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Abstract
A single primary sampling unit (PSU) per stratum design is a popular design for estimating the pa-
rameter of interest. Although the point estimator of the design is unbiased and efficient, an unbiased
variance estimator does not exist. A common method for the variance estimation of this design is
based on collapsing or combining two adjacent strata, but the attained estimator of variance is not
design-unbiased, and the bias increases as the population means of collapsed strata become more
different. If in some situations an unbiased estimator of variance is needed, the 1 PSU per stratum
design with collapsed stratum variance estimator cannot be a good choice, and some statisticians
prefer a design in which 2 PSUs per stratum are selected. In this paper, we first compare a 1 PSU
per stratum design to a 2 PSUs per stratum design. Then, we propose an empirical Bayes estima-
tor for the variance of 1 PSU per stratum design. But the empirical Bayes estimator over-shrinks
towards the prior mean. To protect against this, we investigate the potential of the constrained empir-
ical Bayes estimator. Using a simulation study, we show that the empirical Bayes and constrained
empirical Bayes methods outperform the classical collapsed stratum variance method in terms of
empirical relative mean squared error.

Key Words: Collapsing strata, Constrained empirical Bayes estimator, Empirical Bayes estimator,
One PSU per stratum design, Two PSUs per stratum design, Variance estimation.

1. Introduction

A design in which one primary sampling unit (PSU) is selected in each stratum is theoret-
ically efficient for providing an unbiased estimator of a population parameter. However,
estimation of the variability of the attained estimator is impossible without considering any
implicit assumptions such as collapsing strata; such assumptions produce a design biased
estimator of the variance. Some examples that use stratified multi-stage with 1 PSU per
stratum design include the Current Population Survey (CPS) and the National Crime Vic-
timization Survey in the United States.

Due to the lack of an unbiased variance estimator for the 1 PSU per stratum design,
some survey statisticians would prefer to select 2 PSUs per stratum since variance esti-
mators for simple estimators like the Horvitz-Thompson estimator are unbiased. Surveys
such as the Survey of Income and Program Participation (SIPP) of the U.S. Census Bureau
and the U.S. Department of Agriculture’s National Resources Inventory use a multi-stage
two-per-stratum design and a stratified two-stage area sampling design, respectively. For
the design with 2 PSUs per stratum, an unbiased variance estimator for linear estimators
exists without any implicit assumptions, but the 1 PSU per stratum design still has its own
popularity because it allows deeper stratification.

The collapsed stratum method for variance estimation was first introduced by Hansen
et al. (1953). This method usually causes an overestimation in the variance of estimator;
therefore, Hansen et al. (1953) and Isaki (1983) used some auxiliary variables, which are
well-correlated with the expected values of the mean in each stratum, to reduce the bias
of variance estimator. In 1969, Hartley et al. proposed a method of grouping strata where
each group contains 7 to 15 strata and then applied a linear regression of the group means
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on one or more auxiliary variables for estimating the variance of 1 PSU per stratum design;
regression residuals used to estimate the stratum variance components. This method needs
further evaluation study on the performance before being used, and the bias of the variance
estimator depends on how well the regression model fits.

The idea of stratum boundaries being chosen by a random process prior to the sam-
ple selection was proposed by Fuller (1970). Fuller’s method is biased when the stratum
boundaries are not randomized beforehand. In 1987, Rust and Kalton examined the effects
of collapsing strata in pairs, triples, and larger groups on the quality of the variance estima-
tor and found that a greater level of collapsing is desirable when a small sample of PSUs is
selected. They mentioned some factors that might be considered in deciding on the extent
of collapsing.

Under the assumption of Durbin’s (1967) sampling scheme within collapsed strata,
Shapiro and Bateman (1978) applied the Yates-Grundy (1953) variance estimator. This
variance can be biased upward, but the bias is relatively smaller than the collapsed method,
and the variance estimator is more stable; however, for their empirical example, the authors
did not consider the same number of units in collapsed strata; this resulted in the collapsed
stratum variance performing poorly compared to the situation of having the same number
of units in each collapsed strata.

Mantel and Giroux (2009) proposed a new approach based on the components of vari-
ance from different stages of sampling. They studied the Canadian Health Measures Survey
(CHMS), a three-stage sample design, in which the number of PSUs per stratum is very
small. In the study, they assumed that a randomized PPS systematic (RPPSS) sampling
design was used for the CHMS; this assumption might introduce an unknown bias into the
variance estimation. They also could not calculate an uncollapsed variance estimate for the
Atlantic, the stratum with 1 PSU.

