑘𝑘’s. This 
is easily seen from the calibration form of the GREG estimator as introduced by Deville 
and Särndal (1992) and is given by  

𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠  , 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = 1 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1�̂�𝜂𝑔𝑔𝑔𝑔𝑔𝑔  (6) 
 

where �̂�𝜂𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑦𝑦), 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑤𝑤𝑘𝑘)1≤𝑘𝑘≤𝑠𝑠, 𝐶𝐶 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑐𝑐𝑘𝑘)1≤𝑘𝑘≤𝑠𝑠 and 
𝑋𝑋 is the 𝑛𝑛 × 𝑝𝑝 matrix of the sample covariate values 𝑥𝑥𝑘𝑘’s. Observe that the sample 𝑥𝑥𝑘𝑘-
values inflated by the adjusted weights (𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔)1≤𝑘𝑘≤𝑠𝑠 satisfy the auxiliary control totals 
𝑇𝑇𝑥𝑥 exactly. Moreover, denoting the predicted value 𝑥𝑥𝑘𝑘′ �̂�𝛽𝑔𝑔𝑔𝑔 by 𝑦𝑦�𝑘𝑘, the weighted estimator 
∑ 𝑦𝑦�𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  using predicted values matches exactly with the direct estimator ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  
whenever the unit vector 1𝑠𝑠×1 is in the column space of 𝐶𝐶−1𝑋𝑋 – an important special case 
being when 𝑐𝑐𝑘𝑘 is one of the 𝑥𝑥𝑘𝑘′𝑠𝑠; see Appendix A1. Equivalently, the weighted sum of 
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residuals ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠  becomes zero under the above condition on covariates. This built-
in benchmarking property of GREG residuals to sum to zero is attractive in practice for 
robustification to possible model misspecifications. Incidentally, the 𝜋𝜋|𝜉𝜉 −MSE of 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 
about 𝑇𝑇𝑦𝑦 can be approximated well for large samples using the Taylor or delta method; see 
Appendix A2.   
2.2 Model-based Approach 

So far, we considered a design-based estimator GREG which for large samples, 
has desirable properties of ADC in that it remains close to the true population total with 
high probability and is robust to model misspecification in that it remains ADC even if the 
model is misspecified. The alternative model-based estimator PRED (defined below) uses 
an unweighted estimator of regression coefficients in the model for corresponding 
predictions of the systematic part in the model mean function for each individual in order 
to construct a synthetic estimator of the population total. Analogous to GREG, it then 
corrects it by adding an estimate of the model error by using an unweighted estimator from 
observed errors in the sample. However, unlike the design-based estimator GREG, the 
model-based estimator PRED does not rely on sampling weights because it considers the 
likely behavior of the estimate given a particular observed sample.  

PRED:   We now consider in some detail the model-based estimator PRED 
proposed by Royall (1970, 1976) which uses the prediction approach for estimating model 
errors under 𝜉𝜉 given 𝜋𝜋; i.e., given the sample 𝑠𝑠.  The formulation of the PRED estimator 
will be useful for integrating information about the additional seen units from 𝑠𝑠∗ because 
the observed sample under the model-based approach is not required to have a known 
probability sample design. Given 𝛽𝛽, the PRED estimator of 𝑇𝑇𝑦𝑦 is given by   

 
𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖(𝛽𝛽) = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑠𝑠 + ∑ (𝑥𝑥𝑘𝑘′ 𝛽𝛽𝑘𝑘∈𝑈𝑈∖𝑠𝑠 + 0)     (7) 

where the first sum on the right is the sum of the observed 𝑦𝑦 −values from the seen units, 
and the second sum is the predicted value under the model for the remainder or unseen 
units; i.e., the set  𝑈𝑈 ∖ 𝑠𝑠 of units from the population 𝑈𝑈 that were not selected in 𝑠𝑠. The 𝑥𝑥𝑘𝑘′ 𝛽𝛽 
term in the second sum on the right is the model mean predictor of the unknown 𝑦𝑦𝑘𝑘 under 
the model and 0 signifies the best linear unbiased predictor (BLUP) of the model error 𝜀𝜀𝑘𝑘 
for the unseen because all the error terms are uncorrelated. If the error terms 𝜀𝜀𝑘𝑘’s were 
correlated, then BLUP of 𝜀𝜀𝑘𝑘 for the unseen could have been improved by using the 
observed values of 𝜀𝜀𝑘𝑘’s for the seen units in the sample. The estimator 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖(𝛽𝛽) can 
alternatively be expressed as  
 

𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖(𝛽𝛽) =  (𝑇𝑇𝑥𝑥 − ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝑠𝑠 )′𝛽𝛽 + ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑠𝑠    (8a)                
= 𝑇𝑇𝑥𝑥′𝛽𝛽 +  ∑ 𝜀𝜀𝑘𝑘𝑘𝑘∈𝑠𝑠     (8b) 

which looks very similar to the expression (3a) for GREG except that the predictions for 
model errors in the sample are not weighted. Note that in the case of GREG, the predicted 
value of the remainder is taken as ∑ 𝑥𝑥𝑘𝑘′ 𝛽𝛽𝑈𝑈∖𝑠𝑠 + (∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 ). The weighted sum of 
model errors or residuals, ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘 used in GREG under 𝜋𝜋 −randomization provides an 
unbiased adjustment (and has optimality of the HT estimator) for the design bias (−∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) 
in the synthetic estimator 𝑇𝑇𝑥𝑥′𝛽𝛽, while the unweighted sum ∑ 𝜀𝜀𝑘𝑘𝑘𝑘∈𝑠𝑠  used in PRED under 
𝜉𝜉 −randomization provides an unbiased prediction (optimal under the model) of the total 
model error ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 .  

