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Abstract 
 
In government survey applications, zero-inflated count data often arise, sometimes with 
item nonresponse.  We consider the problem of imputing missing counts.  We assume 
that the observations/items are missing at random.  We also assume the zero-inflated data 
is a mixture distribution: one component from a distribution degenerate at zero and one 
from a Poisson distribution.  Both components may depend on covariates, which are 
always observed.  We formulate a model for bivariate zero inflated count data and 
propose a Bayesian imputation scheme for imputing missing items by assigning priors to 
unknown regression parameters.  Using the predictive distribution of missing items given 
observed items, one can impute each missing item as a random draw from the predictive 
distribution.  We use Markov Chain Monte Carlo to generate imputed values of missing 
items.  Multiple imputations are computed by running the chain long enough to produce 
multiple realizations of the missing item values.  To obtain (nearly) independent draws, 
the chain must be thinned.  We will illustrate its potential with a simulation study and 
with an analysis of part-time Employment data from the Annual Survey of Public 
Employment & Payroll (ASPEP).    
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1 Introduction 
 

Nonresponse is a common problem in most large-scale surveys.  In order for users to 
make a valid and efficient inference using some statistical procedure, imputing missing 
entries may be necessary.  For some imputation methodologies, the imputation is done 
deterministically, providing neither adjustment for parameter estimation nor information 
of uncertainty of the imputed values, as though the imputed values are true values 
(Schafer, 1997; Gelman & Hill, 2006).  Thus, variance of individual imputed values also 
is a main research focus of this study.  
 
Multiple imputation (MI), developed by Rubin (1987), is a common approach to handle 
missing data issues.  The MI technique involves three steps: impute 𝑚𝑚 complete data sets, 
analyze each of the 𝑚𝑚 completed data sets, and use ANOVA-like methods to integrate the 
m analyses into a final result.  MI adjusts the standard errors of parameters due to the 
uncertainty of missing value by incorporating the variation from multiple sets of imputed 
data, given that  the imputation model and the analysis model are the same or similar.   
 
For public-use data sets, it is always unclear what analyses the ultimate users will 
conduct, so the imputation of public-use data focuses on the imputation model instead of 
the analysis model.  Thus, the imputer should include all variables contained in the 
original data set in the imputation model.  Also the imputer should not create or add new 
variables in the imputation model to avoid redefining the data set (Rubin, 1996; Schafer 
& Graham, 2002).  It is possible to lose precision when including unimportant predictors, 
for example in sparse data situations.  Nevertheless, it is a relatively small price to pay for 
the general validity of analyses of the multiply imputed data base (Rubin, 1996).   
 
An imputation model contains two major outcomes: model parameters and imputed 
values.  Since this is public-use data, special attention is given to imputed values, 
although the performance of these two components is highly correlated.  Moreover, good 
imputed values are a byproduct of a good imputation model.  Thus, modeling is the focus 
of this study.         
 
In the Bayesian framework, the future or missing observation, 𝑦𝑦′, can be estimated using 
the predictive distribution.  Since the quantity 𝑦𝑦′  can be considered as an additional 
parameter to be estimated, it can be generated using Markov Chain Monte Carlo 
(MCMC) methods from the conditional posterior distribution.  During the iteration 
process, thousands of sets of imputed data are generated.  Once the Markov Chain has 
stabilized, multiple imputations can be generated after thinning the chains (Gelman and 
Hill, 2006).  The standard deviations of imputed values can be used to compute credible 
intervals.  
 
In Section 2 the model is discussed, followed by a simulation study in Section 3.  Section 
4 presents a real data analysis.  Section 5 presents conclusions and topics for future study.    
 
 
2   Bivariate Zero Inflated Poisson (ZIP) Model 
 
One frequently sees that a set of data contains an excess of zeros relative to standard 
distributions.  Such zero inflated data appear in many fields, such as rainfall 
measurement, counts of numbers of seals, or counts of numbers of industrial defects.  
Some zeros are sampling zeros; for example, seals may swim under the sea instead of 
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staying on the seashore. Some zeros are structural zeros, for example, male responses to 
questions about pregnancy.  Many researchers have studied this problem and have 
developed various zero-inflated models in response.  This study concerns imputation of 
zero-inflated count data using Bayesian modeling. 
 