Recently, Breidt et al. (2014) proposed a nonparametric alternative method that re-
places a collapsed stratum estimator by kernel-weighted stratum neighborhoods and used
deviations from a fitted mean function to estimate the variance. They applied their method
to the U.S. Consumer Expenditure Survey to demonstrate the superiority of their method
over the collapsed stratum variance estimator. The estimator that they used is a natural non-
parametric extension of linear models proposed by Hartley et al. (1969) and Isaki (1983).

In fact, most of the alternative recommended methods for the collapsed stratum vari-
ance are based on the existence of some concomitant or auxiliary information; nevertheless,
this kind of desirable auxiliary information might not be readily available for all of strata.
So, finding an acceptable comparative variance estimator for the variance of 1 PSU per
stratum design without using auxiliary information is needed to decrease the bias and mse.

In Section 2 of this paper, we systematically compare the 1 PSU per stratum design
(Design 1) to the 2 PSUs per stratum desgin (Design 2) based on the actual variance of the
point estimator of population mean via a simulation study. In Section 3, we compare two
design strategies analytically and through a Monte Carlo simulation to find out whether
Design 1 performs better than Design 2 or not with respect to the coverage probability of
mean.

In Section 4, we propose two alternatives to the collapsed variance estimator for the
1 PSU per stratum design using an empirical Bayes and a constrained empirical Bayes
approaches. The findings of comparisons among the empirical Bayes estimator, constrained
empirical Bayes estimator, and classical collapsed stratum method for the variance of 1 PSU
per stratum design based on a simulation study are summarized in Section 5. We defer all
of the necessary proofs to the Appendix Section.
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2. Comparison of Design 1 and Design 2

For simplicity of exposition, we consider a stratified design with H strata where stratum
h (h = 1, ..., H) consists of Nh units. A sample of nh units is selected from stratum h
using simple random sampling without replacement. In many applications, these units
could be primary stage units. In this paper, we concentrate on single-stage sampling,
and we are interested in estimating the finite population mean Ȳ =

∑H
h=1WhȲh, where

Wh = Nh/NT , NT =
∑H

h=1Nh, and Ȳh is the finite population mean of the hth stra-
tum. The Horvitz-Thompson unbiased estimator of the finite population mean (Ȳ ) is given
by ȳst =

∑H
h=1Whȳh, where ȳh is the sample mean for the hth stratum. The associated

randomization-based variance is given by:

V (ȳst) =
H∑

h=1

W 2
h

1

nh
(1− nh

Nh
)S2

h, (1)

where S2
h =

∑Nh
j=1(yhj−Ȳh)

2/(Nh−1) is the finite population variance for the hth stratum.
Here, we compare two popular design options: nh = 1 (one PSU per stratum design,

say Design 1) and nh = 2 (two PSUs per stratum design, say Design 2). These two
options are widely used in the context of stratified cluster sampling and stratified multi-
stage sampling designs. To make a fair comparison of Design 1 and Design 2, we consider
2H strata for Design 1 and H groups, each with two strata, for Design 2; therefore, we
have an equal number of units (PSUs) for both designs.

The relative efficiency of Design 1 relative to Design 2 can be measured by design
effect deff= V2(ȳst)/V1(ȳst), where V1 and V2 are the randomization-based variances of
the same point estimator ȳst mentioned in (1). If deff> 1, Design 1 is more efficient than
Design 2. On the other hand, if deff< 1, Design 1 is less efficient than Design 2. If deff= 1,
the two designs are equivalent.

To compare Design 1 and Design 2, we conduct a Monte Carlo simulation study. Fol-
lowing Hansen et al. (1983), we generate a finite population of size NT = 20, 000 units
by drawing a random sample of size 20,000 from a bivariate superpopulation characterized
by two dimensional random vector (x, y), where the variable x has a gamma distribution
with shape 2 and scale 5, f(x)=.04x exp(−x/5), and the variable y (conditional on x) has
a gamma distribution with density function g(y;x) = (1/bcΓ(c)) yc−1 exp(−y/b), where
c = .04x−3/2(8 + 5x)2 and b = 1.25 x3/2 (8 + 5x)−1.

To compare the effects of the number of strata H on the relative efficiency, we consider
H = 10, 50, and 100 strata, which are formed based on the quantiles of x. We display
the results in Table 1. Overall, Design 1 performs better than Design 2 with considerable
efficiency for small H . However, efficiency diminishes as the number of strata increases
(see Table 1).