In the discussion so far, the parameters 𝛽𝛽 were assumed to be known. In practice, 
they are unknown, and are estimated differently in PRED from GREG. Under GREG, �̂�𝛽𝑦𝑦 
is based on weighted sample EFs which, in turn, give rise to several desirable properties as 
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mentioned earlier including the ADC of GREG. Under PRED, however, the regression 
parameters are estimated by  

�̂�𝛽𝑢𝑢 = (∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑥𝑥𝑘𝑘′ /𝑐𝑐𝑘𝑘 )−1(∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑦𝑦𝑘𝑘/𝑐𝑐𝑘𝑘 ) = (𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1𝑋𝑋′𝐶𝐶−1𝑦𝑦 (9) 
 
which is derived from best linear unbiased EFs under the model and does not involve 
design weights. Under 𝜉𝜉 −randomiztion given 𝜋𝜋 and general regularity conditions, the 
PRED estimator with �̂�𝛽𝑢𝑢 (to be denoted by 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖) has desirable properties in that it is 
unbiased, consistent, and optimal (in the sense of minimum MSE) if the model holds for 
the sample.  

Interestingly, analogous to the GREG expression (6), PRED can also be expressed 
as an expansion estimator without design weights 𝑤𝑤𝑘𝑘but with adjustment factors 𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖. 
We have,  

𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 = ∑ 𝑦𝑦𝑘𝑘𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖𝑘𝑘∈𝑠𝑠  ,  𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖 =  1 + 𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1�̂�𝜂𝑝𝑝𝑔𝑔𝑖𝑖 (10) 
where  �̂�𝜂𝑝𝑝𝑔𝑔𝑖𝑖 = (𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢), 𝑡𝑡𝑥𝑥𝑢𝑢 is the unweighted sample sum ∑ 𝑥𝑥𝑘𝑘𝑠𝑠 . In 
general, if the variance of the model error is heteroscedastic, the adjustment factor 𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖 
depends on it because �̂�𝛽𝑢𝑢 does. Therefore, unlike GREG, the weight adjustment factor may 
vary with the outcome variable 𝑦𝑦.  In addition, the expression (10) of 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 is not strictly 
a calibration estimator in the sense of Deville and Särndal (1992) because (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢) , the 
difference of the vector of population totals and the corresponding sample sums on which 
the weight adjustment factor depends, is not a zero function vector; i.e., its expectation is 
not zero under 𝜉𝜉|𝜋𝜋 −randomization.  This implies that the known totals 𝑇𝑇𝑥𝑥 are not truly 
calibration control totals although they appear to be so because 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 does reproduce true 
totals 𝑇𝑇𝑥𝑥 when 𝑦𝑦 is replaced by 𝑥𝑥. A 𝜉𝜉|𝜋𝜋 −MSE estimate of 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 about 𝑇𝑇𝑦𝑦 is provided in 
Appendix A3.  

The fundamental assumptions underlying the model-based approach are that the 
model is correctly specified for the population and the sampling design is non-informative 
for the model. Here the randomization is with respect to the 𝜉𝜉 −distribution conditional on 
the sample design 𝜋𝜋. The non-informative design assumption requires that the joint 
distribution of the outcome variable in the population given the auxiliaries does not depend 
on the random variables indicating inclusion or exclusion of population units in the sample. 
However, this assumption is quite strong and is generally not expected to be satisfied in 
practice because it is not feasible to include all key design variables (that govern inclusion 
of units in the sample) in the model as auxiliaries that are deemed to be correlated with the 
study variable. The main reason is that the man-made sampling design can be quite 
complex in that besides stratification and disproportionate sample allocation, samples 
within strata may be drawn in stages with varying selection probabilities of clusters of units 
at any given stage depending on the size variable in the interest of over- or under-sampling 
of special domains. Even in situations where important design variables could be included 
in the model, the covariate totals needed for prediction with linear models might not be 
available for design variables; e.g., such totals are usually not known for non-selected 
clusters in multi-stage designs. Besides, if the model of interest is nonlinear as is often the 
case with discrete variables, use of model-based prediction requires even more detailed 
information such as the unit level information for all the covariates in the population. This 
problem does not arise with GREG because the role of model is secondary, and therefore, 
even for discrete variables, one can use linear models, although it is not strictly correct 
because the range restrictions on model means and errors imposed by nonlinear models are 
not satisfied.   

If the design is informative, there is model-bias (also known as the selection bias) 
in the model-based estimator even though for units in the finite population 𝑈𝑈,  the model 
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mean is correctly specified. It is possible to correct this problem by including 𝜋𝜋𝑘𝑘 as a 
covariate in the 𝜉𝜉 −model but still the model may not hold for 𝑠𝑠 because the model 
covariance structure for the sampled units may not be correctly specified. (Note that with 
𝜋𝜋𝑘𝑘 as a covariate, we don’t need to know these for all units in U for computing the synthetic 
estimator under PRED as it is sufficient to know ∑ 𝜋𝜋𝑘𝑘𝑈𝑈  which is n for fixed sample design 
or 𝐸𝐸𝜋𝜋(𝑛𝑛) for random sample designs and which again can be estimated by n.) Besides the 
above problem, even if the design is noninformative for the selected model, there may be 
model-bias due to misspecification of the model mean. The above two concerns (model 
bias due to informativeness of the design, and due to model misspecification) for 
probability samples get magnified with purposive samples because the underlying 
conceptual sampling design (𝜋𝜋∗) for the purposive sample is not even known. Nevertheless, 
a good understanding of the implications of model assumptions is important for finding a 
suitable solution to the problem of integrating 𝑠𝑠∗with 𝑠𝑠. The main reason for this is that the 
model-based methods do not inherently require knowledge of the probability sample 
design.   
2.3 Motivation for Integration of Design-based and Model-based Approaches:  

In view of the desirable ADC property of GREG making it robust to model 
misspecification, our goal is preserve the ADC property of GREG while integrating it with 
the model-based estimator PRED in order to increase its efficiency for population total 
estimation in general and for subpopulation or domain estimation in particular which suffer 
from the problem of insufficient number of observations. With this in mind, from 
expressions (3a) and (8b) for GREG and PRED respectively, it is observed that if common 
values of the 𝛽𝛽 −parameters are used in both estimators, then the synthetic estimates for 
the two become identical but we have two different estimates of the same total model error. 
So it may be possible to improve the prediction of the total model error ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  by combining 
the two estimates under 𝜋𝜋𝜉𝜉 −randomization.  This is the underlying premise of the 
proposed integration of ideas from design-based and model-based approaches which is 
quite different from the usual combination of two estimators under either a design-based 
(𝜋𝜋|𝜉𝜉) or a model-based approach (𝜉𝜉|𝜋𝜋). It is introduced in the next section and termed 
model-over design (MOD) integration because it starts with GREG –a design-based 
estimator as the basic estimator and then improves its prediction of the random part by 
bringing over the PRED-type estimator of the random part. 