 Zero Inflated Poisson Model 
  
In a data set, let the discrete random variable 𝑌𝑌𝑖𝑖 be the i-th observed count, 𝑖𝑖 = 1, …,𝑁𝑁.  
Assume that 𝑌𝑌𝑖𝑖 is distributed as a mixture of two components: (1) responses which are 
zero with probability one (perfect state or zero state); (2) responses which follow a 
Poisson distribution (Poisson state).  Assume that an unobserved random variable 𝑤𝑤𝑖𝑖 
indicates the state membership of the observed count, either the perfect state or the 
Poisson state.  Note that if 𝑦𝑦𝑖𝑖 > 0, the observed count is definitely in the Poisson state, but 
if 𝑦𝑦𝑖𝑖 = 0, the subject may have been in either of the two states.  This key feature makes 
the ZIP model different from the Poisson model.  The 𝑤𝑤𝑖𝑖   are assumed to be from a 
Bernoulli distribution with parameter 𝑝𝑝𝑖𝑖, such that 𝑃𝑃(𝑤𝑤𝑖𝑖  = 1) =  𝑝𝑝𝑖𝑖  and  𝑃𝑃(𝑤𝑤𝑖𝑖  = 0) =
 1 − 𝑝𝑝𝑖𝑖 .   If 𝑤𝑤𝑖𝑖  = 1  then 𝑌𝑌𝑖𝑖 = 0,  coming from the perfect state,  and if 𝑤𝑤𝑖𝑖 = 0 then  
𝑌𝑌𝑖𝑖 = 𝑦𝑦, y = 0, 1, 2, …, coming from a Poisson distribution.  Therefore, 𝑌𝑌𝑖𝑖 has the ZIP 
distribution: 

 

                          𝑌𝑌𝑖𝑖  ~ �  0,                               with probability 𝑝𝑝𝑖𝑖                
Poisson(𝜆𝜆𝑖𝑖),          with probability (1−  𝑝𝑝𝑖𝑖),            (1) 

 
where Poisson (𝜆𝜆𝑖𝑖 ) is defined as P(𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖) = exp (−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖

𝑦𝑦𝑖𝑖 𝑦𝑦𝑖𝑖!⁄ . 
 
Covariates can enter into the ZIP model in two places: in a logistic regression model for 
pi and in a loglinear Poisson regression model for 𝜆𝜆𝑖𝑖.    

a) The logistic regression model is for predicting the state, either perfect state or 
Poisson state. The probability 𝑝𝑝𝑖𝑖 is expressed as  
 

                      logit(𝑝𝑝𝑖𝑖) = log �
𝑝𝑝i

1−  𝑝𝑝𝑖𝑖
� = 𝒁𝒁𝑖𝑖 ′𝜷𝜷 = 𝛽𝛽0 + 𝛽𝛽1𝑍𝑍𝑖𝑖1+ ⋯+ 𝛽𝛽ℎ𝑍𝑍𝑖𝑖ℎ.            (2) 

 
b) The log-linear regression for the Poisson mean is expressed as  

 
                                           log(𝜆𝜆𝑖𝑖) = 𝑿𝑿𝑖𝑖′𝜶𝜶= 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋𝑖𝑖1 + ⋯+ 𝛼𝛼𝑘𝑘𝑋𝑋𝑖𝑖𝑘𝑘 .                           (3) 

 
Here 𝒁𝒁𝑖𝑖 and 𝑿𝑿𝑖𝑖 are covariate vectors and 𝜶𝜶 and β are vectors of regression coefficients 
for the logistic regression model and the loglinear Poisson regression model, respectively.  
The components of 𝒁𝒁𝑖𝑖 and 𝑿𝑿𝑖𝑖 could be the same or different from each other.  This model 
was essentially proposed by Lambert (1992). 
 
For imputation, we would like to model the 𝑌𝑌𝑖𝑖 using a ZIP distribution and impute 
directly using MCMC.  However, because of limitations of the Bayesian Inference Using 
Gibbs Sampling (BUGS) program (Spiegelhalter et al., 2003), there is no function to do 
imputation for nonstandard distributions with count data.  We sidestep this problem by 
creating the Bivariate ZIP model.  
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Bivariate Zero Inflated Poisson Model 
 
Let (X, Y) be a pair of observed counts where X is always observed, and Y may be 
missing.  We expect 𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) to be an increasing function of 𝑥𝑥 .  We propose the 
following model: 

 
 𝑃𝑃[𝑋𝑋 = 𝑥𝑥] = 𝑃𝑃[𝑋𝑋 = 𝑥𝑥|zero state]𝐼𝐼{𝑥𝑥 = 0}𝑃𝑃(zero state) 
 

                                 +𝑃𝑃[𝑋𝑋 = 𝑥𝑥|Poisson state][1− 𝑃𝑃(zero state)]                                 
                  

          = 𝜋𝜋𝐼𝐼{𝑥𝑥 = 0} + (1− 𝜋𝜋)𝑒𝑒−𝜇𝜇𝜇𝜇𝑥𝑥/𝑥𝑥!   ,                                                                 (4)  
 
