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Abstract 
Randomized response methods (RRMs) are proposed in survey sampling as a solution to 
the problem of social desirability bias (SDB) when dealing with sensitive questions. 
RRMs reduce the SDB by providing privacy protection for respondents. However, their 
variances are inflated with respect to the direct questioning method (DQM); in other 
words, the RRMs provide unbiased estimators in exchange for less precision with respect 
to the DQM. The success of an RRM heavily depends on the assumption that the question 
under study is in fact sensitive. However, the question of interest may not be considered 
as really sensitive by some of the respondents, in which case using an RRM instead of the 
DQM inflates the variance of the estimates. In this study, we propose a two-stage 
sampling design where one can accurately estimate the prevalence of the sensitive 
characteristic under study without paying the price of the inflated variance by choosing 
between the proposed model and the DQM. With the proposed model one can also 
estimate the probability of cheating in the population.  
 
Key Words: Randomized Response Methods, Warner Model, Social Desirability Bias, 
Mean Square Error. 
 
 

1. Introduction 
 
When administering surveys, researchers might be interested in asking questions that 
could be considered as being personal in nature by participants. If sensitive questions are 
asked directly, it is highly possible to get false responses in which participants report a 
more socially desirable answer instead of the true one. Participants might do this for 
many reasons: they might feel embarrassed, they might question the confidentiality of the 
survey or they might think they will get into trouble with the law. For example, suppose 
the question of interest is “Have you ever hit your children?” Then, a respondent is more 
likely to answer this question with a “no” even if the true answer is a “yes”, because 
although there is no federal law generally governing how parents must conduct 
themselves with regard to their children, hitting one’s own children is a sensitive moral 
topic for many parents. 
 
Warner (1965) was the first researcher who built a model to counteract the problem of 
social desirability bias (SDB). He proposed a randomized response method (RRM) to 
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deal with stigmatizing questions. Basically, he suggested to use a spinner with its circle 
divided into two mutually exclusive areas as such as A and A , with known probabilities 
  and 1 , respectively )10(  . Let A be the sensitive characteristic that we are 
interested in studying. In Warner’s RRM, the area A corresponds to the statement “I 
belong to group A”, and the area A  corresponds to the statement “I do not belong to 
group A” (or equivalently “I belong to group A ”). Unobserved by the interviewer, the 
participant is asked to spin the spinner. If the spinner lands on A, the respondent has to 
answer the statement: “I belong to group A” with a “yes” or “no”. If the spinner lands on 
A , then the respondent has to answer the contrary statement “I do not belong to group 
A” with a “yes” or “no”.  An example to such statements above can be given as: 
 
“I am a drug user” (i.e. “I belong to group A”) 
“I am not a drug user” (i.e. “I do not belong to group A”). 
 
Since the interviewer does not know where the spinner lands and just records a “yes” or 
“no” response without knowing which statement the participant is answering, this method 
gives privacy protection to the respondents by reducing privacy concerns and thus 
reduces the number of refusals or evasive answers. 
 
Since the publication of Warner’s model in 1965, a great deal of research has been done 
on RRMs such as Greenberg et al. (1969, 1971), Gupta (2001), Gupta et al. (2002, 2004, 
2007, 2013), Yu et al. (2015) and many more. However, despite all the advances in the 
area, RRMs are known to have some limitations; see Chaudhuri and Mukerjee (1988), 
Chaudhuri (2011) and Tian and Tang (2014) for a comprehensive review on RRMs.  
 