With the above motivation, we first construct a new estimator termed Prediction 
of Remainder for Efficient Generalized regression (PREG for short) which uses the design-
based synthetic estimator of GREG, but the model-based estimator of the total model error 
from PRED modified by using �̂�𝛽𝑦𝑦 in place of �̂�𝛽𝑢𝑢--the estimator �̂�𝛽𝑦𝑦 is preferable to �̂�𝛽𝑢𝑢 for 
reasons mentioned earlier. The PREG estimator (to be denoted by 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔) is defined as 

 
PREG:    𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 =  𝑇𝑇𝑥𝑥′�̂�𝛽𝑦𝑦 +  ∑ 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑘𝑘∈𝑠𝑠    (11) 

Clearly, the only difference between GREG and PREG is that PREG uses unweighted 
residuals. Analogous to (6), the expansion form of PREG is given by 

𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠 ,   𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔 =  𝜋𝜋𝑘𝑘 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1�̂�𝜂𝑝𝑝𝑔𝑔𝑔𝑔 ,   (12) 
 

where �̂�𝜂𝑝𝑝𝑔𝑔𝑔𝑔 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢). An estimator of the MSE of 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 about 𝑇𝑇𝑦𝑦 is 
given in Appendix A4. Having now PREG in addition to GREG, it is natural to ask how to 
combine the two estimates of the total model error to obtain a new estimate that is more 
efficient than GREG. Even if the new estimator were less efficient than PREG, it would be 
preferred to PREG due to tenuous model assumptions underlying PREG. To this end, we 
first assume C1; i.e., while the full model with the mean and covariance structure could be 
misspecified, the model mean is at least correctly specified. Specifically,  
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𝐸𝐸𝜉𝜉((𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)|𝑥𝑥𝑘𝑘) = 0, so that ∑ 𝜀𝜀𝑘𝑘𝑠𝑠  has a chance to be unbiased for ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  under the 
joint 𝜋𝜋𝜉𝜉 −randomization. In other words, we want 𝐸𝐸𝜋𝜋𝜉𝜉((∑ 𝜀𝜀𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘)𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤
𝑁𝑁) = 0. However, this may not be true unless C2 is satisfied for the sample 𝑠𝑠 ; i.e., 
     𝐸𝐸𝜋𝜋𝜉𝜉�(∑ 𝜀𝜀𝑘𝑘U 1𝑘𝑘∈𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁)�= 

𝐸𝐸𝜉𝜉((∑ 𝜀𝜀𝑘𝑘U 𝜋𝜋𝑘𝑘 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁) = 0.      (13) 
where ∑ 𝜀𝜀𝑘𝑘U 1𝑘𝑘∈𝑠𝑠 = ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 . The above condition holds if 𝜋𝜋𝑘𝑘’s are functions of 𝑥𝑥𝑘𝑘’s which 
is unlikely but can be easily satisfied by enlarging the model to include 𝜋𝜋𝑘𝑘′𝑠𝑠 as an extra 
covariate. Now, with the enlarged model, both ∑ 𝜀𝜀𝑘𝑘𝑠𝑠  and ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  are 𝜋𝜋𝜉𝜉 −unbiased for 
∑ 𝜀𝜀𝑘𝑘𝑈𝑈 , and therefore, it makes it possible to combine the two under a common 
randomization scheme without the burden of accounting for bias.  Incidentally, the 
assumption of 𝜋𝜋𝑘𝑘 being a function of 𝑥𝑥𝑘𝑘’s (after enlargement if necessary) is much weaker 
than the assumption of noninformative designs. Although, to satisfy it, introduction of 𝜋𝜋𝑘𝑘 
(a design-specific feature) as a covariate may seem somewhat an artifact for a specific 
purpose because the sampling design refers to the finite population and not to the super-
population, it may nevertheless serve as a good covariate on its own right.   

Above considerations will also pave the way for using 𝑠𝑠∗ in improving estimators 
from 𝑠𝑠 because the unbiasedness of model-based estimators does not require knowledge of 
the random mechanism under a probability sample as long as C2 holds.  In fact, as 
mentioned in the introduction, C2 is likely to hold for 𝑠𝑠∗ without introducing 𝜋𝜋𝑘𝑘∗’s in the 
model as another covariate because the nature-made design 𝜋𝜋∗ is not expected to be as 
complex as the man-made design 𝜋𝜋. This anticipated property of 𝜋𝜋∗ is the basis for defining 
another estimator termed Supplementary-sample for PREG estimation (S-PREG for short 
and denoted by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔) needed for MOD-Integration of  𝑠𝑠∗ and 𝑠𝑠, and is given by 

 
S-PREG:     𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 =  𝑇𝑇𝑥𝑥′�̂�𝛽𝑦𝑦 +  ∑ 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑘𝑘∈𝑠𝑠∗   (14) 

