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Abstract 

Calibration weighting can be used to remove bias when unit nonresponse is a function of one or more survey 
variables.  This is done by allowing the model variables in the weight-adjustment function to differ from 
the variables in the calibration equation.  An extension of calibration weighting allows there to be more 
calibration variables than model variables.  Rather than equating the two sides of a calibration equation, the 
difference between the sides is minimized in some sense.  This paper discusses some ways of doing that.  
A promising solution results instead from an alternative version of the calibration equation.  A helpful 
insight into choosing calibration variables for given model variables follows.   
 
Key words:  Weight-adjustment function, Shadow variables, Calibration equation. Double protection.    

1.   Introduction 
 
The standard approach to applying calibration weighting when adjusting for nonresponse (Fuller, Loughin, 
and Baker 1994; Folsom and Singh 2000) can provide double protection against bias due to unit 
nonresponse (Kott 2006; Kim and Park 2006).  That is to say, if either the expected value of the survey 
variable is the same linear function of the calibration variables for both respondents and nonrespondent or 
the probability of unit response is a function of the calibration variables identical in form to the inverse of 
the weight-adjustment function used in calibration weighting, then a calibration-weighted estimator will be 
nearly unbiased (i.e., its relative bias will be asymptotically ignorable)  in some sense.  A set of assumptions 
about the distribution of the survey variable has been called an “outcome” or “prediction model” (because 
the survey variable is predicted by the model; Royall 1976) while a set of assumptions about which units 
respond and which do not is usually called a “selection” or “response model.”  
      
In this standard calibration-weighting approach to nonresponse adjustment, unit nonrespondents are 
assumed to be missing at random, that is, unit nonresponse does not depend of variable values known only 
for respondents.  Deville (2000), however, showed that calibration weighting can be used to remove unit 
nonresponse bias even when nonrespondents are not missing at random by letting the (response-) model 
variables in the weight-adjustment function differ from the calibration variables.  The number of model and 
calibration variables needed to be the same in Deville’s setup, and many of the model and calibration 
variables could coincide. We call thse coinciding variables “dual variables” here, while model variables 
that that are not calibration variables are “model-only variables,” and calibration variables that are not 
model variables are “shadow variables.”  The popular term “instrumental variable” is avoided because 
model-only variables have the form of instrumental variables (as in Brewer 1995) while shadow variables 
share their function (as in Wang, Shao, and Kim 2014).    
 
Kott and Chang (2010) extended the notion of double protection to cover Deville’s approach to calibration 
weighting, but as in Chang and Kott (2008), this extension allowed there to be more calibration than model 
variables. That required expanding what was meant by calibration weighting.  Rather than forcing the 
weighted mean among respondents for a vector of calibration variables to equal a mean estimated from the 
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full sample or provided by outside source, the difference between the two means, call it s, needed to be 
minimized in some sense.    
 
In Chang and Kott’s expanded formulation of calibration weighting, one chooses a symmetric, positive 
definite matrix Q and then finds the calibration weights that minimize  sTQs.  Any valid choice for Q results 
in calibration weights that produced nearly unbiased estimators in some sense.  
 
Chang and Kott suggested a methodology for choosing Q.  We will propose a different approach which we 
argue will likely lead to a more efficient calibration-weighted estimator.  In making the proposal, a revised 
version of the calibration equation (also noted by Chang and Kott) emerges and with it a simplified variation 
of our proposal that abandons Chang and Kott’s original formulation of calibration weighting (i.e., sTQs is 
not longer minimized for some Q).  Our two proposals are based on the simple prediction-modeling idea:  
shadows variables should be chosen that predict the model-only variables.  Nevertheless, the resulting 
calibration weights produce nearly unbiased estimators when the response model holds but the prediction 
model does not.   
 
Section 2 reviews the background theory in more detail. For simplicity we only treat calibration weighting 
to the original sample here.  In practice, calibration weighting can also be targeted to known population 
totals, to estimated totals from a different source, or a vector whose components reflect a combination of 
sample, total and outside sources.  A rigorous treatment of the background theory can be found in Chang 
and Kott (from a response-model viewpoint)  and Kott and Chang (from a prediction-model viewpoint).  
 
