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Abstract 
In the computation of survey weights to be used for the analysis of complex sample 
survey data, an adjustment for nonresponse is often an important step in reducing bias. 
These adjustments depend upon estimated response propensities, which are traditionally 
obtained through empirical response rates within weighting classes or through logistic 
regression modeling. In this paper, we discuss possible benefits of using regression trees 
and random forests for estimating response propensities in surveys, and describe how 
these models might be used to reduce nonresponse bias. We review issues for their use 
with complex surveys such as the effect of survey weights and clustering, pruning 
criteria, and loss functions, and we explore the sensitivity of results to these conditions. 
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1. Nonresponse Adjustments in Surveys 
 
Almost all sample surveys have nonresponse, which reduces the sample size and causes 
concern about potential bias of estimates. Weighting adjustments are commonly used to 
try to adjust for nonresponse. In these methods, the design weights for responding units 
are adjusted to account for the nonrespondents. Brick and Montaquila (2009) gave an 
overview of weighting methods used to adjust for nonresponse. 
 
Suppose that the quantity of interest is the population mean �̅� =  ∑ 𝑦𝑖

𝑁
𝑖=1 /𝑁. Let 𝜋𝑖 = 

P(unit 𝑖  included in sample). Then the design weight for unit 𝑖  is 𝑑𝑖 = 1/𝜋𝑖  and, if 
everyone in the selected sample 𝑆  responds, the estimated mean �̅� = ∑ 𝑑𝑖𝑦𝑖𝑖∈𝑆 /
∑ 𝑑𝑖𝑖∈𝑆  is approximately unbiased for the population mean �̅�.  
 
With nonresponse, however, the set of respondents 𝑅 is a subset of 𝑆. Under theoretical 
models reviewed in Bethlehem (1988, 2002) and Brick (2013), unit 𝑖 is assumed to have 
an intrinsic response propensity 𝜓𝑖 = P(unit 𝑖 responds to the survey). The estimated 
population mean using the design weights and the respondents, �̅� = ∑ 𝑑𝑖𝑦𝑖/ ∑ 𝑑𝑖𝑖∈𝑅𝑖∈𝑅 , 
is approximately unbiased if Cov(𝑦, 𝜓) = 0. Thus, under this theory it is desired to form 
weighting classes such that the covariance is 0 within each class. The covariance equals 0 
if the response variable is homogeneous within the class [𝑉𝑎𝑟(𝑦) = 0], the response 
propensity is homogeneous within the class [𝑉𝑎𝑟(𝜓) = 0], or the correlation between 𝑦 
and 𝜓 equals 0. Because most surveys have a large number of possible 𝑦 variables, in this 
paper we focus on methods for obtaining weighting classes in which the response 
propensities are homogeneous within the classes, i.e., having 𝑉𝑎𝑟(𝜓) = 0. 
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Unlike the selection probabilities 𝜋𝑖 , the response propensities 𝜓𝑖  are assumed to be 
unknown. In practice, the response propensities are estimated using a model that predicts 
the response indicator from covariates known for each unit in the selected sample 𝑆. 
Logistic regression, a tree-based model, or another type of model may be used to obtain 
estimated response propensities �̂�𝑖.  
 
The estimated propensities may be used in several different ways for nonresponse bias 
adjustment. One method treats each observation as its own class and forms a 
nonresponse-adjusted weight as 𝑤𝑖 = 𝑑𝑖/�̂�𝑖 . This fits in with a view of nonresponse as a 
second phase of sampling (Oh and Scheuren 1983, Särndal and Lundström 2005). This 
method, however, can produce highly variable weights, thereby increasing the variance of 
population estimates; in addition, results can be sensitive to model misspecification. 
 
A second method uses cutpoints of the estimated propensities to form weighting classes 
(Potter et al. 2006). Eltinge and Yansaneh (1997) noted that using equal quantiles of the 
response propensities for the cutpoints gives some control over the number of sampled 
units or respondents in each class. Using classes rather than individual weights can 
reduce variation from the uncertainty in the estimated propensities (Brick 2013). 
 
A third method forms the weighting classes directly from the terminal nodes of 
classification or regression trees. As noted by Toth and Phipps (2014), tree-based 
methods do not require the user to specify a parametric model because they automatically 
select variables and fit interactions if needed. The trees are easy to interpret, and can 
provide insight into the nonresponse mechanism for adaptive design or for investigating 
methods to increase the response rate in future surveys. 
 