Letting 𝑡𝑡𝑥𝑥𝑢𝑢∗ = ∑ 𝑥𝑥𝑘𝑘𝑠𝑠∗ , the expansion form of the S-PREG estimator is given by  
 𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔𝑠𝑠 + ∑ 𝑦𝑦𝑘𝑘𝑠𝑠∗ ,   𝑎𝑎𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔 =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1�̂�𝜂𝑠𝑠𝑝𝑝𝑔𝑔 (15) 

where  �̂�𝜂𝑠𝑠𝑝𝑝𝑔𝑔 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗). An estimator of the MSE of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 about 𝑇𝑇𝑦𝑦 
under the joint 𝜋𝜋∗𝜋𝜋𝜉𝜉 −randomization is given in Appendix A5. In the next section, we 
consider the problem of integrating two samples— 𝑠𝑠 and 𝑠𝑠∗ as a supplement; i.e., how to 
integrate the two estimators of the total model error from GREG and SPREG for improving 
the GREG efficiency. With 𝑠𝑠 and 𝑠𝑠∗, it is tempting to combine the three estimators of the 
total model error corresponding to GREG, PREG, and S-PREG respectively, but 
𝜋𝜋𝜉𝜉 −unbiasedness of PREG requires enlarging the model in order to satisfy C2 for 𝜋𝜋 
which, in turn, requires knowledge of 𝜋𝜋𝑘𝑘’s for units in 𝑠𝑠∗ and this is not likely to be 
available for all units.   
 

3. MOD-Integration of a Purposive Supplement to a Probability Sample 
For MOD integration, the conditions C1 for 𝜉𝜉 and C2 for 𝜋𝜋∗ are assumed to hold 

as mentioned earlier. The validity of C2, unlike the case of the probability sample 𝑠𝑠,  seems 
quite plausible because the individual characteristics that govern the nature-made design 
𝜋𝜋∗ for self or purposive selection of an individual from 𝑈𝑈 may be known to the analyst, 
and are likely to be included as covariates in the model because they typically will be 
deemed to be correlated with the outcome variables of interest. The sampling designs for 
𝑠𝑠∗and 𝑠𝑠 are assumed to be independent and, in general, there may be an overlap between 
the two. The new predictor  ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗  used in S-PREG of the total model error based on the 
new seen units in 𝑠𝑠∗ can be used to improve the total model error prediction from GREG; 
this time, however, under the joint 𝜋𝜋∗𝜋𝜋𝜉𝜉 −randomization. We can now define the new 
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estimator under MOD-Integration, termed Supplementary-sample for Integrated PREG 
(SI-PREG for short and denoted by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔) as follows. 

 
SI-PREG:  𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 = 𝑇𝑇𝑥𝑥′�̂�𝛽𝑦𝑦 + (1 − 𝜆𝜆∗)∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆∗ ∑ 𝑒𝑒𝑘𝑘𝑠𝑠∗ (�̂�𝛽𝑦𝑦)  (16a) 

= 𝑇𝑇𝑥𝑥′�̂�𝛽𝑦𝑦 + ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆∗�∑ 𝑒𝑒𝑘𝑘𝑠𝑠∗ (�̂�𝛽𝑦𝑦)− ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 � (16b) 
where the coefficient 𝜆𝜆∗ is obtained in a nonoptimal manner for stability and for obtaining 
an expansion form of the estimator. (Incidentally, an optimal choice of 𝜆𝜆∗  can be obtained 
by minimizing the MSE of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑦𝑦; i.e., it is given by minus the optimal regression 
coefficient of  (∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) on (∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ).) We remark that for estimation 
of the total ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  through regression, the estimator �̂�𝛽𝑦𝑦 can be treated as fixed because the 
fixed parameters 𝛽𝛽 and random parameters 𝜀𝜀𝑘𝑘’s are distinct. For nonoptimal regression in 
SI-PREG, we use anticipated MSE and mean cross-product error (Isaki and Fuller, 1982) 
about 𝑇𝑇𝑦𝑦 under the joint 𝜋𝜋∗𝜋𝜋𝜉𝜉 −randomization. This integration of the two estimators is 
nonoptimal because 𝜆𝜆∗ is obtained under the working assumption that the model holds for 
both samples. This is analogous to the assumption used in an alternate derivation of GREG 
using nonoptimal regression (weighted SRS-type variances and covariances) of 𝑡𝑡𝑦𝑦𝑦𝑦 on 
(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑦𝑦) in estimating 𝛽𝛽 by �̂�𝛽𝑦𝑦; see Singh (1996). Thus, the coefficient 𝜆𝜆∗ can be 
obtained as   

𝜆𝜆∗ = 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 (⁄ 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔)   (17) 
where 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 denotes a working MSE estimate of GREG assuming 𝛽𝛽 given and later 
substituted by �̂�𝛽𝑦𝑦,  and 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 defined similarly. We have from Appendix A6,  

𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎�𝜀𝜀𝑦𝑦2 ∑ 𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘  , 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 = 𝜎𝜎�𝜀𝜀𝑦𝑦2 (∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ) ,  (18)  
where 𝜎𝜎�𝜀𝜀𝑦𝑦2 =  ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)2𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1𝑠𝑠 ∑ 𝑤𝑤𝑘𝑘𝑠𝑠⁄ . The anticipated mean cross-product error of 
GREG and S-PREG given 𝛽𝛽 is zero because of unbiasedness of GREG and independence 
of 𝑠𝑠∗and 𝑠𝑠. Although the factor 𝜎𝜎�𝜀𝜀𝑦𝑦2  is common in the numerator and the denominator of 
𝜆𝜆∗, we do not cancel it out as its presence in the numerator allows for an expansion form 
of the estimator SI-PEG somewhat analogous to a calibration estimator. To see this, 
observe that the numerator of 𝜎𝜎�𝜀𝜀𝑦𝑦2  can be alternatively expressed as ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 
because  

 ∑ 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�
2𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1𝑠𝑠 =  ∑ �𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ �̂�𝛽𝑦𝑦�𝑠𝑠 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 