A common feature of all RRMs is that they lead to more accurate estimates of the 
sensitive characteristic of interest compared to the direct-questioning method (DQM); 
however, while providing estimates with smaller biases, they all inflate the variance of 
the estimators which is due to the randomization process. In fact, there is a direct 
relationship between the privacy level and the variance of the estimates from RRMs: as 
the level of privacy increases, the variance of the estimates also increases (Chaudhuri and 
Mukerjee, 1988). As a result, the number of participants surveyed using an RRM has to 
be larger than the number of participants surveyed with DQM in order to get an estimate 
of the true mean response with the same confidence margin. More importantly, the 
sensitive question of interest may not be considered as truly sensitive by most of the 
respondents in particular populations, in which case using an RRM instead of the DQM 
inflates the variance of the estimates unnecessarily. As an example, in a research study 
where the surveyed population is the patients in an HIV clinic, questions regarding with 
“HIV status” might not be considered as sensitive at all by the respondents.  
 
When a question’s sensitivity level is low in the population of interest, using an RRM 
instead of DQM inflates the variance of the estimates unnecessarily, thus, in this study we 
propose a two-stage sampling model for a binary response where one is able to choose 
between the RRM and DQM. With the proposed model, one can both estimate the 
prevalence of the sensitive characteristic under study and also the probability of cheating 
in the population simultaneously, and thus, the proposed model enables one to obtain 
more accurate estimates by avoiding the unnecessary penalty if the question is not in fact 
highly sensitive. For simplicity we consider the well-known Warner’s RRM in the 
proposed model for the randomization process.  
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2. Warner’s RRM 
 
In Warner’s model, which is the first and simplest RRM, the respondents are provided a 
randomization device by which they randomly chose one of the two questions “Do you 
belong to group A?” or “Do you belong to group A ?” with known probabilities   and 

1  respectively )10(  , and reply truthfully as “yes” or “no” to the question chosen. 
If we denote the unknown proportion of population members belong to group A with A  
where 10  A  and let  
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of A  follows as (Warner, 1967)  
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which can be estimated by replacing A  by its unbiased estimate AW̂ . Realize that taking 
 =1 or  =0 in Warner’s model corresponds to the DQM. Also, realize that the second 
term in (2) corresponds to the excess variance resulting from using Warner’s model 
instead of using DQM. Thus, although considering very high (  1) or very low (  0)   
values would decrease the total variance in (2), considering such   values will violate 
privacy protection and bring in SDB. Particularly, considering  =0.5 would give the 
respondents maximum privacy protection; however, it would also make AW  non-
estimable and blow up the variance given in equation (2). In fact, it is a well-known fact 
that efficiency and privacy protection are generally in conflict within the context of 
RRMs; see Chaudhuri and Mukerjee (1988) for details. As a result, although the RRMs 
reduce the response bias in surveys with sensitive questions, there is a price paid for 
using them instead of DQM, which is the inflated variance.  
 
Thus we propose a procedure below that will allow one to choose between an RRM and 
DQM, by estimating the cheating proportion in the target population for a sensitive 
question. With the proposed two-stage design, we can classify a question as being either 
sensitive or not-sensitive, and use the estimates from RRM only if the question is 
categorized as sensitive.  

 
2. Proposed Model for Binary Data 

 
In the proposed model, we assume that the characteristic under study is socially 
unacceptable in nature. We define “cheating” as not telling the truth in the DQM and we 
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assume that if a respondent cheats, he/she always answers in favor of the least 
stigmatizing category. This assumption is called Self-Protective no saying (Hout et al., 
2010) when the characteristic under study is socially unacceptable in nature.  
 
Assume that we apply a survey via DQM and the unknown proportion of population 
members belong to group A is denoted by A  where 10  A . Let 
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with probabilities AiXP  )1(  and AiXP  1)0( , respectively, where ni 1 , and 
let 
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with probabilities TiTP  )1(  and TiTP  1)0( , respectively. We can write the joint 
probability mass function (pmf) of DX  and T  as given below  
 

iDX iT    0 1 pmf 
0 T1  A1  D1  
1 0 D  D  

pmf T1  T  1 
 
Realize that if we define a new random variable for 20  j  such that 
 

 
 
 




















DiD

AiD

TiD

ij

TX
TX
TX

Y

i

i

i







yprobabilitwithif2,
yprobabilitwithif1,
yprobabilitwithif0,

1,1 
)(1,0 
)(0,0

),(
1),(
1),(

 

 
then the joint pmf ),,(),( 221100 iiiiiiiD yYyYyYPTXP

i
  can be considered as a 

multinomial distribution with three categories: 
 
  21)()( 11),,( 0

221100
ii

y
D

y
A

iy

Tiiiiii yYyYyYP                    
 
when  


2

0
1

j ijy  for ni 1 .  
 