There has been a great deal of work on various aspects of fitting classification and 
regression trees to predict response propensities, and we refer the reader to Toth and 
Phipps (2014) for a comprehensive bibliography of work done through 2014. There has 
been less research on the effects of different classification and regression tree methods, or 
of different options that can be used when fitting trees with survey data. In this paper, we 
perform a simulation study that explores the performance of the nonresponse weighting 
adjustments for different tree-type models. The study is not exhaustive: Loh (2014) 
described more than 20 software packages that have been developed for fitting trees and 
ensembles of trees to data sets, and each of these algorithms has multiple input 
parameters. The methods used in this paper include representatives of the major types of 
algorithms, but we do not study all of them. We focus on the effects of using sampling 
weights, of adjusting for clustering and weighting, and, primarily, on the differences 
among the algorithms. The methods are evaluated by the accuracy of the propensity 
estimates and by the mean squared error of the estimated population mean and quartiles 
of a response variable, 𝑦. 
 

2. Simulation Study Population and Design 
 
Data from the 2009-2013 5-year American Community Survey Public Use Microdata 
Samples (ACS PUMS) were treated as the population for the simulation study, and 
repeated samples were drawn with different nonresponse-generating mechanisms from 
this population. Table 1 lists the variables used from the 2009-2013 ACS.  
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The variable HINCP was chosen as the response variable of interest, y. Household 
income is often subject to missingness in surveys and has a highly skewed distribution. 
The mean of household income might therefore be expected to behave relatively badly 
even after nonresponse adjustment. The other variables in Table 1 were assumed to be 
known for all units in the selected samples. Some of these were used to generate the 
nonresponse mechanism for different simulation settings, and all of them were used to 
model response propensities. 
 
For this study, only records with non-missing data for each of the variables listed in Table 
1 (with the exception of VALP) were retained in the population. The resulting set of 
6,019,599 household-level records from the ACS was treated as the population for the 
study. Public use microdata areas formed the primary sampling units (PSUs) in 
generating clustered samples; the research data set contained a total of 3,344 PSUs.  
 
A 2 × 2 ×  4 ×  2 factorial design was used to generate nonresponse mechanisms and 
samples for the study. The factors were: 
 Response rate, with levels 50% and 80%. 
 Number of PSUs (NUM_PSU) in each sample, with levels 25 and 100. 
 Nonresponse generating mechanism. Four models were used: 

1. Missing completely at random (MCAR). Households in the population were 
selected randomly to be nonrespondents. For this mechanism, we would expect 
estimates using the unadjusted sampling weights to be unbiased; ideally, the 
weight adjustment methods would “do no harm.” 

2. Missing at random with linear function of covariates (MAR, linear). The model 
used to generate nonresponse had main effects for tenure, presence of children, 
and number of income earners in the household. 

3. Missing at random with interaction (MAR, interaction). The model used to 
generate nonresponse had main effects for tenure and presence of children and an 
interaction term involving these two variables. 

Table 1: Variables Used from ACS 
 

Variable name Variable description 
HINCP Household income  
HUPAC Household presence and age of children; used to derive binary indicator of 

children in household 
TEN Home tenure; used to derive binary indicator of whether home is rented 
DIS Disability indicator; used to derive binary indicator of whether at least one 

person in household has a disability 
HICOV Health insurance coverage indicator; used to derive binary indicator of whether 

every household member has health insurance coverage 
WKL When last worked; used to derive count of the number of household members 

who worked within the past 12 months 
PINCP Person’s total income; used to derive count of the number of income-earning 

household members 
LNGI Indicator of limited English-speaking households 
REGION Census region 
VALP Property value. This was recoded as a categorical variable with five categories: 

the first four categories were based on the quartiles of the variable, and the fifth 
category indicated the household was missing this variable. 
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4. Missing not at random (MNAR). The model used to generate nonresponse had 
main effects for tenure, presence of children, and household income (the 𝑦 
variable). High-income households were less likely to respond. 

 PSU-level variability of latent nonresponse (PSU_NR_VARIANCE), with levels 0 
and 0.25. 

