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Abstract 

 

The main objective of sampling is to obtain a representative sample for an unbiased and 
efficient estimate within a budget constraint. In a balanced sample, according to Yates’ 
definition (Yates, 1971), the mean value of the balanced factor in the sample is equal to the 
mean of the factor in the population. In this study, a balanced sample is not a purposively 
selected sample but a randomly selected one. Another important reason for a balanced 
sample is to protect the inference against a model misspecification (Royall & Herson, 
1973a; Royall & Herson, 1973b). In this work, we propose and demonstrate a practical 
balancing method which would be a small modification to currently practiced design-based 
sampling procedures for small and large-scale surveys. We demonstrate practicality of our 
approach with a simulation of sample selection from 3,143 U.S. Counties for estimates of 
the total and mean population sizes in 2010 with Census 2000 count and State indicator as 
auxiliary variables. Our simulation study indicated that a balanced sample was good for 
reducing bias regardless of the particular sorting method. Rather than selecting a random 
sample from an ordered frame, we should try to find a balanced sample for an unbiased 
estimate. 
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1. Introduction 

 
The main objective of sampling is to obtain a representative sample for an unbiased and 
efficient estimate within a budget constraint. In a balanced sample, according to Yates’ 
definition (Yates, 1971), the mean value of the balanced factor in the sample is equal to the 
mean of the factor in the population. In this study, a balanced sample is not a purposively 
selected sample but a randomly selected one. Another important reason for a balanced 
sample is to protect the inference against a model misspecification (Royall & Herson, 
1973a; Royall & Herson, 1973b). Several approaches including a systematic selection 
method for a balanced sample have been proposed and practiced (Deville & Tille, 2004; 
Valliant, Dorfman, & Royall, 2000).  
 

                                                            
 The findings and conclusions stated in the manuscripts are solely those of the authors. 
They do not necessarily reflect the views of the National Center for Health Statistics or 
the Centers for Disease Control and Prevention. 
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2. Research Objective 

 
In this work, we propose and demonstrate a practical balancing method which would be a 
small modification to currently practiced design-based sampling procedures for small and 
large-scale surveys. Consider the problem of selecting size 𝑛 sample from a population 
of 𝑁 elements. There would be 49,950 ways to select a size 2 sample from a population of 
1,000 elements. The simple random sampling procedure would give an equal chance to 
each of the potential 49,950 samples. With a systematic selection procedure (Cochran, 
1977; Kendall, Stuart, & Ord, 1983; Sarndal, Swensson, & Wretman, 1992), there would 
be 500 possible samples of size 2 from a population of 1,000 ordered elements. There 
would be 6.3851 × 10139 potential simple random samples of size 100 from a population 
of 1000 elements! Meanwhile, there would be only 10 possible systematic samples of size 
100 from a population of 1,000 ordered elements. It would be a daunting task to evaluate 
all the sample properties for 6.3851 × 10139 potential simple random samples even with 
a super-fast modern computing machine. Evaluating sample properties of the 10 possible 
systematic samples and determining a best sample would be a relatively easier task. 
 
The current general approach for selecting a sample from a finite population is to randomly 
select a single set of sample units from the possible samples by systematic selection with 
the help of auxiliary variables, and release the selected sample for field work without 
evaluating the selected sample for balancing. All the estimators and their accuracy depend 
on representativeness of the selected and released sample. What if the selected sample is 
an unrepresentative and skewed sample? We argue that we could choose a “balanced” 
random sample by utilizing available auxiliary variables    
 
 

3. Simulation 

 

We demonstrated the practicality of our approach with a simulation of sample selection 
from 3,143 U.S. Counties for an estimate of the total population in 2010, with Census 2000 
count and State indicator as auxiliary variables. 
 
Let 𝑎 be the integer sampling interval and 𝑚 be the integer part of 𝑁 𝑎⁄ , where 𝑁 is the 
number of U.S. Counties (3,143). Then, 
 

𝑁 = 𝑚𝑎 + 𝑐, 
 
where the integer c is 0 ≤ 𝑐 < 𝑎. The sample size (𝑛) is either 𝑚 or 𝑚 + 1, depending on 
the random start. If 𝑐 = 0, then 𝑛 would be 𝑚. Details of the systematic sampling method 
can be found in standard sampling textbooks (Cochran, 1977; Sarndal, Swensson, & 
Wretman, 1992). For our simulation, each sample consists of 49 or 50 Counties, and there 
are 63 unique sets of sample Counties from the ordered frame of U.S. Counties. 
 