In a Self-Protective no saying model, when we use DQM, we can write the 
probability of belonging to group A as 
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which reduces to 
 

)1( TDA                                                                                                     (3) 
 

from the joint pmf given above. When the characteristic under study is socially 
unacceptable in nature and if some respondents are known to answer untruthfully, then 
the estimator from DQM will underestimate the true proportion A , thus the estimate of 
bias T1  needs to be added to the estimate of D  in order to attain an unbiased estimate 
of A . Since the SDB is not observable in a DQM, we propose applying a two-stage 
model, which allows one to obtain an estimator for T1 .  
 
In the proposed model, we first ask the respondents the sensitive question “Do you 
belong to group A?” with DQM and record their answers, then we provide a 
randomization device by which they randomly chose one of the two questions “Did you 
answer the previous question truthfully?” or “Did you answer the previous question 
untruthfully?” with known probabilities   and 1 ,  respectively )10(  . Thus, by 
combining DQM and Warner’s RRM in the same model, one can estimate the SDB, 
choose between the DQM or the combined model, and hence avoid paying the price of 
the increased variance. To illustrate the proposed two-stage design, we provide the 
following chart below: 
 

 
 

 
 
 
 
                                                          
                                                              Yes         No 
 
 
 

 
                                    1-                           

 
 
 
 
 
 
 
Figure 1: Proposed two-stage design for binary data 
 
 
Now, let 
 

Respondent is approached by the interviewer 

 “Do you belong to group A?” 
 

Warner’s spinner 
 

I answered the  
previous question   

truthfully 
 

I answered the  
previous question 

untruthfully 
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then, the probability of getting a “yes” response from first stage is 

    11 TTR . Solving this equation with respect to T1  (the proportion of 
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, it follows from (5) that the proposed 

estimator is unbiased, and the variance of the proposed estimator can easily derived as 
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Details of the proposed model, as well as the derivations of the formulas given above are 
provided in a recently submitted paper by Ardah and Oral (2015). The variance in (6) can 
be estimated by replacing D  with 
 

  
n

nD

D
1ˆ                                                                                                                  (7) 

 
and by replacing T1  with its estimate (4). Clearly, the proposed estimator’s variance 
also includes a penalty for using a randomization process, namely the Warner’s RRM. 
However, realize that the proposed framework enables one to estimate A  both from (5) 
and also from (7) using DQM; furthermore it allows one to estimate the cheating 
proportion in the study population from (4). Thus, although the proposed two-stage 
model’s variance equals to the Warner’s model’s variance, it has a clear advantage: it lets 
one to choose between the estimators (5) and (7) by estimating the cheating proportion in 
the study population; more details are given in Ardah and Oral (2015). 

 
3. Simulation Study 

 
In order to study the behavior of the proposed design, we performed the following 
simulation study. For the sample size n=100, assuming that 3.0A  (without loss of 
generality), we changed the values of T1 , i.e. the proportion of the cheaters, from 0 to 
0.25 and obtained the estimates and MSE values from both DQM and proposed model for 
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several different   values, specifically for  =0.1, 0.3, 0.35, and 0.4. We also calculated 
the relative efficiency (RE) values, which is defined as the MSE of the proposed model 
over MSE of the DQM. The results from 10,000 runs are given in the table below. 
 

Table 1: Simulation results for n=100. T represents the results from the proposed two-
stage model; DQM represents the results from the DQM.  