Section 3 discusses our two new proposals for calibration weighting when there are more calibration than 
model variables. Section 4 describes a modest simulation experiment demonstrating the increased 
efficiency from using one of our proposals rather than a potential competitor.  Section 5 offers some 
concluding remarks.    
 

2.  Background Theory and Notation  
 
Suppose we have a probability sample S subject to unit nonresponse.  Let 
yk

  
be the outcome variable of interest in a population of size N, 

Ik
  
be a sample indicator  (1 if kS, 0 otherwise), 

dk
 
= 1/E(Ik)  be the original sampling weight, 

Rk
  
be a response indicator  (1 if k responds, 0 otherwise), 

wk = Rk
 
dk

 
k  be a nonresponse-adjusted weight, defined to be 0 for nonrespondents,  

pk
 
 be a possibly incorrect implicit guess at E(Rk), so that k = 1/pk

  
and  wk

 
= dk(Rk/pk), and 

zk
  
be vector of calibration variables, which usually includes unity or the equivalent (i.e., some linear 

combination of components of zk is unity). 
We will treat yk, Ik, Rk, and zk

  
as random variables here.  With the exception of Ik, however, their 

distributions are unknown.   
  
2.1  Missing at Random 
When calibration is to the full sample before unit nonresponse, it is not hard to show that the bias in a 
calibration-weighted estimator  tc= S wk yk = S dk(Rk /pk) yk  satisfying the calibration equation  S wk zk = 

S dk(Rk /pk) zk = S dk zk
   

is 

                         
  T

k k k k kk
k k k k

k kk S k S k S

d y R pR
E d y d y E

p p
  

   
   
     

  
z q

                         (1) 
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for any vector q, but a more useful choice might be the full-population regression coefficient of yk on zk  

(Kott 2014).  
  
If either the response model  
 
                                                         E(Rk pk| yj, zj, Ij)  = 0                                                                        (2)    
     
or the prediction model   
 
                                                     E(yk  zk

Tz | zj, Ij, Rj)  = 0                                                                     (3)   
 
holds (for every j given each k), then the equality in equation (1) can easily be used to show that the 
nonresponse bias vanishes asymptotically.  This is double protection against nonresponse bias.  
 
In an ignorable prediction model, yk|zk is the same regardless of which units are sampled and respond (Little 
and Rubin 2002); that is, both the sampling and response mechanisms are ignorable under the prediction 
model, as they are in expectation under the model in equation (3). Notice that equation (2) also assumes 
that the sampling mechanism is ignorable under the response model.  In practice pk is usually assumed to 
be a function of zk, but not yk or any other y-value.  In other words, nonrespondents are missing at random 
(Rubin 1976).  
 
2.2 Missing Not at Random 
What if yk|zk  is correlated with Rk?  Deville (2000) supplied a quasi-probability-theory solution  “quasi” 
because response is treated as an additional phase of random sampling.  Suppose E(Rk ) can be described by 
a known function:  

                                                         E(Rk )= p(xk
T)                                                                       (4) 

  
with unknown parameter values in .  The vector xk  in Deville’s formulation has the same number of 
components as zk  but yk  can replace one of the latter’s components and other survey variables can be in xk 
as well.  Using our terminology, equation (4) allows model-only variables to replace shadow variables in 
the response model.  When calibration-weighting for unit nonresponse, it is sensible to assume that one 
component of xk is unity (or the equivalent).  This allows the possibility that every unit is equally likely to 
respond.  
 
Suppose equation (4) correctly specifies the unit response mechanism.  Finding a consistent estimate for , 
call it g,  that satisfies the calibration equation:  
 
                                                          k k k k k k k

k S k S k S

w d d

  

    z z z                                                   (5) 

 
where k  = (xk

Tg) = 1/p(xk
Tg) = 1/pk , (.) being the weight-adjustment function, results in a nearly 

unbiased estimator tc = S wk yk  for T = U yk under mild conditions.  Thus, calibration weights can be used 
when nonresponse is not missing at random.  Among those mild conditions is that  the matrix M =  

1 '( )T T
k k k k kSN d R  x g x z is invertible for g near  and that M converges to a finite matrix as the sample 

size grows arbitrarily large. 
  