 
For each of the 32 simulation settings, the response propensity 𝜓𝑖 was generated for each 
household 𝑖 in the population using three steps. First, 𝑧𝑘 ∼  𝑁(0, PSU_NR_VARIANCE) 
was generated independently for each PSU k in the population. Then, the latent 
nonresponse variable for household 𝑖 was defined as 𝐿𝑖 = 𝑓(𝑥𝑖) + 𝑧𝑘(𝑖), where 𝑓(𝑥𝑖) is 
the function of the covariates used to generate the particular nonresponse mechanism 
(MCAR, MAR linear, MAR interaction, or MNAR) and 𝑧𝑘(𝑖) is the value of 𝑧𝑘 for the 
PSU containing observation 𝑖. Finally, the values of 𝐿𝑖 were scaled to give the desired 
response rate by finding 𝑐 such that 1 −

1

𝑁
∑ Φ(𝑁

𝑖=1 𝐿𝑖 − 𝑐) = response rate, where Φ is 
the cumulative distribution function for a standard normal distribution. The response 
propensity was calculated as 𝜓𝑖 = 1 − Φ(𝐿𝑖 − 𝑐). The response indicator for household 𝑖 
in the population, 𝑟𝑖 , was generated independently from a Bernoulli distribution with 
response propensity 𝜓𝑖. 
 
Two hundred samples were selected from the population for each simulation setting, 
using PROC SURVEYSELECT from SAS/STAT® software (SAS Institute 2011). In 
order to generate clustered, unequal probability samples of households, a simple random 
sample of NUM_PSUS PSUs was selected, and within each sampled PSU a simple 
random sample of 100 households was selected. For each sample the design weight 𝑑𝑖 of 
a sampled household was calculated as the inverse of its inclusion probability. The 
samples were then exported and models predicting response propensities were fit in the R 
statistical software package (R Core Team 2015), version 3.2.0. 
 

3. Models for Estimating Response Propensities 
 
The core of tree-based methods is recursive partitioning, in which the units in the selected 
sample 𝑆 are split into two subsets based on the division of a covariate. These subsets are 
split further, and the process is continued until the final subsets, called the terminal 
nodes, meet user-specified sample size or homogeneity conditions. Different tree-based 
methods use different criteria to determine tree size and the covariates used for splitting. 
Forest methods grow many different trees using subsamples of the data, then average the 
predicted values across the trees.  
 
3.1 Recursive Partitioning (rpart) 
The R function rpart (Therneau and Atkinson 2015) is based on the classification and 
regression tree methodology described in Breiman et al. (1984). The measures used to 
choose variables for splitting are based on a node impurity measure I(node), which is 
often based on the Gini index, the information index, or the residual sum of squares. For 
each parent node in turn, the chosen variable split maximizes the reduction in impurity, 
I(parent node) – I(left child) – I(right child), among all possible variable splits. Each split 
may be partitioned further based on the best available predictor at each level. The 
splitting process continues until the specified stopping rules are met. When the variable 
being predicted is dichotomous, as in this application where we are predicting the 
response indicator, the initial splits for a classification tree are often similar to those for a 
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regression tree. The regression tree may have more terminal nodes, however, because 
regression and classification trees use different loss functions: a regression tree typically 
uses the deviance while a classification tree typically uses the number misclassified.  
 
The function allows the user to specify a number of parameters to control the tree-fitting. 
The parameter minbucket, the minimum number of observations in a terminal node, was 
set equal to 20 for all trees. We varied the following factors, using two levels for each: 
 Method: classification (method = “class”) or regression (method = “anova”) tree. 
 Weight: weight = 1 for all observations, or weight = design weight. The function 

rpart treats weights as case weights and permits non-integer-valued weights. The 
control parameters for rpart are based on unweighted counts. For example, minbucket 
= 20 requires each terminal node to have at least 20 sampled households, as opposed 
to requiring the sum of the weights in the terminal node to be 20. The measures for 
tree-fitting are invariant to the scale of the weights, so that a tree fit to a data set in 
which each weight is 1 will be the same as the tree fit to the same data set with each 
weight set to 1,250. With unequal weights, the fits will differ. 

 Pruning: no or yes. The procedure developed in Breiman et al. (1984) specifies first 
growing the tree out as far as possible until either the minimum node size criteria are 
met or no further improvement in node purity is possible. Then, because the tree-
growing procedure can result in some splits occurring because of pure noise, the tree 
is pruned to a smaller size. With no pruning, the tree was grown out as far as possible 
subject to minbucket. With pruning, cross-validation was used to prune the tree as 
described in Therneau and Atkinson (2015). The number of cross-validations was set 
equal to 5. 

 Misclassification loss ratio: (loss for misclassifying a nonrespondent as a 
respondent)/(loss for misclassifying a respondent as a nonrespondent) = 1 or 2. This 
factor applies to classification trees only.  