 =  ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 − �̂�𝛽𝑦𝑦′ ∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1  (19) 
and the last term with the negative sign is zero as the EFs for 𝛽𝛽 evaluated at �̂�𝛽𝑦𝑦 are zeros. 
Therefore, the value 𝑦𝑦𝑘𝑘 of the study variable of interest can be factored out from the 
regression coefficient 𝜆𝜆∗ to obtain an expansion form of SI-PEG as shown below. 
    𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔,       𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔 = 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑐𝑐𝑘𝑘−1(∑ 𝑤𝑤𝑘𝑘𝑠𝑠 )−1𝜁𝜁𝑠𝑠𝑖𝑖𝑔𝑔,  (20a) 
      𝜁𝜁𝑠𝑠𝑖𝑖𝑔𝑔 =  (∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘(𝑤𝑤𝑘𝑘 − 1)𝑠𝑠 + ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ) ×  

   �𝜎𝜎�𝜀𝜀𝑦𝑦2 �∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘2𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ��
−1
�∑ 𝑒𝑒𝑘𝑘𝑠𝑠∗ (�̂�𝛽𝑦𝑦)− ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 �         (20b) 

and 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 is given by (6). We remark that the new set of adjusted weights 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔’s 
continue to satisfy the GREG calibration controls because ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑐𝑐𝑘𝑘−1 is zero 
when  𝑦𝑦𝑘𝑘 is replaced by one of the covariates from 𝑥𝑥𝑘𝑘, and therefore, the contribution from  
the adjustment in 𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔 to 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 is zero. An estimate of MSE of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 about 𝑇𝑇𝑦𝑦 under the 
joint 𝜋𝜋∗𝜋𝜋𝜉𝜉 −randomization is given in Appendix A7.  

The coefficient 𝜆𝜆∗is not based on any variance optimality considerations. 
Following Singh et al. (2013), design adjustment factors 𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔 and  𝛾𝛾𝑝𝑝𝑔𝑔𝑔𝑔∗ between 0 and 1, 
𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔 + 𝛾𝛾𝑠𝑠𝑝𝑝𝑔𝑔 = 1, could be introduced in the definition of 𝜆𝜆∗ by transforming 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 to 
𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 to 𝛾𝛾𝑠𝑠𝑝𝑝𝑔𝑔𝑣𝑣�𝑝𝑝𝑔𝑔𝑔𝑔∗ such that the unequal weighting effect 
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(𝑛𝑛 𝑁𝑁2⁄ )∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔�
2

𝑠𝑠  is minimized; here ∑ 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔𝑠𝑠 = 𝑁𝑁. We also remark that the final 
weights 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔’s are only defined for the sample 𝑠𝑠 and not both samples unlike the usual 
case in combining two probability samples because the second sample 𝑠𝑠∗ being purposive 
has no initial weights for adjustment. Therefore, the SI-PREG is not a true calibration 
estimator in the sense of Deville and Särndal (1992). Extra information from the second 
sample 𝑠𝑠∗ is used in the form of the predictor (∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ) for regression analogous 
to the predictor (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑦𝑦) in GREG, and appears in the adjustment factor 𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔.   

A multivariate extension of SI-PREG can be easily made. That is, with several key 
study variables of interest; i.e., when 𝑦𝑦 is multivariate, there is now a vector of new 
predictors of the form (∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ) corresponding to each element of 𝑦𝑦. A new SI-
PREG estimator can be constructed using all the extra predictors for further gains in 
efficiency. The regression coefficient 𝜆𝜆∗ in the multivariate case will now be replaced by a 
matrix, each row of which corresponds to the corresponding study variable. This way, a 
new set of final weights can be constructed which can be used for all study variables besides 
the key variables already used in defining new predictors of the total model error. 

Observe that the coefficient 𝜆𝜆∗ reduces to ∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1) divided by 
�∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘2𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ � which is expected to be between 0 and 1 because ∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  estimates 
∑ 𝑐𝑐𝑘𝑘𝑈𝑈  which is larger than ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ . This property of a convex combination is attractive for 
ease in interpretation. Thus, 𝜆𝜆∗ behaves like a shrinkage factor in that high values of 𝜆𝜆∗ 
imply that the design-based predictor ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  is shrunk more to the model-based predictor 
∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ . In practice, it may be preferable to have 𝜆𝜆∗ not more than 1/2 so that GREG can 
dominate over S-PREG in the SI-PREG formulation in the interest of robustness to model 
misspecification. However, under general conditions, we have 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ ), and 
𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 = 𝑂𝑂𝑝𝑝(𝑁𝑁) which imply that  𝜆𝜆∗ will tend to be close to 1 because 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 is of much lower 
order than 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔. The practical implication of this is clearly not desirable even though S-
PREG would be more efficient than GREG if C1 and C2 truly hold. It is probably better to 
have only moderate gains in efficiency over GREG in the interest of robustness to model 
misspecifications. With this in mind, in the spirit of working variances and covariances 
used in the specification of 𝜆𝜆∗ to achieve certain goals, we introduce a constraining factor 
𝜓𝜓∗ based on a priori considerations such that 𝜆𝜆∗ → 0 as 𝑛𝑛,𝑁𝑁 → ∞, but 𝑛𝑛∗ remains bounded 
which will imply ADC of the new estimator. Therefore, as a modification to SI-PREG, we 
define another estimator termed SI-PREG-Constrained (or SI-PREG𝑐𝑐 for short and denoted 
by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐) as follows.   