Kott and Chang (2010) gave a prediction-modeling double-protection justification for Deville’s calibration 
by suggested the following two-equation prediction model could hold even when the response model in 
equation (4) fails:  
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                                                                     yk   = xk
Tx + k , and 

                                                                                                                                                                     (6) 
                                                                      zk

T
  = xk

T + k
T, 

where   is of full rank (although square here, it will be generalized soon), E(k|xj, Ij, Rj) = 0 and E(k|xj, Ij, 
Rj) =  0.   
 
Observe that yk   = xk

Tx + k    is degenerate when yk is a component of xk.  The two-equation prediction 
model in equation (6) does not necessarily assume it is.  Under that model, 

1 1( ) | ( ) | , where .T T
k k k k k ky      z x z xz β x η Γ β x β Γ β   

Let bz* be the asymptotic limit of  

                                bz = 
1

'( ) '( ) ,T T T
k k k k k k k k k k

k S k S

d R d R y

 


 

  
 
 
 x g x z x g x   

which, like bz, is assumed to exist even when the prediction model fails.  It would be equal to z  otherwise 
so long as g converged to a finite g* as the sample grew arbitrarily large.   

We can write  

                         

  

 

*

* ( ) 1 ,

T
k k k k kk

k k k k
k kk S k S k S

T T
k k k k k

k S

d y R pR
d y d y

p p

d y R

  



 
 

    
 

  



z

z

z b

z b x g
                          (7) 

 
from which the near unbiasedness of tC can be inferred if either E[Rk  p(xk

T)|xj, zj, Ij]  = 0 or E(yk  zk
Tz | 

xj, Ij, Rj)  = 0. Kott (2006) and others have shown that the insertion of '(.) into bz, which otherwise looks 
like an instrumental-variable regression coefficient, removes the contribution to large-sample variance 
under the response model from estimating (xk

T)  with (xk
Tg)  (because  (xk

Tg)  (xk
T)                  

'(xk
Tg) xk

T(g ) under mild conditions).   
 
2.3  When There are More Calibration than Model Variables 
In a strictly quasi-probability framework, Chang and Kott (2008) allowed more calibration than model 
variables.  Their extension of Deville’s weighting approach replaced finding the g in this reformulation of 
the calibration equation 

                                       1 ( )T
k k k k k k

k S k S

N d R d

 

 
    

  
 x g z z 0s ,  

with finding the g that minimized sTQs for some symmetric and positive definite Q.  
 
Observe that if a g could be found that solved s = 0, then sTQs would automatically be minimized. 
Otherwise, under mild conditions, sTQs is minimized when its derivative is set to zero:

1 '( ) .T T
k k k k kSN d R   x g x z Qs 0                                            

 
Chang and Kott pointed out that this implies the following reformulated calibration equation: 
  
                                                            k k k k k k k

k S k S k S

w d d

  

    z z z                                                    (8) 
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where k z 1[ '( ) ] .T T
j j j j j k kSN d R   x g x z Q z Az   Note that if A were square and invertible, then 

satisfying the calibration equation in (8) would be equivalent to satisfying the calibration equation in (5).   
 
Suppose A is not square but is of full rank and converges in probability as the sample size grows arbitrarily 
large to A*.  The reformulated calibration equation allows all results derived when zk and xk have the same 
number of components to hold with zk replaced by either kz  or *k z A*zk.  Unlike kz , *kz  is not a 
function of the other jz .  This is very helpful ssary for deriving large-sample response-model and 

prediction-model results. Under the prediction model in equation (6), *( * ) |T
k k ky  zz β x  

1( [ *] ) | ,T
k k k

  xη ΓA β x  where 1
* [ *] .z xβ ΓA β  Note that equation (8) need not hold exactly when the 

kz are replaced by the * .kz  
 
One still to needs a Q when applying Azk to reduces the number of components in kz .  Any choice leads 
to a consistent calibration-weighted estimator under mild conditions when the response model in equation 
(4) holds.  With that in mind, an obvious choice for Q is the identity matrix.  A slightly better one removes 
the scales from the components of zk  (i.e., 1 1 1[( )( )]T

k k k kS SDIAG N d N d    Q z z ) so that one 
doesn’t get a different calibration-weighted estimator if, say, a component of zk is measured in pounds rather 
than kilograms.  This is what the default of the SUDAAN procedure WTADJX uses for Q (Research 
Triangle Institute 2012).   
 