𝑃𝑃[𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥] = 𝜋𝜋𝐼𝐼{𝑥𝑥 = 𝑦𝑦 = 0} + (1− 𝜋𝜋)𝑒𝑒−(𝛾𝛾𝑥𝑥)(𝛾𝛾𝑥𝑥)𝑦𝑦/𝑦𝑦!                                  (5)                 
 

𝑥𝑥, 𝑦𝑦 = 0,1,⋯ 
 
Through 𝛾𝛾𝑥𝑥, the model relates a missing Y to an observed X, making imputation possible.  
In the bivariate ZIP model, we assume: 

a) Observations stay in the same state from one year to the next. 
b)  𝑌𝑌 and 𝑋𝑋  have an approximate linear relationship: 𝑌𝑌 ≈ 𝛾𝛾𝑋𝑋 + 𝑒𝑒  such that on 

average 𝛾𝛾𝑥𝑥 equals 𝜇𝜇𝑦𝑦.  
c) The regression relationship may involve covariates v. 

 
Covariates can enter into the model in three places: in the logistic regression model for 
 𝑝𝑝𝑖𝑖 , in the loglinear Poisson regression model for 𝜆𝜆𝑖𝑖 , and in the regression of Y on X  for 
𝛾𝛾𝑖𝑖 . 

a) Logistic regression for P[zero class] 
 

logit(𝜋𝜋𝑖𝑖) = 𝒗𝒗𝑖𝑖′𝒃𝒃                                   ⇒ 𝜋𝜋𝑖𝑖 = 𝑒𝑒𝒗𝒗𝑖𝑖′𝒃𝒃 �1 + 𝑒𝑒𝒗𝒗𝑖𝑖′𝒃𝒃�                        (6) �  
 

b) Poisson regression for mean of X 
 

 log(𝜇𝜇𝑖𝑖) = 𝒗𝒗𝑖𝑖′𝒂𝒂                                     ⇒ 𝜇𝜇𝑖𝑖 = 𝑒𝑒𝒗𝒗𝑖𝑖′𝒂𝒂                                              (7) 
 

c) Regression of Y on X 
 

log(𝛾𝛾𝑖𝑖) = 𝒗𝒗𝒊𝒊′𝒄𝒄                                      ⇒ 𝛾𝛾𝑖𝑖 = 𝑒𝑒𝒗𝒗𝒊𝒊′𝒄𝒄                                                (8) 
 
where 𝒗𝒗 is a vector of covariates; 𝒂𝒂,𝒃𝒃, and 𝒄𝒄 are vectors of regression coefficients  and  𝛾𝛾 
is the slope in the regression of 𝑌𝑌 on 𝑋𝑋.  
  
  
3       Simulation Study 

 
3.1   Generating Simulated Data 
 
 These simulated data were generated based on a bivariate ZIP model.  An R program for 
generating the data was written according to formulas (4) and (5) in Section 2.  The total 
sample size was N = 3,000.  One covariate, G, with three levels was created.  The 
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subgroup sizes were n1 = 1,200, n2 = 1,500, and n3 = 300.  The missing values were 
randomly selected within each group: 120 (10%) from Group 1, 225 (15%) from Group 
2, and 15 (5%) from Group 3.  The overall correlation of 𝑥𝑥 and 𝑦𝑦 was 0.87. 
 
Table 1 Simulation Values 

   
These simulated values are simplifications of values observed in the real data set of 
Section 4. 
 
3.2   Analysis of Simulated Data 
 
In the simulation study, we attempted to use reasonably informative priors for the 
unknown parameters in Equations (4) and (5).  We believe that if the prior is too vague, it 
can lead to numerical instability causing BUGS to crash.  Since we have a sample size of 
N = 3,000, we expect the prior effect to wash out because N is large.  The prior 
distributions of the parameters are listed in Table 2.  The precision parameters 𝜏𝜏𝑏𝑏 and 𝜏𝜏𝑐𝑐 
were given Gamma (0.1, 0.1) priors. 
 