Table 1: Comparison of Design 1 and Design 2 Based on the Number of Strata
Design1 Design2 Comparison

H Nh V1(ȳst) H Nh V2(ȳst) deff =V2(ȳst)
V1(ȳst)

10 2000 0.2515 5 4000 0.2759 1.0969
50 400 0.0464 25 800 0.0469 1.0104

100 200 0.0229 50 400 0.0232 1.0109

To be able to assess the effects of differences in population means and population
variances within the collapsed strata on the randomization-based variance (1), we con-
sidered H = 10 strata and 5 strata for Designs 1 and 2, respectively, and employed some

JSM2015 - Survey Research Methods Section

2454



changes to the generated population’s means and variances within and between groups (col-
lapsed strata). We separately generated data for each stratum from the Normal distribution,
N(µ = mean(y), σ2 = var(y)) and considered different coefficients of k, 2k, 3k, 4k, 5k
(k = 1, 2) to implant some changes in µ and σ2 for groups (g) 1, 2, 3, 4, and 5, respectively.
The populations used for generating the data based on the Normal distribution are given in
Table 2, and the results of comparisons associated to the groups of Table 2 are in Table 3.

Table 2: Generated Populations from the Normal Distribution for the Comparison
Case Study Group 1 Group 2 Group 3 Group 4 Group 5

Ȳg1 ≈ Ȳg2 N(µ+ 1, σ2) N(µ+ 2, 2σ2) N(µ+ 3, 3σ2) N(µ+ 4, 4σ2) N(µ+ 5, 5σ2)
s2g1 ≈ s2g2 N(µ+ 1, σ2) N(µ+ 2, 2σ2) N(µ+ 3, 3σ2) N(µ+ 4, 4σ2) N(µ+ 5, 5σ2)

Ȳg1 ̸= Ȳg2 N(µ+ 1, σ2) N(µ+ 2, 2σ2) N(µ+ 3, 3σ2) N(µ+ 4, 4σ2) N(µ+ 5, 5σ2)
s2g1 ≈ s2g2 N(µ+ 2, σ2) N(µ+ 4, 2σ2) N(µ+ 6, 3σ2) N(µ+ 8, 4σ2) N(µ+ 10, 5σ2)

Ȳg1 ̸= Ȳg2 N(µ+ 1, σ2) N(µ+ 2, 2σ2) N(µ+ 3, 3σ2) N(µ+ 4, 4σ2) N(µ+ 5, 5σ2)
s2g1 ̸= s2g2 N(µ+ 2, 2σ2) N(µ+ 4, 4σ2) N(µ+ 6, 6σ2) N(µ+ 8, 8σ2) N(µ+ 10, 10σ2)

Ȳg1 ≈ Ȳg2 N(µ+ 1, σ2) N(µ+ 2, 2σ2) N(µ+ 3, 3σ2) N(µ+ 4, 4σ2) N(µ+ 5, 5σ2)
s2g1 ̸= s2g2 N(µ+ 1, 2σ2) N(µ+ 2, 4σ2) N(µ+ 3, 6σ2) N(µ+ 4, 8σ2) N(µ+ 5, 10σ2)

According to Table 3, when population means within groups are different, Design 1
is more efficient than Design 2; on the other hand, when the population means within
groups are similar, there is no preference between two designs. In addition, changes in
the population variances within the groups do not show any conspicuous effects on the
efficiency.

Table 3: Comparison of Design 1 and Design 2 Based on the Differences of Means and
Variances

Design1 Design2 Comparison

Case Study H Nh V1(ȳst) H Nh V2(ȳst) deff =V2(ȳst)
V1(ȳst)

Ȳg1 ≈ Ȳg2 10 2000 1.6198 5 4000 1.6198 1.0000
S2
g1 ≈ S2

g2

Ȳg1 ̸= Ȳg2 10 2000 1.6197 5 4000 1.9021 1.1743
S2
g1 ≈ S2

g2

Ȳg1 ̸= Ȳg2 10 2000 2.4310 5 4000 2.7047 1.1126
S2
g1 ̸= S2

g2

Ȳg1 ≈ Ȳg2 10 2000 2.4476 5 4000 2.4476 1.0000
S2
g1 ̸= S2

g2

JSM2015 - Survey Research Methods Section

2455



3. Variance Estimation in Design 1 and Design 2

3.1 Theoretical Expressions

As in section 2, we assume that we have two strata in each of the hth group and let Ngi

denote the population size for the ith stratum within the gth group. Let ygij denote the
value of the characteristic of interest for the j unit in the i stratum within the g group
(g = 1, · · · ,H, i = 1, 2, j = 1, · · · , Ngi). For simplicity in exposition, we assume
Ngi = N (∀g = 1, · · · ,H, i = 1, 2), so NT = 2HN, Wgi = Ngi/NT = 1/2H. We
define:

Ȳgi = N−1 ∑N
j=1 ygij , finite population mean for the ith stratum within the gth group,

S2
gi = (N − 1)−1 ∑N

j=1(ygij − Ȳgi)
2, finite population variance for the ith stratum in the

gth group,

µr,gi = (N−1)−1 ∑N
j=1(ygij− Ȳgi)

r, finite population rth central moment (r ≥ 1). Note
that µ1,gi = 0 and µ2,gi = S2

gi.