SI-𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝒄𝒄: 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐 = 𝑇𝑇𝑥𝑥′�̂�𝛽𝑦𝑦 + (1 − 𝜆𝜆∗𝑐𝑐)∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆∗𝑐𝑐 ∑ 𝑒𝑒𝑘𝑘𝑠𝑠∗ (�̂�𝛽𝑦𝑦)   (21) 
where the specification of 𝜆𝜆∗𝑐𝑐 is quite similar to that of 𝜆𝜆∗ by (17) except that 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔 in the 
denominator is multiplied by a constraining factor 𝜓𝜓∗ defined below. Letting 𝜆𝜆∗𝑐𝑐(𝑁𝑁 𝑛𝑛∗)⁄  
denote the value of 𝜆𝜆∗𝑐𝑐 when 𝜓𝜓∗ = 𝑁𝑁 𝑛𝑛∗⁄ , we have  

𝜓𝜓∗ = �
𝑁𝑁 𝑛𝑛∗            𝑑𝑑𝑖𝑖 𝜆𝜆∗𝑐𝑐(𝑁𝑁 𝑛𝑛∗⁄ ) ≤ 1/2 ⁄
𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣�𝑠𝑠𝑝𝑝𝑔𝑔⁄  𝑑𝑑𝑖𝑖 𝜆𝜆∗𝑐𝑐(𝑁𝑁 𝑛𝑛∗⁄ ) > 1/2    (22) 

In other words, 𝜆𝜆∗𝑐𝑐 is constrained to be at or below ½ by choosing 𝜓𝜓∗ suitably. The choice 
of 𝜆𝜆∗𝑐𝑐 can be improved further by using the design adjustment factors  𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔 and  𝛾𝛾𝑠𝑠𝑝𝑝𝑔𝑔 as 
mentioned earlier in the case of SI-PREG before constraining by 𝜓𝜓∗.  The expansion form 
of 𝑡𝑡𝑦𝑦,𝑐𝑐𝑝𝑝𝑔𝑔∗ is similar to 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐  except that in (20a), 𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔 is replaced by 𝑎𝑎𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐  defined in 
an analogous manner and 𝜁𝜁𝑠𝑠𝑖𝑖𝑔𝑔 replaced by 𝜁𝜁𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐  given by a slightly modified version of 
(20b) in which the middle term on the right is replaced by �𝜎𝜎�𝜀𝜀𝑦𝑦2 �∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1)  +

𝜓𝜓∗(∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ )��
−1

. An estimate of MSE of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐  about 𝑇𝑇𝑦𝑦 under the joint 
𝜋𝜋∗𝜋𝜋𝜉𝜉 −randomization is given as in Appendix A7 except that 𝜆𝜆∗ is substituted by 𝜆𝜆∗𝑐𝑐.    
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4. An Enhancement of MOD-Integration for Domain Estimation 
The method of MOD-Integration is expected to be especially useful in estimation for 

small or specialized domains which may not be well represented in the full sample, and 
hence the need for a purposive supplement with a marginal cost. Domains in practice are 
like socio-demographic subgroups which partition the total population U into 
nonoverlapping subpopulations but are not strata and therefore the sample size for each 
domain is random. The standard domain estimation using GREG is defined by replacing 
𝑦𝑦𝑘𝑘 in (6) by 𝑦𝑦𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑 where 𝑈𝑈𝑖𝑖 denotes the dth domain,1 ≤ 𝑑𝑑 ≤ 𝐷𝐷, and D being the total 
number of domains. Similarly, SI-PREG for domain estimation can be easily defined by 
modifying (20a,b) suitably  in order to improve precision of GREG estimators for domains.  
However, precision of SI-PREG for domains obtained in the above standard manner could 
be further improved if we use full sample (i.e., combined sample over all domains) to 
estimate fixed parameters 𝛽𝛽,𝜎𝜎𝜀𝜀2 and 𝜆𝜆∗. In other words, for these parameters, we use the 
same estimators as in the regular SI-PREG estimators for population totals and not 
subpopulations or domains, but everywhere else we multiply 𝑦𝑦𝑘𝑘 , 𝑥𝑥𝑘𝑘, and as a result 𝑒𝑒𝑘𝑘 by 
1𝑘𝑘∈𝑈𝑈𝑑𝑑 to get their contributions for the domain of interest. Thus, for SI-PREG of domains, 
the effective domain sample size remains the same based on the combined 𝑠𝑠 and 𝑠𝑠∗ but the 
resulting estimators are expected to be more stable (and hence more precise) due to less 
variability in the estimates of fixed parameters 𝛽𝛽,𝜎𝜎𝜀𝜀2 and 𝜆𝜆∗ needed for their computation.  

The above enhancement of MOD-Integration is along the lines of enhancing stability 
of GREG estimators for domains in the context of small area estimation where the full 
sample estimator �̂�𝛽𝑦𝑦 is used for regression parameters (Singh and Mian, 1995, and Rao, 
2003, Section 2.5) but domain level auxiliary totals 𝑇𝑇𝑥𝑥𝑖𝑖 and the domain level HT-estimator 
𝑡𝑡𝑥𝑥𝑖𝑖𝑦𝑦 in the calibration form (6) are used to obtain 𝑡𝑡𝑦𝑦𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔; i.e., GREG for domain d. (Here 
for some x-variables, 𝑇𝑇𝑥𝑥𝑖𝑖 could be at the population and not subpopulation level.) The price 
for obtaining more stable domain level GREG in the above manner is more work because 
the GREG calibration weights will need to be computed now for each domain separately 
unlike the customary GREG with one set of final weights for all study variables. The 
proposed enhancement of SI-PREG for domains starts with the enhanced GREG for 
domains and improves it further by integrating with domain-specific purposive samples. 
We now define domain-specific estimators 𝐺𝐺𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖, S-𝑃𝑃𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖 in order to define SI-𝑃𝑃𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖 
denoted respectively by 𝑡𝑡𝑦𝑦𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑, 𝑡𝑡𝑦𝑦𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑 , and 𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑  as follows. 

 
𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝒅𝒅:𝑡𝑡𝑦𝑦𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑘𝑘∈𝑠𝑠 . 𝑎𝑎𝑘𝑘𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 = 1𝑘𝑘∈𝑈𝑈𝑑𝑑 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1�̂�𝜂𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑(23) 

where �̂�𝜂𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 = (𝑋𝑋′𝑊𝑊𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑡𝑡𝑥𝑥𝑖𝑖𝑦𝑦). Note that the 𝐺𝐺𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖calibration weights 
satisfy the domain-specific control totals 𝑇𝑇𝑥𝑥𝑖𝑖. Moreover, unlike the usual GREG for 
domains, even if 1𝑠𝑠×1 is in the column space of 𝐶𝐶−1𝑋𝑋 , the weighted sum of residuals 
∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠  is no longer zero.  
 