Table 2   Parameters, Priors and Estimates Based on Simulated Data  

Parameter True Prior choices Estimate SD CV 
𝑏𝑏1 -2.2 norm(-2, 𝜏𝜏𝑏𝑏) -2.26 .096 0.04 
𝑏𝑏2 -2.0 norm(-2, 𝜏𝜏𝑏𝑏) -2.06 .080 0.04 
𝑏𝑏3 -1.7 norm(-2, 𝜏𝜏𝑏𝑏) -1.77 .152 0.09 
𝑐𝑐1 .05 norm(0, 𝜏𝜏𝑐𝑐) 0.043 .0078 0.18 
𝑐𝑐2 .00 norm(0, 𝜏𝜏𝑐𝑐) -0.006 .0074 ----- 
𝑐𝑐3 -.05 norm(0, 𝜏𝜏𝑐𝑐) -0.040 .0143 0.36 

 
The estimated parameters, standard deviations and CVs are also presented in Table 2.  All 
the parameter estimates were in 95% credible intervals.  Parameters 𝑏𝑏3 and 𝑐𝑐3 have larger 
standard deviations than their counterparts.  This is probably because of the smaller 
sample size of group 3.  The 𝒄𝒄 parameters are more difficult to estimate than the 𝒃𝒃 
parameters; this is because when the pair (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is incomplete, no contribution to the 
likelihood for estimation of 𝒄𝒄 parameters is provided.  The true value for 𝑐𝑐2  was set to 0 
and the estimate of 𝑐𝑐2 is close to 0, so no CV is provided for 𝑐𝑐2 . 
 
The 95% credible interval and sum of squared (SS) of imputation errors are used to 
measure the imputation performance.  SS is defined as 
 

𝑆𝑆𝑆𝑆 = �
�𝑦𝑦i,imp − 𝑦𝑦i,true�

2

number of values imputed.                                                                       (9)  

 
We observed SS = 15.8 and overall 96% of the true values were covered by their 95% 
credible intervals. 
  

G n Missing in Y b c Mean (X) 
Level 1 1,200 120 (10%) -2.2 .05 17 
Level 2 1,500 225 (15%) -2.0 .00 15 
Level 3 300 15 (5%) -1.7 -.05 20 
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4   Analysis of Real Data 
 
Annual Survey of Public Employment & Payroll (ASPEP)  
 
The Annual Survey of Public Employment & Payroll (ASPEP) is a survey conducted 
annually that seeks to estimate the employment and payroll data for state and local 
governments in all states plus the District of Columbia.  The ASPEP contains five type of 
government: counties, municipalities, townships, special districts, and school districts.  
There are five variables collected on the ASPEP form: Full-Time and Part-Time Payroll, 
Full-Time and Part-Time Employment, and Part-Time Hours.  This paper focuses on 
Independent School Systems, Part-Time Employment (PTE), numbers of part time 
employees, in local government independent school systems.  The design variables are 
State (50 states plus D.C.; 51 levels), Function (or job type; 5 levels; see Table 4 for 
detail), and School Level (7 levels).   
 
Table 3 summarizes PTE observations for Independent School Systems in 2012.  We see 
that PTE has excessive zeros and a high non-response rate.  We notice that for reported 
data only, the proportion of zero values is 18% (4,045/22,086); while in the imputed data, 
the proportion of zero values is 67% (10,711/15,998). 

 
Table 3    Zero Proportion and Non-response Rate of PTE Variable 
2012 ASPEP Independent School System Part-
time Employment  

Reported Status 
Imputed Reported Total 

Observation Values Zero 10,711 4,045 14,756 
(38.7%) 

Positive Value 5,287 18,041 23,328 
(61.3%) 

Total 15,998 
(42.0%) 

22,086 
(58.0%) 

38,084 
(100%) 

 Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau 
  
From Table 4, we see that the PTE variable is not missing completely at random 
(MCAR), the rates of missingness vary across the levels of the Function variable. 

Table 4    2012 ASPEP Independent School Part-time Employment Variable Missing 
Status       
2012 ASPEP Independent School System 
Part-time Employment 

Reported Status 
Imputed Reported Total 

Function  012 
Elementary/Secondary Education Instructional 

3,227 
(24%) 

10,489 
(76%) 

13,716 

016 
Higher Education – Other 

3,183 
(88%) 

444 
(12%) 

3,627 

018 
Higher Education – Instructional 

3,183 
(88%) 

445 
(12%) 

3,628 

052 
Libraries 

3,177 
(96%) 

123 
(4%) 

3,300 

112 
Elementary/Secondary Education – Other 

3,228 
(23%) 

10,585 
(77%) 

13,813 

Total  15,998 22,086 38,084 
Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau  
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We analyzed a subset of the ASPEP Part-time employment data, totaling 1,525 units, 
measured in both Year 2011 and Year 2012, respectively.  These 1,525 units responded 
to all survey items, yielding 3,174 counts of the above Function codes.  The correlation 
between 𝑥𝑥 (PTE, Year 2011) and 𝑦𝑦 (PTE, Year 2012) is 0.92.  Descriptive statistics of the 
complete data set are presented in Table 5. 
 