We also assume that the finite population correction (FPC) factor is negligible as the sample
size is only 1 or 2 per stratum, and N is large.

The true variance based upon Design 1 is:

V (ȳst) =
1

4H2

2H∑
h=1

S2
h. (2)

where S2
h =

∑N
j=1(yhj − Ȳh)

2/(N −1). We can rewrite (2) as V (ȳst) =
1

4H2

∑H
g=1(S

2
g1+

S2
g2). The collapsed strata variance estimator is given by:

v(ȳst) =
1

2H2

H∑
g=1

s2g, (3)

where s2g =
∑2

i=1(ygi − ȳg)
2, and ȳg = (yg1 + yg2)/2. The method relies on the implicit

assumption: Ȳg1 = Ȳg2 = Ȳg.
Estimator (3) is design-biased, and its bias with respect to Design 1 is given by:

Bias(v(ȳst)) =
1

4H2

H∑
g=1

(Ȳg1 − Ȳg2)
2. (4)

As it is clear from (4), the bias is not related to the population variances within the groups.
Wolter computed the bias of population total given the original sampling design (Wolter,
2007, p.51). Equation (4) suggests the strategy of how we can group strata to reduce the
bias of collapsed stratum variance by putting more similar strata in pairs with respect to the
characteristic of interest to minimize the difference |Ȳg1 − Ȳg2|.

In order to find out the mean squared error (MSE) of v(ȳst), the theoretical variance of
variance is needed. By ignoring the FPC, the variance is:

Var(v(ȳst)) = 1
16H4

∑H
g=1{µ4,g1 + µ4,g2 + 2S2

g1S
2
g2 + 4(Ȳg1 − Ȳg2)

2(S2
g1 + S2

g2)

−(S2
g1 − S2

g2)
2 + 4(Ȳg1 − Ȳg2)(µ3,g1 − µ3,g2)}. (5)

If µ4,g1 = µ4,g2 = µ4,g, µ3,g1 = µ3,g2 = µ3,g, and S2
g1 = S2

g2 = S2
g , then
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V ar(v(ȳst)) =
1

8H4

H∑
g=1

{µ4,g + (S2
g )

2 + 4S2
g (Ȳg1 − Ȳg2)

2}.

Therefore, the MSE of v(ȳst) under all of these equality assumptions is:

MSE(v(ȳst)) = V ar(v(ȳst)) + {Bias(v(ȳst))}2

=
1

8H4

H∑
g=1

{µ4,g + (S2
g )

2 + 4S2
g (Ȳg1 − Ȳg2)

2}

+
1

16H4

H∑
g=1

(Ȳg1 − Ȳg2)
4.

The MSE is inversely related to the number of strata H . As a result, according to
the asymptotic properties we can expect that as the number of strata H increases, MSE
decreases. For Design 2, we ignore the FPC and use the standard variance of stratified
estimator, which is unbiased under the design.

3.2 Simulation Study

We performed a simulation experiment to investigate the differences between the two de-
signs with respect to the empirical coverage probability (CP) and average length (AL) of a
nominal 95% confidence interval (CI) for ȳst under the two designs. The population used
for this sub-section is similar to the one used in Table 3. The sample designs are the ran-
dom selection of 1 PSU and 2 PSUs without replacement in each stratum for Design 1 and
Design 2, respectively.

The process of sample selection was repeated 10,000 times. For each replication, we
obtain ȳst and the two-sided 95% confidence interval, ȳst±1.96

√
v(ȳst). For the variance,

we use standard unbiased variance estimate for the 2 PSUs per statum design and the col-
lapsed strata variance given by (3) for the 1 PSU per stratum design. Table 4 displays the
empirical coverage probability and average length for both designs.

When the means of collapsed strata are similar, two designs perform almost identically
(see Table 4). On the other hand, the AL and CP are greater when the population means of
collapsed strata are different; this can again reflect the important effect of |Ȳg1−Ȳg2| in col-
lapsing. Based on Table 4, we cannot say which design is better when |Ȳg1−Ȳg2| ̸= 0, since
the more variability in Design 1 might result in the greater CP. In addition, as the number
of strata increases the CP for the both designs approaches the nominal coverage probability
0.95, but the results are not displayed in Table 4 to save space and to be consistent with
other tables.