 
All other parameters were set equal to their default values.  
 
After the trees were grown, each terminal node with fewer than 20 respondents was 
combined with its nearest neighbor with respect to response propensity. This process was 
repeated until each terminal node had at least 20 respondents, in order to reduce 
instability from weighting classes with few respondents. 
 
The splitting rules in rpart tend to favor continuous covariates and categorical covariates 
with many categories, simply because these have more possible splits (Breiman et al. 
1984, p. 42; Loh 2014). This occurs because of a problem analogous to multiple testing.  
 
3.2 ctree 
The R package party (Hothorn et al. 2015) fits conditional trees through the function 
ctree. The method assumes that the observations are independent—an assumption that is 
not typically met for survey data—and determines splits from the results of hypothesis 
tests. The first step is to test the global null hypothesis of independence between 𝑦 and 
the set of potential explanatory variables 𝑥1, … 𝑥𝑚. If that hypothesis is not rejected, the 
splitting stops. Otherwise, the covariate with the highest association with 𝑦 is selected for 
splitting the tree. The global null hypothesis is the intersection of the variable-wise tests, 
and permutation tests are used for each of the component hypotheses (Hothorn et al. 
2006).  
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The conditional tree method eliminates the step of pruning: the hypothesis tests determine 
when to stop splitting nodes. Hothorn et al. (2006) argued that the conditional tree 
method avoids the variable selection bias from rpart, which is more likely to choose 
categorical variables with many categories for splitting.  
 
Ctree, in contrast to rpart, requires integer-valued weights, and fits the tree pretending 
that there are 𝑑𝑖 observations in the data set with observation 𝑖’s variables. The scale of 
the weights has a large effect on the splits used in ctree. The tree from running ctree with 
the weight set equal to 1,250 for every observation will have many more splits than if the 
weight equals 1 for every observation. This occurs because in the hypothesis testing steps 
with weighted data, ctree thinks there are 1,250𝑛 observations in the data set, which leads 
to many spurious rejections of the null hypotheses used in the tree-splitting decisions. 
Ctree, like rpart, has a control parameter minbucket, but in ctree the option minbucket = 
20 requires the sum of the weights in the terminal node to be 20. In many surveys that 
weight sum requirement will be met with one observation in the terminal node.  
 
Properties of hypothesis tests are affected by a complex survey design, and we performed 
simple modifications of the input parameters to account for the unequal weighting and 
clustering of the sample. Because ctree requires integer weights, it is not practicable to 
scale the weights so that they sum to the sample size 𝑛. Instead, for the purposes of 
forming nonresponse adjustments, we defined 𝑑𝑖

𝑐 = ceiling(𝑑𝑖) . Most surveys have 
relatively large weights, and the effects of using 𝑑𝑖

𝑐  instead of 𝑑𝑖 , for the purpose of 
estimating propensities and creating weighting classes, were expected to be small. We set 
the critical value for the test statistic to be 𝑡𝑐𝑟𝑖𝑡 × 𝑤𝑓, where 𝑡𝑐𝑟𝑖𝑡 is the critical value for 
the nominal 𝛼-level test, and the weight factor 𝑤𝑓 =  √∑ 𝑑𝑖

𝑐
𝑖 𝑛⁄  bases the hypothesis test 

on an effective sample size of 𝑛. 
 
Clustering and other features of the complex sampling design also affect properties of 
hypothesis tests. We accounted for clustering by dividing the test statistic by the square 
root of the design effect for the response indicator 𝑟𝑖. Note that in general, the design 
effect for the response variable by itself is greater than the design effect for the regression 
coefficients (Skinner 1989), so the adjustment is expected to be conservative for this 
simulation study. In terms of the control parameters for ctree, we can include a design 
effect for the effect of unequal weights, clustering, and stratification by using critical 
value 𝑡𝑐𝑟𝑖𝑡 × 𝑤𝑓 × √𝑑𝑒𝑓𝑓.  
 
We varied the following factors for ctree, using two levels for each. Only regression trees 
were fit. 
 Weight: weight = 1 for all observations, or weight = 𝑑𝑖

𝑐. With unit weights for all 
observations, minbucket was set to 20. With weight = 𝑑𝑖

𝑐, minbucket was set equal to 
20 × max(1, min(𝑑𝑖

𝑐)), and the critical value for the test statistic was defined to be 
𝑡𝑐𝑟𝑖𝑡 × 𝑤𝑓.  