 

 

T1  0 0.01 0.025 0.05 0.1 0.2 0.25 

  

        0.1 Bias(T) 0.00040 0.00076 0.00049 0.00011 0.00104 0.00027 0.00004 

 

Bias(DQM) 0.00057 0.01030 0.02514 0.05039 0.10041 0.20001 0.25000 

 

Theoretical Var(T) 0.00351 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 

 

Empirical Var(T) 0.00348 0.00362 0.00361 0.00370 0.00379 0.00396 0.00370 

 

MSE(T) 0.00350 0.00351 0.00350 0.00351 0.00350 0.00350 0.00350 

 

MSE(DQM) 0.00210 0.00216 0.00267 0.00437 0.01163 0.04106 0.06304 

 

R.E. 1.66660 1.62830 1.30880 0.80400 0.30100 0.08520 0.05550 

0.3 Bias(T) 0.00106 0.00086 0.00029 0.00211 0.00021 0.00113 0.00017 

 

Bias(DQM) 0.00014 0.00993 0.02464 0.05031 0.10022 0.19992 0.25003 

 

Theoretical Var(T) 0.01523 0.01523 0.01523 0.01521 0.01522 0.01522 0.01523 

 

Empirical Var(T) 0.01521 0.01536 0.01532 0.01545 0.01537 0.01564 0.01528 

 

MSE(T) 0.01523 0.01523 0.01522 0.01522 0.01522 0.01522 0.01523 

 

MSE(DQM) 0.00210 0.00216 0.00264 0.00435 0.01162 0.04074 0.06304 

 

R.E. 7.25190 7.06640 5.75900 3.49810 1.31040 0.37360 0.24160 

0.35 Bias(T) 0.00070 0.00103 0.00036 0.00148 0.00018 0.00083 0.00189 

 

Bias(DQM) 0.00088 0.01003 0.02469 0.05018 0.10024 0.20007 0.25023 

 

Theoretical Var(T) 0.02738 0.02736 0.02738 0.02737 0.02737 0.02738 0.02738 

 

Empirical Var(T) 0.02733 0.02825 0.02736 0.02762 0.02779 0.02766 0.02767 

 

MSE(T) 0.02737 0.02739 0.02739 0.02737 0.02737 0.02737 0.02736 

 

MSE(DQM) 0.00210 0.00216 0.00262 0.00443 0.01153 0.04100 0.06295 

 

R.E. 13.0317 12.6549 10.4719 6.17940 2.37380 0.66760 0.43470 

0.4 Bias(T) 0.00019 0.00166 0.00188 0.00215 0.00420 0.00229 0.00330 

 

Bias(DQM) 0.00015 0.00993 0.02497 0.04955 0.10008 0.20002 0.24986 

 

Theoretical Var(T) 0.06211 0.06211 0.06209 0.06210 0.06208 0.06211 0.06209 

 

Empirical Var(T) 0.06075 0.06186 0.06351 0.06086 0.06270 0.06050 0.06208 

 

MSE(T) 0.06210 0.06210 0.06214 0.06209 0.06210 0.06209 0.06212 

 

MSE(DQM) 0.00210 0.00215 0.00259 0.00434 0.01177 0.04097 0.06286 

 

R.E. 29.5708 28.8351 23.9536 14.2930 5.27550 1.51550 0.98830 

 

JSM2015 - Survey Research Methods Section

2604



From the table above, it may be seen that the bias of the proposed model is 
always smaller than the bias of the DQM, excluding the case when there is no cheating 
(i.e. when )01  T , as expected. We also observe that theoretical and empirical 
variances are consistent with each other, which is also expected. An important result from 
these simulations is, when the cheating amount is small in the population, using DQM is 
always better than using the proposed two-stage model (RE>1); however, when the 
cheating proportion slightly increases then the proposed model becomes more efficient  
(RE<1). We also provided an alternative method of choosing between these two models 
in Ardah and Oral (2015). 
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