4. E.B. and C.E.B. estimators for the Variance of Design 1

Let s2g = (yg1 − yg2)
2/2 denote the collapsed strata variance for the gth group of strata.

Here ygi denotes the sampled observation from the ith stratum in the gth group. We assume
s2g/S

2
g has a chi-squared distribution with 1 degree of freedom (χ2(1)) and an inverse

gamma prior IG(a,a) for S2
g . The posterior distribution π(S2

g |s2g) is

π(S2
g |s2g) ∝ fS2

g
(s2g)π(S

2
g ) ∝

(s2g)
−1/2e−s2g/2S

2
g

(S2
g )

1/2
(S2

g )
−a−1e−a/S2

g .

This is an inverse gamma distribution with shape a+ 1
2 and scale a+ s2g

2 , IG(a+ 1
2 , a+

s2g
2 ).
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Table 4: Empirical Results of Simulation Study for Comparison of Design 1 and Design 2
Design1 Design2

Case Study AL CP% AL CP%

Ȳg1 ≈ Ȳg2 4.7309 88.81 4.7168 88.48
S2
g1 ≈ S2

g2

Ȳg1 ̸= Ȳg2 5.4929 92.35 5.0995 87.82
S2
g1 ≈ S2

g2

Ȳg1 ̸= Ȳg2 6.4273 90.90 6.0775 88.88
S2
g1 ̸= S2

g2

Ȳg1 ≈ Ȳg2 5.7853 89.32 5.7591 88.17
S2
g1 ̸= S2

g2

Under the squared error loss function, L(S2
g , δ̂

B
g ) ≡ (S2

g − δ̂Bg )
2, the optimal Bayes

estimator of S2
g is the expectation of S2

g conditional on s2g, {E(S2
g |s2g)}, which is,

δ̂Bg = λs2g + (1− λ)
a

a− 1
=

2a+ s2g
2a− 1

,

where λ equals to (2a− 1)−1.
To estimate parameter “a” based on the method-of-moments, the marginal distribution

of s2g is needed. The marginal distribution of s2g is the F -distribution with 1 and 2a de-

grees of freedom or equivalently,
√
s2g follows the Student’s t-distribution with 2a degrees

of freedom. The theoretical second order moment based on the Student’s t-distribution is
E((

√
s2g)

2) ≡ a/(a − 1), which is valid for a greater than 1, is replaced by the empiri-

cal mean of the collapsed strata variances, s2. =
∑H

g=1 s
2
g/H . Therefore, the solution is

âMM = s2. /(s
2
. − 1), which yields an empirical Bayes estimator:

δ̂EB
g =

2âMM + s2g
2âMM − 1

. (6)

By substituting δ̂EB
g from expression (6) into (3), the optimal estimator for the variance of

1 PSU per stratum design is attained:

ṽ(ȳst) =
1

2H2

H∑
g=1

δ̂EB
g . (7)

In Design1 since the sample size from each stratum is small, the direct estimator s2g is
overdispersed; therefore, under the Bayesian model we can show that:

E{ 1

H − 1

H∑
g=1

(s2g−s2. )
2} =

a2(2a− 1)

(a− 1)2(a− 2)
>

a2

(a− 1)2(a− 2)
= E{ 1

H − 1

H∑
g=1

(S2
g−S2

. )
2},

where S2
. =

∑H
g=1 S

2
g/H . While the direct estimator s2g shows overdispersion, the Bayes

estimator shows underdispersion:
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E{ 1

H − 1

H∑
g=1

(S2
g − S2

. )
2|s2g} =

1

H − 1

H∑
g=1

E{(S2
g − S2

. )
2|s2g}

=
1

H − 1

H∑
g=1

{V [S2
g −S2

. |s2g]+(E[S2
g −S2

. |s2g])2}

=
1

H − 1

H∑
g=1

{V [S2
g − S2

. |s2g] + (δ̂Bg − δ̂B. )
2}

=
1

H − 1

H∑
g=1

V [S2
g−S2

. |s2g]+
1

H − 1

H∑
g=1

(δ̂Bg −δ̂B. )
2

>
1

H − 1

H∑
g=1

(δ̂Bg − δ̂B. )
2,

where δ̂B. =
∑H

g=1 δ̂
B
g /H . Hence, E{

∑H
g=1(S

2
g − S2

. )
2} > E{

∑H
g=1(δ̂

B
g − δ̂B. )

2}. These
inequalities hold when we use empirical Bayes estimator as well (see Lahiri (1990)).