S-𝑷𝑷𝑮𝑮𝑮𝑮𝑮𝑮𝒅𝒅 :𝑡𝑡𝑦𝑦𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑𝑠𝑠 +  ∑ 𝑦𝑦𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠∗ ,  
 𝑎𝑎𝑘𝑘𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑 =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1�̂�𝜂𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑,   �̂�𝜂𝑖𝑖,𝑠𝑠𝑝𝑝𝑔𝑔𝑑𝑑 = (𝑋𝑋′𝑊𝑊𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑡𝑡𝑥𝑥𝑖𝑖𝑢𝑢∗). (24) 

The 𝑡𝑡𝑥𝑥𝑖𝑖𝑢𝑢∗ estimator is defined analogous to 𝑡𝑡𝑥𝑥𝑢𝑢∗ in that it uses the domain subsample.  
 
 SI-𝑷𝑷𝑮𝑮𝑮𝑮𝑮𝑮𝒅𝒅: 𝑡𝑡𝑦𝑦𝑖𝑖,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑 = ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘𝑖𝑖,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑 ,      (25) 

𝑎𝑎𝑘𝑘𝑖𝑖,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑 = 𝑎𝑎𝑘𝑘𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 + 𝑒𝑒𝑘𝑘��̂�𝛽𝑦𝑦�𝑐𝑐𝑘𝑘−1(∑ 𝑤𝑤𝑘𝑘𝑠𝑠 )−1𝜁𝜁𝑖𝑖,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑 ,  
         𝜁𝜁𝑖𝑖,𝑠𝑠𝑖𝑖𝑔𝑔𝑑𝑑 = 𝜎𝜎�𝜀𝜀𝑦𝑦−2𝜆𝜆∗�∑ 𝑒𝑒𝑘𝑘𝑠𝑠∗ (�̂�𝛽𝑦𝑦)1𝑘𝑘∈𝑈𝑈𝑑𝑑 − ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠 �. 

AAPOR2015

4282



Note that the domain level control totals 𝑇𝑇𝑥𝑥𝑖𝑖 continue to be satisfied by the SI-𝑃𝑃𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖 
expansion weights. The SI-𝑃𝑃𝐺𝐺𝐸𝐸𝐺𝐺𝑖𝑖constrained (denoted by SI-𝑃𝑃𝐺𝐺𝐸𝐸𝐺𝐺𝑐𝑐𝑖𝑖) estimator can be 
defined in an analogous manner by replacing 𝜆𝜆∗ by 𝜆𝜆∗𝑐𝑐, common for all domains. Here we 
may want to relax the constraining factor 𝜓𝜓∗ so that 𝜆𝜆∗𝑐𝑐 is at most 2/3, for example. 
Similarly the design adjustment factors can be introduced. Estimates of MSE of the above 
estimators about 𝑇𝑇𝑦𝑦𝑖𝑖 can easily be obtained from previous formulas for full population 
level estimators by replacing 𝑒𝑒𝑘𝑘 by 𝑒𝑒𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑. 

 
Appendix (Technical Results) 

 
A1: ∑ 𝑒𝑒𝑘𝑘(�̂�𝛽𝑦𝑦)𝑤𝑤𝑘𝑘𝑠𝑠 = 0 if 1𝑠𝑠×1 is in the column space of 𝐶𝐶−1𝑋𝑋 
 
It follows that there exists a 𝑝𝑝 × 1 vector of constants 𝜏𝜏 such that 𝐶𝐶−1𝑋𝑋𝜏𝜏 = 1𝑠𝑠×1 which 
implies that 𝑋𝑋𝜏𝜏 = 𝐶𝐶1𝑠𝑠×1. Since �̂�𝛽𝑦𝑦 satisfies 𝑋𝑋′𝐶𝐶−1𝑊𝑊(𝑦𝑦 − 𝑋𝑋𝛽𝛽) = 0, we have 
 

 𝜏𝜏′𝑋𝑋′𝐶𝐶−1𝑊𝑊�𝑦𝑦 − 𝑋𝑋�̂�𝛽𝑦𝑦� = 0 or 1′𝐶𝐶𝐶𝐶−1𝑊𝑊�𝑦𝑦 − 𝑋𝑋�̂�𝛽𝑦𝑦� = 0. (A1.1) 
 

A2: 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦) 
By Taylor linearization of 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 about 𝑇𝑇𝑦𝑦 under 𝜋𝜋|𝜉𝜉, we have  
 

𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔)  (A2.1) 
where 𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) is 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 of (6) but with �̂�𝜂𝑔𝑔𝑔𝑔𝑔𝑔 replaced by the limit in probability 
denoted by 𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 which can be interpreted as a coverage bias model parameter. It is 0 if 
there is no coverage bias in which case 𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) is 1. However, it helps to improve the 
MSE estimator. We have 

𝑀𝑀𝑀𝑀𝐸𝐸�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦� =  𝐸𝐸𝜉𝜉𝑉𝑉𝜋𝜋|𝜉𝜉�∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 � + 𝐸𝐸𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑈𝑈 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 )2  (A2.2) 
 
The first term on the right can be estimated by standard design-based methods after 
substitution of 𝛽𝛽 and 𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 by �̂�𝛽𝑦𝑦 and �̂�𝜂𝑔𝑔𝑔𝑔𝑔𝑔, and the second term can be estimated by 
𝜎𝜎�𝜀𝜀𝑦𝑦2 (∑ �𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘). The second term is much smaller order (𝑂𝑂𝑝𝑝(𝑁𝑁)) than the 
first term (𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ )) and is negligible in practice.  Using the concept of anticipated 
variance, a simple expression assuming 𝜉𝜉 holds for 𝑠𝑠 is obtained as 

 𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋(𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦) =𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠 . (A2.3) 
 
A3: 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑇𝑇𝑦𝑦) 
 
We have,  𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖𝑤𝑤𝑘𝑘𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑔𝑔𝑖𝑖)𝜋𝜋𝑘𝑘 (A3.1) 
 
where 𝜂𝜂𝑝𝑝𝑔𝑔𝑖𝑖 is (𝑁𝑁 𝑛𝑛)⁄ times the limit in probability of  (𝑛𝑛 𝑁𝑁)�̂�𝜂𝑝𝑝𝑔𝑔𝑖𝑖⁄  under 𝜋𝜋|𝜉𝜉. Analogous 
to GREG, 
 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑇𝑇𝑦𝑦) = 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖𝑤𝑤𝑘𝑘𝑠𝑠 ) +𝜎𝜎�𝜀𝜀𝑦𝑦2 (∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖𝜋𝜋𝑘𝑘 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘).  (A3.2) 
 
A simplified estimate under the model is obtained as 

𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋�𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑇𝑇𝑦𝑦� = 𝜎𝜎�𝜀𝜀𝑢𝑢2 [∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑖𝑖 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠 .  (A3.3) 
 
A4: 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦) 
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We have, 𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑔𝑔𝑔𝑔)    (A4.1) 

𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦)= 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 ) +𝜎𝜎�𝜀𝜀𝑦𝑦2 (∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘) (A4.2) 
𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋�𝑡𝑡𝑦𝑦,𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦� = 𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠 . (A4.3) 

 
A5: 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋∗𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 − 𝑇𝑇𝑦𝑦) 
 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 +∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑝𝑝𝑔𝑔)   (A5.1) 
𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋∗𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 − 𝑇𝑇𝑦𝑦)= 𝑉𝑉�𝜋𝜋∗𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 + ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ ) 

+𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘 + 2∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔 − 1�𝑐𝑐𝑘𝑘𝑠𝑠∗ + ∑ 𝜋𝜋𝑘𝑘∗𝑐𝑐𝑘𝑘𝑠𝑠∗ ](A5.2)  
 
where the first term on the right is the sum of two terms: 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑔𝑔𝑔𝑔∗𝑤𝑤𝑘𝑘)𝑠𝑠  which is 
obtained using standard design-based methods, and 𝑉𝑉�𝜋𝜋∗|𝜉𝜉(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ ) which can be 
approximated under WRPSU assumption (with elementary units as PSUs, Wolter, 2007, 
pp. 205) as (𝑛𝑛∗ (𝑛𝑛∗ − 1))⁄ ∑ (𝜀𝜀𝑘𝑘 − 𝜀𝜀)̅2𝑠𝑠∗  evaluated at �̂�𝛽𝑦𝑦. The last term in (A5.2) 
involves unknown 𝜋𝜋𝑘𝑘∗  but can be replaced by a conservative estimate ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ . Also a 
simplified expression under the model is  
 
𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋∗𝜋𝜋�𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑔𝑔 − 𝑇𝑇𝑦𝑦� = 𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑝𝑝𝑔𝑔𝑤𝑤𝑘𝑘 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ]𝑠𝑠  
 
A6: 𝜆𝜆∗ = 𝜎𝜎�𝜀𝜀𝑦𝑦2 (∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1)) [𝜎𝜎�𝜀𝜀𝑦𝑦2 �∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘2𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ �⁄ ] 
 
It follows from the anticipated variance calculations in A2 that  

𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) =  𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ 𝑤𝑤𝑘𝑘(𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠    (A6.1)  
𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋∗(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) =  𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ]𝑠𝑠     (A6.2) 
Est of 𝐸𝐸𝜉𝜉|𝜋𝜋∗𝜋𝜋(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 )(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) = −𝜎𝜎�𝜀𝜀𝑦𝑦2 ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗   (A6.3) 

 
A7: 𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋∗𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑦𝑦) 
 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆∗ ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,      (A7.1) 
 𝛿𝛿𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔 = 𝜀𝜀𝑘𝑘[(1 − 𝜆𝜆∗)𝑎𝑎𝑘𝑘�𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔� + 𝜆𝜆∗𝑎𝑎𝑘𝑘�𝜂𝜂𝑠𝑠𝑝𝑝𝑔𝑔�]    (A7.2) 
𝑀𝑀𝑀𝑀𝐸𝐸�𝜋𝜋∗𝜋𝜋𝜉𝜉(𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑦𝑦)= 𝑉𝑉�𝜋𝜋∗𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑖𝑖𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆∗ ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ )   (A7.3) 

  +  𝜎𝜎�𝜀𝜀𝑦𝑦2 × 𝑒𝑒𝑠𝑠𝑡𝑡 ∑ �(1 − 𝜆𝜆∗){𝑎𝑎𝑘𝑘�𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔� − 1} + 𝜆𝜆∗{𝑎𝑎𝑘𝑘�𝜂𝜂𝑠𝑠𝑝𝑝𝑔𝑔� − 1} + 𝜆𝜆∗𝜋𝜋𝑘𝑘∗  �
2

𝑈𝑈 𝑐𝑐𝑘𝑘   
The last term involves unknown 𝜋𝜋𝑘𝑘∗  but a conservative estimate can be used as in A5.  

𝑀𝑀𝑀𝑀𝐸𝐸�𝜉𝜉|𝜋𝜋∗𝜋𝜋�𝑡𝑡𝑦𝑦,𝑠𝑠𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑦𝑦� = 𝜎𝜎�𝜀𝜀𝑦𝑦2 [∑ ��(1 − 𝜆𝜆∗)𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆∗𝑎𝑎𝑘𝑘,s𝑝𝑝𝑔𝑔�𝑤𝑤𝑘𝑘 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 
+((1 − 𝜆𝜆∗)2 − 1)∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠     (A7.4) 
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