 Clustering adjustment: no or yes. When yes, the critical value for the test statistic 
was multiplied by the square root of the design effect for the response indicator. 

 Bonferroni: no or yes. When yes, a Bonferroni adjustment was used to compensate 
for the multiple testing in the global null hypothesis.  
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3.3 Forest Methods 
Methods such as rpart and ctree produce easily interpretable individual trees that group 
observations with similar propensities together. The cost of that easy interpretation, 
however, is that predictions may have high variance. Ensembles of decision trees, or 
forests (Breiman 2001), reduce the variance by growing multiple trees without pruning, 
and averaging the predictions from the different trees. Each tree is fit to a different subset 
of the data, using a different subset of the explanatory variables. 
 
Two packages were used to fit forests in R. The first, randomForest (Liaw and Wiener 
2002, 2014, based on the original Fortran program by Breiman and Cutler 2004), is 
derived from the method in Breiman (2001). This package uses the recursive partitioning 
method in Breiman et al. (1984) for the base learning components. Weights are not 
allowed. The package cforest, in the party package (Hothorn et al. 2015), implements the 
forest methodology using conditional trees as the base learning components.  
 
We varied the following factors for the forest methods: 
 Method: randomForest (subsequently referred to as rforest) or cforest. 
 Number of trees: 30 or 150. Occasionally, the fit with 30 trees failed to produce a 

response propensity estimate for one or more households; those were then imputed 
with the mean propensity. 

 Weight: (for cforest only) weight = 1 for all observations, or weight = 𝑑𝑖
𝑐.  

 
Note that the forest methods produce an estimated response propensity but do not 
produce individual trees. Therefore, weighting classes must be formed by grouping based 
on estimated response propensities. 
 
3.4 Trees with Random Effects 
Half of the simulation settings described in Section 2 include randomly generated PSU-
to-PSU variability in response propensities. Such a situation can occur in surveys when, 
for example, PSUs are establishments or governmental entities that may encourage 
different participation rates. Between-PSU variability can be modeled by including 
covariates that are related to PSU-level response rates or by including PSU as a 
categorical covariate. We explored the alternative of including PSU as a categorical 
predictor. However, because of the large number of PSUs and subsets, this resulted in 
infeasibly large computation times for use in a simulation study. In addition, as noted 
above, rpart and related methods have a predilection for splitting on categorical variables 
with large numbers of categories, with the result that most splits were based on subsets of 
PSUs and predictions were poor. Instead of using PSU as a fixed effect, we adapted an 
approach from Skinner and D’Arrigo (2011), who used a random effects model with logit 
link function to estimate clustered response propensities. 
 
Sela and Simonoff (2012) proposed using trees with random effects estimated by the EM 
algorithm (RE-EM) for data with clustering. The tree building is based on the R function 
rpart, and a linear model is assumed for the random effects. The algorithm iterates 
between steps of estimating the random effects using maximum likelihood and fitting a 
tree to model the response indicator after subtracting the modeled random effects. This 
method produces estimated response propensities that are a combination of estimates 
from terminal nodes and estimated random effects. As with the forest methods, the 
estimated response propensities must be used directly or through weighting classes. 
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3.5 Logistic Regression 
The final method used for predicting response propensities was logistic regression, fit 
using R function glm. The logistic models predicted response indicator using the main 
effects (no interactions) of the covariates derived using the variables in Table 1. One 
factor was varied for logistic regression: the models were fit with and without weights. 
 
Altogether, 29 models were fit to estimate response propensities from each sample: 8 
with rpart classification, 4 with rpart regression, 8 with ctree, 2 with rforest, 4 with 
cforest, 1 with RE-EM, and 2 with logistic regression. 
 

4. Results 
 
4.1 Accuracy of Estimated Propensities  
Each model produces an estimated response propensity �̂�𝑏𝑖  for every household 𝑖  in 
sample 𝑏. These are compared to the true response propensities 𝜓𝑖 described in Section 2. 
Let �̂�𝑏  denote the vector of estimated response propensities from sample 𝑏 . We 
considered the mean squared error MSE (�̂�𝑏) = 𝑛−1  ∑ (�̂�𝑏𝑖 − 𝜓𝑖)

2
𝑖  and the mean 

absolute error MAE(�̂�𝑏) = 𝑛−1 ∑|�̂�𝑏𝑖 −  𝜓𝑖| of the estimated propensities.  