Sorting. Before implementing systematic selection, the sampling frame was ordered. The 
following five sorting methods were applied: 
 

a. Random: A random number was generated for each County from a 
uniform distribution between 0 and 1, and the whole frame was sorted by 
the random numbers. 
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b. State and Random: The frame was sorted by State and the random numbers 
generated as in a. 

c. Ascending: The frame was sorted by Census 2000 County population 
counts in ascending order. 

d. State and Ascending:  The frame was sorted by State and Census 2000 
County population counts in ascending order. 

e. State and Serpentine: The frame was sorted by State and Census 2000 
County population counts in a serpentine order. Alternating the ascending 
and descending order was sequentially applied to the list of States. 
Specifically, the Counties in the first State were sorted in ascending order 
and the Counties in the second State were sorted in descending order, and 
so on. 

 
 
 

4. Results 

 
As discussed, there were 63 sets of samples of size 49 or 50 from an ordered set of 3,143 
Counties. The magnitude of balancing was measured by 
 

|𝜇 − 𝑥̅|, 
 
where 𝜇  is the average of 3,143 County Census 2000 population counts and 𝑥̅  is the 
average of sampled Counties’ Census 2000 population counts. A smaller value would 
indicate that the sample is more balanced. 
 
 The objective of sampling was to estimate the total U.S. country population size and 
corresponding mean. The Horvits-Thompson estimator (Horvitz & Thompson, 1952) of 
the total is: 

𝑡̂𝐻𝑇 =
𝑁

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

, 

 
where 𝑦𝑖 is the 2010 population count of the 𝑖𝑡ℎ sampled County. The variance estimator 
was estimated by Cochran’s method (Cochran, 1946): 
 

𝑉𝑎𝑟(𝑡̂𝐻𝑇) =
𝑁2

𝑛(𝑛 − 1)
(1 −

𝑛

𝑁
) ∑ (𝑦𝑖 −

𝑡̂𝐻𝑇

𝑁
)

2𝑛

𝑖=1

. 

 
Corresponding Horvits-Thompson estimators of the mean and its variance are 

𝜇̂𝐻𝑇 =
𝑡̂𝐻𝑇

𝑁
, and 

𝑉𝑎𝑟(𝜇̂𝐻𝑇) =
1

𝑁2
𝑉𝑎𝑟(𝑡̂𝐻𝑇). 

Bias. First, we looked at the relationship between sample balancing and the bias of an 
estimate. Each graph in Figure 1 shows the relationship between sample balancing and bias 
of estimates. Bias is defined as the difference between the actual population mean and the 
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estimate (𝜇̂𝐻𝑇) from a sample. With regards of the specific sorting method, all 5 graphs 
indicate that better balancing is associated with a smaller bias. 

Estimated Variance. Figure 2 shows the relationship between balancing and the estimated 
variance of the U.S. 2010 population mean. In general, a better balanced sample is not 
necessarily related to a lower estimated variance with the exception of sample selection 
from the frame with ascending sorting order. The best balanced sample generated slightly 
larger variance for samples from the frame with ascending sorting order. 

Mean Squared Error (MSE). Figure 3 shows the relationship between balancing and the 
mean squared error. MSE is defined as the sum of variance and biased squared. We looked 
at the MSE’s since the bias is exactly known in this simulation. Basically, relationships 
between balancing and MSE mirrored those between balancing and variance. 

 

5. Concluding Remarks 

Our simulation study indicates that a balanced sample is good for reducing bias regardless 
of the particular sorting method. Rather than selecting a random sample from an ordered 
frame, we should try to find a balanced sample for an unbiased estimate. However, 
balanced samples are not necessarily related to smaller variances and MSE’s. We should 
note that a sample is a balanced one if the sample mean of an auxiliary variable is 
equivalent to the population mean. There could be many ways to obtain the same sample 
mean. The estimated variance of a sample with the same mean but similar values would be 
smaller than the estimated variance of a sample with the same mean but vastly differing 
values. Therefore, it is not surprising to see a larger variance for balanced sample. The 
interesting relationship between balancing and variance and its functional form in the 
samples from the frame with an ascending order of Census 2000 population size should be 
examined further.  Further research will be pursued applying other balancing methods (e.g., 
over-balancing) and/or utilizing auxiliary variable (Census 2000 count in this simulation) 
as a measure of size for unequal probability samples (Royall & Herson, 1973a; Royall & 
Herson, 1973b). 
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Figure 1. Balancing and Bias 

  

𝜇 :Census 2000 Population Mean (89540.12) 
𝑥̂ :Census 2000 Sample Mean 
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Figure 2. Balancing and Estimated Variance 

  

𝜇 :Census 2000 Population Mean (89540.12) 
𝑥̂ :Census 2000 Sample Mean 
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Figure 3. Balancing and Mean Squared Error 

  

𝜇 :Census 2000 Population Mean (89540.12) 
𝑥̂ :Census 2000 Sample Mean 
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