The problem of underdispersion for these set of Bayes estimators is related to the fact
that the standard Bayes estimator and empirical Bayes estimator shrink towards the prior
mean a/(a − 1) specifically when the sample size is small. A solution for this problem
might be attaching more weight to the direct estimator. To do so, we can match the en-
semble variance by minimizing the posterior expected squared error loss E{

∑H
g=1(S

2
g −

σ2
g)

2|s2g} subject to the following constraints:

i) σ2
. = 1

H

∑H
g=1 σ

2
g = 1

H

∑H
g=1 δ̂

B
g = δ̂B. ,

ii) 1
H−1

∑H
g=1(σ

2
g − σ2

. )
2 = E{ 1

H−1

∑H
g=1(S

2
g − S2

. )
2|s2g}.

We can write the posterior expected squared error loss E{
∑H

g=1(S
2
g − σ2

g)
2|s2g} as:

E{
H∑
g=1

(S2
g − σ2

g)
2|s2g} = E{

H∑
g=1

(S2
g − δ̂Bg )

2}+
H∑
g=1

(δ̂Bg − σ2
g)

2. (8)

So, in order to minimize the posterior expected squared error loss, it is sufficient to just
minimize the last term of (8), which is related to σ2

g . Using Lagrange multipliers λ1 and
λ2, we minimize

∑H
g=1(δ̂

B
g −σ2

g)
2 subject to the constraints

∑H
g=1 σ

2
g = C1 and

∑H
g=1(σ

2
g−

σ2
. )

2 = C2 or
∑H

g=1 σ
4
g = C2 + C2

1/H , which means we minimize the objective function

Φ =
H∑
g=1

(δ̂Bg − σ2
g)

2 − λ1(
H∑
g=1

σ2
g − C1)− λ2(

H∑
g=1

σ4
g − C2 −

C2
1

H
),

with respect to the σ2
g ’s. Therefore, we can get

σ2
g,opt =

1

1− λ2
(δ̂Bg +

λ1

2
). (9)

By imposing the constraints on (9), we obtain

λ1 = 2{(1− λ2)
C1

H
− δ̂B. }, λ2 = 1− {

H∑
g=1

(δ̂Bg − δ̂B. )
2/C2}1/2.
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We can rewrite C1 and C2 as follows:

C1 = Hδ̂B. , C2 = E{
H∑
g=1

(S2
g − S2

. )
2|s2g}.

Now by substituting λ1 and λ2 into (9), we get the constrained Bayes estimator:

δ̂CB
g = σ2

g,opt = δ̂B. +

{
E[

∑H
g=1(S

2
g − S2

. )
2|s2g]∑H

g=1(δ̂
B
g − δ̂B. )

2

}1/2

(δ̂Bg − δ̂B. ).

And using some algebra, we get

δ̂CB
g = δ̂B. +

{
1 +

1
H

∑H
g=1 V (S2

g |s2g)
1

H−1

∑H
g=1(δ̂

B
g − δ̂B. )

2

}1/2

(δ̂Bg − δ̂B. ). (10)

In expression (10), V (S2
g |s2g) is the posterior variance, the variance of IG(a+ 1

2 , a+
s2g
2 ),

which is 2(2a + s2g)
2/(2a − 1)2(2a − 3). Therefore, after some algebra, δ̂CB

g in (10) can
be written as follows:

δ̂CB
g =

1

2a− 1

{
2a+ s2. + (s2g − s2. )

[
1 +

8(H − 1)(a2 + s2. a+ 1
4H

∑H
g=1(s

2
g)

2)

(2a− 3)
∑H

g=1(s
2
g − s2. )

2

]1/2}
.

(11)
Since the constrained empirical Bayes estimator is close to the constrained Bayes estimator
and the empirical Bayes estimator is close to the Bayes estimator, all of the mentioned re-
sults can be applied to the empirical Bayes and constrained empirical Bayes estimators (for
more details on the equivalency between Bayes estimator (or constrained Bayes estimator)
and empirical Bayes estimator (or constrained empirical Bayes estimator), readers should
consult Lahiri (1990), and Ghosh and Lahiri (1987)).

As a consequence, the constrained empirical Bayes δ̂CEB
g can be obtained by substitut-

ing âMM into (11), which yields:

δ̂CEB
g =

1

2âMM − 1

{
2âMM + s2. + (s2g − s2. )

×
[
1 +

8(H − 1)(â2MM + s2. âMM + 1
4H

∑H
g=1(s

2
g)

2)

(2âMM − 3)
∑H

g=1(s
2
g − s2. )

2

]1/2}
. (12)

Since there is a posibility of receiving negative values for (12), which can be related to
(s2g − s2. ), we therefore use the δ̂EB

g for the negative situations. The optimal estimator for
the variance of 1 PSU per stratum design based on the constrained empirical Bayes is:

ṽ2(ȳst) =
1

2H2

H∑
g=1

δ̂CEB
g . (13)

5. Simulation Study and Results

For the sake of suitable comparisons among our candidate estimators (3), (7), and (13), we
conduct a Monte Carlo study with 10,000 replications based on our proposed population in
Table 3. The empirical relative mean squared error (RMSE) was found using the following
formula:
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Figure 1: Comparison Results of the Candidate Variances Based on the Empirical Relative
MSE.