 
Figure 1: MSE of estimated response propensities. The dark horizontal line in each box 
represents the median, and the diamond represents the mean. For the rpart classification 
trees, boxes 3, 4, 7, and 8 use weights; boxes 2, 4, 6, and 8 use pruning; and boxes 5, 6, 7, 
and 8 use unequal misclassification losses. For the rpart regression trees, boxes 3 and 4 
use weights and boxes 2 and 4 use pruning. For ctree, boxes 2, 4, 6, and 8 use weights; 
boxes 5, 6, 7, and 8 adjust the critical value by a design effect; and boxes 3, 4, 7, and 8 
use a Bonferroni adjustment. For rforest, box 1 uses 30 trees and box 2 uses 150 trees. 
For cforest, boxes 3 and 4 use 150 trees, and boxes 2 and 4 use weights. For logistic 
regression, box 2 uses weights. 
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For the 200 samples in each simulation, we found the mean and standard deviation of the 
MSE and MAE. Figure 1 shows boxplots of the MSE of the estimated propensities. Each 
box is constructed from the averages of the MSEs for the 32 sample-generating 
simulation settings. The patterns from the MAE were similar, and are not shown here. 
Figure 2 shows the boxplots of accuracy of the propensity estimates separately for the 
four nonresponse mechanisms used in the simulation. 
 
For rpart classification trees, the best results were achieved with no pruning and with 
equal misclassification costs. However, in general, rpart classification trees were the least 
accurate of the methods.  
 
Figure 1 shows that the RE-EM has the lowest mean and median MSE among all of the 
methods considered. This occurs because it predicts the PSU-to-PSU variability in the 
simulation runs with PSU_NR_VARIANCE = 0.25; when the nonresponse is missing 
completely at random as in Figure 2(a), that additional accuracy allows the method to 
capture the different propensities among PSUs.  
 

 
Figure 2: MSE for estimating response propensities, for the four nonresponse 
mechanisms. The factors associated with the boxes of each tree type are as in Figure 1. 
 
Logistic regression performed very well when the terms that generated the nonresponse 
were included in the logistic model as in Figure 2(b). As expected, however, it performed 
poorly when an interaction term used to generate the nonresponse was omitted from the 

(a) MCAR (b) MAR Linear 

 
 (c)  MAR Interaction (d) NMAR 
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model as in Figure 2(c). No method performed particularly well for the NMAR 
mechanism in Figure 2(d). 
 
Using weights in the model-fitting made little difference in the accuracy of the estimated 
propensities. This was also true for the results in the next section.  
 
4.2 Bias and Mean Squared Error of Response Variable 
Ultimately, the test of weighting adjustments is how well they correct for nonresponse 
bias in variables of interest, while limiting additional variability from unequal weighting. 
As discussed in the introduction, we studied several types of methods for adjusting 
weights. For each method, large weighting adjustment factors were trimmed to 10 to 
avoid excessive weight variation. We compared the methods using the estimated 
propensities �̂�𝑖 from each of the 29 models discussed in Section 3. For comparison, we 
also calculated weight adjustments using the true propensities 𝜓𝑖, which are known for 
this simulation study but of course would be unknown in practice. 
 
Terminal Nodes. The tree models (rpart and ctree) each produce one tree for each 
sample. The terminal nodes from this tree form the weighting classes. The terminal node 
method constructs the weight for respondent 𝑖  as 𝑑𝑖 × min [∑ 𝑑𝑗𝑗∈𝑆𝑘𝑖

∑ 𝑑𝑗, 10𝑗∈𝑅𝑘𝑖
⁄ ] , 

where 𝑘𝑖  is the terminal node containing respondent i and 𝑆𝑘𝑖
and 𝑅𝑘𝑖

 are the sampled 
units and respondents, respectively, in that terminal node.  
 
Sample Quintiles. Logistic regression, RE-EM, and the forest methods do not produce 
ready-formed weighting classes for nonresponse adjustment, but they produce an 
estimated response propensity �̂�𝑖  which can be used to form weighting classes. As 
suggested by Eltinge and Yansaneh (1997), we formed five weighting classes using the 
quintiles of the response propensities for the sample. This results in equal numbers of 
sampled units in each weighting class, and the adjusted weight for respondent 𝑖  is 
𝑑𝑖 × min [∑ 𝑑𝑗𝑗∈𝑆𝑞𝑖

∑ 𝑑𝑗, 10𝑗∈𝑅𝑞𝑖
⁄ ], where 𝑞𝑖 is the quintile containing respondent i and 

𝑆𝑞𝑖
 and 𝑅𝑞𝑖

are the sampled units and respondents, respectively, in that quintile. 
 