Table 5    Descriptive Statistics of Complete Data Set   
Function 𝑁𝑁 Variable  Mean  SD Growth 

Rate (𝑦𝑦�/�̅�𝑥) 
012 
Elementary/Secondary Education - 
Instructional 

1,373 𝑥𝑥 228 484 0.97 
𝑦𝑦 222 487 

016 
Higher Education - Other 

169 𝑥𝑥 487 546 0.99 
𝑦𝑦 480 514 

018 
Higher Education - Instructional 

205 𝑥𝑥 498 562 1.04 
𝑦𝑦 518 529 

052 
Libraries 

13 𝑥𝑥 30 32 0.70 
𝑦𝑦 21 21 

112 
Elementary/Secondary Education - 
Other 

1,414 𝑥𝑥 175 477 1.03 
𝑦𝑦 180 677 

Total  3,174     
Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau 
 
The data contain 312 zeros in PTE2011 and 287 zeros in PTE2012.  This situation is 
shown in Table 6 for our data.   

 
Table 6   Observations Class Status by Year  
  PTE2012 
  Zero Value Positive Value  Total 
PTE2011 Zero Value 152 160 312 

Positive Value 135 2,727 2,862 
Total 287 2,887 3,174 

Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau 
 
One set of missing data is created by randomly selecting and removing 913 observations 
from 𝑦𝑦, resulting in 29% missing overall.  Missing at random (MAR) data, are created by 
randomly choosing observations from each function where the missing rate is 
proportional to the original data, shown in Table 4.  In this data file, there are several 
available covariates:  state (51 levels), function (5 levels), school level (7 levels), 𝑥𝑥 
(count variable).  

 
Modeling issues 
  
Some data features became modeling challenges: 
 

a) Covariates  
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Covariate state has 51 levels. When all the covariates are used in the model, some state x 
function cells contain no observations or only very few observations.  This creates sparse 
data problems.  
  

b) Distribution 
The minimum value of both variables is zero and their maximum values are about 6,500.  
The means are around 270.  If these data had a Poisson distribution, there should have 
been at most a few zero values; however, there is a high percentage of zeros in the data.  
If all the zeros are taken out and we take a log transformation on the rest of the data, the 
data are still far from normally distributed.  See the QQ plot in Figure 1.   
  

 
Figure 1   QQ Plot of Part-Time Employment Data in Year 2012 
Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau 

 
c) Overdispersion 

From Table 5, we see that the ASPEP data set has an overdispersion problem.  For 
example, the function 012 has sample mean 228 and standard deviation of 484.  In a 
Poisson distribution, the mean should equal the variance.  
 

d) Constant variance 
From Figure 2, we see there is a linear relationship between Y and X .  However, the 
variance of Y given X seems constant: the variance for small values is about the same as 
for large values.  The model says that Var(Y|X) should be small if X is small, large if X is 
large.  That means the Poisson model does not describe this data well. 
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Figure 2   Scatter plot of part-time employment data in years 2011 and 2012 
Source: Annual Survey of Public Employment & Payroll, U.S. Census Bureau 
 
Results 
 
The bivariate ZIP model is too simple to handle the complicated ASPEP PTE data.  For 
model parameters, 4 slope estimates are outside of the 95% interval; 5th slope estimate 
has a wide interval.  For imputed values, sum of squares of imputation errors SS = 22,859 
and the proportion of true values covered by their 95% credible interval is only 52%.  
Clearly, the poor coverage rate of the bivariate ZIP model also suggests a lack of fit. 
 
 
5   Conclusions and Future Research 
 
We have created a bivariate ZIP model to impute year-to-year zero-inflated count data.  
One nice feature of this bivariate ZIP model is that it takes the Bayesian approach 
through MCMC and is able to provide credible intervals for imputed values.  Traditional 
imputation methods are unable to do this. 
 
In the simulation study, the model performed well in regression coefficient estimation; all 
parameter values are within their 95% credible interval.  Similarly, the missing value 
imputation was successful; the true values fell in their 95% credible intervals in 96.8% of 
cases.   
 
We applied our models to data on part-time employment in independent school districts, 
collected from the Annual Survey of Public Employment & Payroll (ASPEP).  The 
ASPEP data has covariates with many levels, unknown distribution, overdispersion, and 
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nearly constant variance.  The bivariate ZIP model did not fit the ASPEP data.  Only 52% 
of true values were covered by their 95% credible intervals. 
 
In the future, an extension of the bivariate ZIP model will be created.  We are developing 
a mixed effects bivariate negative binomial model, which will address the features of the 
ASPEP data mentioned in the previous paragraph.  
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