10,000∑
r=1

RMSEr

10, 000
; RMSEr =

√
(v∗(ȳst,r)− V (Ȳst))2

V (Ȳst)
,

where v∗(ȳst,r) takes the values of our candidate estimators (3), (7), and (13), and V (Ȳst)
is the randomization-based variance in (1).

As we have different constraints for parameter a, theoretically and applicably, to make
our estimators (6) and (12) become valid, we apply the intersection of constraints. So,
the truncated â∗MM=max(x, âMM ) is used, where x = 1.5 + e, and e can take values
greater than zero. We consider different values for e to appropriately study the behaviors
and/or effects of â∗MM , which is related to the lower bound (x), on estimators (6), (12), and
RMSEs as well. The results of comparisons are shown in Figure 1.

According to the graphs of Figure 1, the RMSEs of constrained empirical Bayes for
all of the situations are greater than the competitors when x is really close to 1.5, since
the denominator of (12) tends to zero for δ̂CEB

g ’s with x greater than âMM , and since the
quantity of δ̂CEB

g ’s with x > âMM is reasonable; this can tremendously affect the results
of RMSEs.

After moving away from this dangerous threshold (1.5), the RMSE of constrained em-
pirical Bayes decreases compared to the RMSE of empirical Bayes. However, by increasing
the value of x and assigning more weight (2a − 2)/(2a − 1) to the prior mean, the con-
strained empirical Bayes cannot perform well. Imposing great values for the constrain of
a result in the underdispersion of empirical and constrained empirical Bayes estimators;
therefore, their RMSEs will be increased. In addition, when the means of collapsed strata
within the groups are different, empirical Bayes and constrained empirical Bayes outper-
form the classical collapsed stratum variance method.

6. Concluding Remarks

One PSU per stratum design has the advantage of deep stratification, which is efficient
for estimating the finite population parameter of interest, but it is not possible to estimate
the variance without making any implicit or explicit assumptions. The collapsed stratum
variance estimator, a classical method for estimating the variance of the design, usually
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suffers from the overestimation.
In this paper, for obtaining the exact MSE expression (except for the FPC) for the

collapsed variance estimator, we assumed that a single element has been selected using a
simple random sampling within each stratum. This assumption was made for the simplicity
in exposition. The MSE for collapsed variance estimator to the case when the single PSU
is selected using a general design can be extended in a straightforward way. The empirical
Bayes and constrained empirical Bayes approaches developed in the paper are found to be
promising alternatives to the traditional collapsed strata variance estimator for the 1 PSU
per stratum design. The estimation of the prior parameter a in the EB and CEB approaches
is a challenging problem. In order to ensure that the estimator of the prior parameter a is
always within the admissible range, we proposed certain truncation strategies. In the future,
we plan to explore a hierarchical Bayesian approach in an effort to rectify the problem.
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Appendix

Proofs.

All of proofs in this section are based on the design-based application without considering
any models.

proof of (4):

Bias(v(ȳst)) = E(
1

2H2

H∑
g=1

s2g)−
1

4H2

2H∑
h=1

S2
h =

1

2H2

H∑
g=1

E(s2g)−
1

4H2

2H∑
h=1

S2
h

=
1

2H2

H∑
g=1

E(
2∑

i=1

(ygi − ȳg)
2)− 1

4H2

2H∑
h=1

S2
h

=
1

2H2

H∑
g=1

E{1
2
(yg1 − yg2)

2} − 1

4H2

2H∑
h=1

S2
h

=
1

4H2

H∑
g=1

E{(yg1 − Ȳg1)− (yg2 − Ȳg2) + (Ȳg1 − Ȳg2)}2

− 1

4H2

2H∑
h=1

S2
h =

1

4H2

H∑
g=1

E{(yg1 − Ȳg1)
2 + (yg2 − Ȳg2)

2

+(Ȳg1 − Ȳg2)
2 − 2(yg1 − Ȳg1)(yg2 − Ȳg2) + 2(yg1 − Ȳg1)

×(Ȳg1 − Ȳg2)− 2(yg2 − Ȳg2)(Ȳg1 − Ȳg2)} −
1

4H2

2H∑
h=1

S2
h.