Respondent Quintiles. This is similar to forming weighting classes from the sample 
quintiles, except that the cutpoints are based on the quintiles of the estimated response 
propensities for the respondents only. Each weighting class has approximately the same 
number of respondents. Because the lowest quintile consists of units with low response 
propensities, the cutpoints for the respondent quintiles method are higher than those for 
the sample quintiles method. 
 
Divide by Propensity. Each unit is treated as its own weighting class, with weight 
𝑑𝑖 × min(1 �̂�𝑖⁄ , 10).  
 
Each of the sets of adjusted weights is used to estimate the mean and the 25th, 50th, and 
75th percentiles of HINCP, for each simulated sample. For each statistic 𝑡  and 
corresponding population quantity 𝑇, we found the mean squared error of 𝑡 over the 200 
samples in each of the 32 simulation settings. 
 
Figure 3 shows the mean of the MSEs for estimating mean household income, across all 
32 simulation settings. For simplicity, Figure 3 includes only the “best” parameter 
settings for each type of model. In general, the settings that gave the most accurate 
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propensity estimates also gave the smallest MSE for statistics about household income. 
Therefore, all results displayed in Figure 3 are from models fitted without weights. For 
rpart, no pruning was done and equal misclassification penalties were used. For ctree, the 
critical value was not adjusted for clustering or multiple testing. The forest method results 
are from the models with 150 trees, although there was very little gain from fitting 150 
rather than 30 trees. The first column displays the mean MSE over all 32 simulation 
settings using the full sample—that is, with no nonresponse—and the respondents with 
unadjusted weights. The remaining columns show the mean MSE from the divide-by-
propensity, sample quintiles, respondent quintiles, and terminal node methods.  
 
Figure 3 shows that for many of the weight adjustment methods, the mean MSE for 
estimating mean HINCP is higher than when no weight adjustments are made. This 
occurs largely because of the NMAR nonresponse settings, where the methods do little to 
reduce the bias but introduce extra weight variation. For the NMAR mechanism, high-
income households had a low value for the true response propensity. Consequently, there 
were few high-income households among the respondents, and the models did not 
increase the weights sufficiently for those households to counteract the nonresponse bias. 
For the MAR linear and MAR interaction nonresponse mechanisms, all of the forms of 
weighting adjustment reduced the MSE for mean HINCP. Note, however, that ctree 
appears to perform well across the different nonresponse mechanisms. 

 
Figure 3: Mean MSE for estimating mean household income. 
 
Figure 4 displays the mean MSE for estimating median household income, which would 
be expected to be less affected by the nonresponse of high-income households. All of the 
weight adjustment methods have lower mean MSE than the unadjusted weights. As 
before, the rpart methods tend to have higher MSE than the other methods.  
 
Figure 4 shows an interesting anomaly. One would expect using the true propensities to 
result in the largest reduction in MSE, but in the fourth column, with weighting classes 
formed from the quintiles of the respondents, the true propensities resulted in the highest 
average MSE. This occurred because of the specific MAR linear mechanism used to 
generate nonresponse as a linear function of children, tenure, and number of income 
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earners. The MAR linear nonresponse mechanism produced a limited number of discrete 
values for the true response propensities, and using quintiles of the respondents created 
an unnatural division in which households with dissimilar propensities were forced into 
the same class. In fact, none of the weighting adjustments methods based on quintiles of 
the respondents worked well for the MAR linear mechanism.  
 
It should not be concluded from this anomaly that forming classes using quintiles of the 
sample works better than forming classes using quintiles of the respondents. The same 
grouping of dissimilar propensities could occur under a different nonresponse mechanism 
for the sample quintiles method. The cause of the problem was the algorithm used, which 
automatically grouped households by quintiles without considering the homogeneity of 
the resulting classes. This could be remedied by having expert review of the weighting 
classes. The algorithm could also be improved by using clustering of propensities, rather 
than strict quintiles, to form weighting classes, and in future research we plan to study 
clustering methods for forming weighting classes. 
 