Under the stratified simple random sampling without replacement design, samples per
stratum are selected independently; thus, yg1 and yg2 are independent. Also, Ȳg1 and Ȳg2,
the population means in each collapsed stratum of group g are fixed. As a result E(yg1 −
Ȳg1)(yg2 − Ȳg2) equals to 0. Furthermore, E(yg1) = Ȳg1 and E(yg2) = Ȳg2, so we can
rewrite E(s2g) as follows:

E(s2g) =
1

2
E{(yg1 − Ȳg1)

2 + (yg2 − Ȳg2)
2 + (Ȳg1 − Ȳg2)

2}.

Thus;

Bias(v(ȳst)) =
1

4H2

H∑
g=1

E{(yg1 − Ȳg1)
2 + (yg2 − Ȳg2)

2 + (Ȳg1 − Ȳg2)
2}

− 1

4H2

2H∑
h=1

S2
h =

1

4H2

H∑
g=1

{S2
g1 + S2

g2 + (Ȳg1 − Ȳg2)
2} − 1

4H2

2H∑
h=1

S2
h.

And E(yg1 − Ȳg1)
2 =

∑N
j=1(Yg1j − Ȳg1)

2/N = (1−N−1)S2
g1 ≈ S2

g1,
E(yg2 − Ȳg2)

2 =
∑N

j=1(Yg2j − Ȳg2)
2/N = (1−N−1)S2

g2 ≈ S2
g2.

As
∑H

g=1(S
2
g1 + S2

g2) =
∑2H

h=1 S
2
h, the bias is:

Bias(v(ȳst)) =
1

4H2

H∑
g=1

{(Ȳg1 − Ȳg2)
2}.
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proof of (5):

V ar(v(ȳst)) = V ar(
1

2H2

H∑
g=1

s2g) =
1

4H4

H∑
g=1

V ar(s2g) =
1

4H4

H∑
g=1

V ar(
2∑

i=1

(ygi − ȳg)
2)

=
1

4H4

H∑
g=1

V ar(
1

2
(yg1 − yg2)

2)

=
1

16H4

H∑
g=1

{E(yg1 − yg2)
4 − {E(yg1 − yg2)

2}2},

where
E(yg1 − yg2)

4 = E{(yg1 − Ȳg1)
4 + (yg2 − Ȳg2)

4 + (Ȳg1 − Ȳg2)
4

+6(yg1 − Ȳg1)
2(yg2 − Ȳg2)

2 + 6(yg1 − Ȳg1)
2(Ȳg1 − Ȳg2)

2

+6(yg2 − Ȳg2)
2(Ȳg1 − Ȳg2)

2 + 4(yg1 − Ȳg1)
3(Ȳg1 − Ȳg2)

−4(yg2− Ȳg2)
3(Ȳg1− Ȳg2)} = µ4,g1+µ4,g2+(Ȳg1− Ȳg2)

4

+6S2
g1S

2
g2 + 6S2

g1(Ȳg1 − Ȳg2)
2 + 6S2

g2(Ȳg1 − Ȳg2)
2

+4µ3,g1(Ȳg1 − Ȳg2)− 4µ3,g2(Ȳg1 − Ȳg2),

and {E(yg1 − yg2)
2}2 = {S2

g1 + S2
g2 + (Ȳg1 − Ȳg2)

2}2.

Therefore;

V ar(v(ȳst)) =
1

16H4

H∑
g=1

{µ4,g1 + µ4,g2 + (Ȳg1 − Ȳg2)
4 + 6S2

g1S
2
g2

+6S2
g1(Ȳg1 − Ȳg2)

2 + 6S2
g2(Ȳg1 − Ȳg2)

2

+4µ3,g1(Ȳg1 − Ȳg2)− 4µ3,g2(Ȳg1 − Ȳg2)

−{S2
g1 + S2

g2 + (Ȳg1 − Ȳg2)
2}2}.

As a result,

V ar(v(ȳst)) =
1

16H4

H∑
g=1

{µ4,g1 + µ4,g2 + 2S2
g1S

2
g2

+4(Ȳg1 − Ȳg2)
2(S2

g1 + S2
g2)

−(S2
g1 − S2

g2)
2 + 4(Ȳg1 − Ȳg2)(µ3,g1 − µ3,g2)},

since
µ3,g1 = E(yg1 − Ȳg1)

3 , µ3,g2 = E(yg2 − Ȳg2)
3

µ4,g1 = E(yg1 − Ȳg1)
4 , µ4,g2 = E(yg2 − Ȳg2)

4.
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