The RE-EM method gave the most accurate estimates of response propensities, but that 
superior performance did not carry over to the estimation of mean or median HINCP. The 
method was most accurate for estimating response propensities because it captured the 
randomly generated PSU-to-PSU variability. That variability, however, was generated 
independently of the covariates and of HINCP. Consequently, for these simulations, the 
improved prediction of 𝜓𝑖 that was achieved by RE-EM did not result in a reduction of 
Cov(𝜓, 𝑦). In situations where the PSU-specific response propensities are related to the 𝑦 
variables, one might expect the RE-EM method to result in reduced MSE. 

 
Figure 4: Mean MSE for estimating median household income. 
 
Finally, although not shown here, for the NMAR mechanism, dividing the weight by the 
true (but unknown) propensity reduced the MSE of median HINCP. Most of the other 
methods had higher MSE than using no weighting adjustment at all. For this nonresponse 
mechanism, the covariates did not contain enough information to adjust for the 
nonresponse. The conditional tree method ctree appeared to work better than the other 
methods, even though it ended up with higher MSE than the unadjusted weights. 
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5. Conclusions and Future Research Directions 
 
The results in this paper are from one simulation study, and therefore cannot be 
generalized to all situations. Nevertheless, there are a number of findings that merit 
further study. First, for MAR nonresponse, most methods reduced the MSE for the 
estimated mean and quantiles of HINCP. The NMAR mechanism used in this paper was 
extreme, with some samples having few high-income households that could be used for 
any type of nonresponse adjustment, and may be atypical of situations likely to be 
encountered in practice. Our results suggest that any sensible approach to estimating 
response propensities and adjusting weights is likely to result in improvements for many 
𝑦 variables. However, as the results estimating the mean and median of HINCP with 
NMAR indicate, it should not be assumed that weight adjustments will reduce bias and 
MSE for all situations. Typically, the information available about units in 𝑆 is limited, 
and the available covariates may be inadequate for modeling the response mechanism. If 
the classes are poorly formed or if the response propensity estimates are poor, then 
estimates may still exhibit nonresponse bias; additionally, the MSE may increase because 
of introduced weight variation. 
 
We found that some settings for tree growing worked better than others, and the same 
settings were best both for estimating propensities and for estimating the median 
household income. Overall, as expected, regression trees worked better than classification 
trees: regression trees focus on predicting the propensity as opposed to simply predicting 
whether a unit responds.  
 
In these simulations the unadjusted settings—not using weights, pruning, design effects, 
or Bonferroni adjustments—gave the best performance. We found no benefits of using 
weights when modeling the response propensities, and recommend that models be fit 
without weights. However, the effects of pruning and design effect adjustments in the 
study may be confounded with our use of a minimum terminal node size of 20 for our 
trees, and collapsing nodes with fewer than 20 respondents. In future research, we plan to 
vary the minimum number of respondents in a weighting adjustment class. We required a 
minimum of 20 respondents to reduce the instability from adjusting the weights of few 
respondents to account for a large number of nonrespondents, but other researchers have 
explored smaller values for the minimum. Iachan et al. (2014), for example, considered 
using as few as three respondents per class. 
 
The methods using the original tree algorithm in Breiman et al. (1984)—rpart and 
rforest—performed adequately; in fact, rforest was among the best methods when we 
divided the design weight by the propensity estimate. In this study, however, most of the 
covariates were binary or had only a few categories. In the presence of categorical 
covariates with many categories, rpart performs worse and we do not recommend its use. 
Ctree performed better than rpart for almost every simulation setting. 
 
The newer tree models such as ctree are worth considering for nonresponse adjustment. 
Ctree performed well for estimating response propensities and better than most other 
methods for reducing nonresponse bias. More research is needed on how best to use these 
tree models with data from complex surveys. In particular, research is needed on how to 
account for the complex survey design in the hypothesis tests used as stopping rules. 
 
Even though RE-EM did not work as well for reducing nonresponse bias as some of the 
other methods, we think that it also merits further study because it had the most accurate 
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estimates of response propensities when they have PSU-to-PSU variability. In some 
surveys, that PSU-level variability may be related to the 𝑦  variables. The algorithm 
performed surprisingly well considering that it was developed to estimate continuous 
responses as an extension of the linear mixed model. More research is needed on using 
the method with tree algorithms other than rpart and on adapting it for binary responses. 
 
Finally, our investigations indicate that the algorithms help immensely in guiding the 
formation of weighting classes, but art is needed as well. For many runs, a sampling 
expert looking at the tree output would be able to suggest improvements that would lead 
to lower MSE. Expertise is needed to guide the weighting procedures. 
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