Chang and Kott suggested finding a Q that comes as close as possible to being N times the matrix inverse 
for the variance of the estimated mean of the calibration vector:  

                                                             1 [ / ( )]T
k k k k

k S

N d R p



 
  

 
 
τ x γ z .   

Iteration would be necessary to find such a Q because, until convergence, an estimator for   found by 
solving equation (6) for g given changes the estimate for the matrix inverse of the variance of  (found by 
replacing   by g) and so Q, which then changes the estimator g, and so forth.   
 
One can start the iteration by replacing p(xk

T) in    by the overall response rate and computing the first 
iteration of Q accordingly.  Before that, however, one needs to decide what variance to minimize: the 
variance of   as an estimator for the population mean  U zk

 

/N  or the conditional variance of   as an 
estimator for the full-sample-estimated mean  S dkzk

 

/N.   

 
Chang and Kott were calibrating to the population, so they chose the former.  In our context, calibration is 
to the full sample, so the latter seems more appropriate.  When the response model is Poisson (i.e., 
independent across units),  the conditional variance of  is simply V = 2 2( [ ( ) 1] )T T

k j k kSN d   x g z z , 
a value that can be estimated provisionally at every iteration of g (and then inverted) by letting  equal that 
g.  
 

3.  Our Proposals 
 
We suggest using an iterative process to find a Q and g such that   

                                                         
1

1 '( )T T
j j j j j

j S

N d R







 
  
 
 

Q x g z z , 
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and g satisfies 1 '( ) .T T
k k k k kSN d R   x g x z Qs 0  Under these conditions and assuming Q is of full rank,  

                                     

1

1

'( )

'( ) '( )

, (9)

T T T
k j j j j j

j S

T T T T T
k j j j j j j j j j j

j S j S

T
k

N d R

d R d R






 

 

 
   
 
 





 

z

z Q x g z x

z x g z z x g z x

z B

 

 
where Bz  is the weighted linear regression of the model vector onto the calibration vector in the respondent 
sample using '( )T

j jd  x g  as the weights.  Each column of Bz  is the weighted linear regression of the 
corresponding component of xk onto zk. Each component of kz is a prediction of the corresponding 
component of xk, although not necessarily a nearly unbiased one for both respondents and nonrespondents 
when nonresponse is not missing at random.     
  If yk  is a component of xk, and it could be expressed exactly as a linear combination of the 
components of zk, then no additional variance would come from unit nonresponse because  

                                   
  ( )k k y k k kk

k k k k
k kk S k S k S

d y z R pR
d y d y

p p
  

 
     = 0, 

where ( )y kz  is the component of kz  that predicts yk, in this case perfectly.  Usually, however ( )y kz  is not 
a perfect prediction of  yk.  
 
If the response model in equation (4) is Poisson and correct, a nearly unbiased estimator for the added 
variance in the calibration-weighted estimator tc due to unit nonresponse using the kz in equation (9) has 
this large-sample approximation:  

                                          
22( ) * * ( ) 1 ,T T

R c k k k k

k S

addVar t d y



    
  zz b x γ   

where 1* is the probability limit of ( '( ) ) '( )  T T T
k k k k k k k k k kS Sd R d R y   z zb b x g x z x g x under mild 

conditions.  Now T
k zz b  is a nearly unbiased predictor of yk  under the two-equation prediction model in 

(6) given xj, Ij, Rj (in the sense that the ratio of its bias to yk is asymptotically 0).   Using T
k zz b  corrects for 

any bias ( )y kz  as a predictor for yk under this prediction model. 
 
A large-sample approximation of the added prediction-model variance on tc due to unit nonresponse when 
the ** T

k ky  zz β 1[ *]T
k k

  xη ΓA β  are uncorrelated is    

                 
22

*( ) * | ( *) ( *) 2,  , 1 ,T T T
P c k k k kj j k k

S

j

k

IaddVar t d E y RR



            
 zz β x g x gx  

where g* (again) is the assumed-to-exist asymptotic limit of g even when the response model in equation 
(4) fails.  
 
These two addVar approximations suggests that the choice for kz  in equation (9) should do a good job at 
limiting the added error of  limit the added variance of  tc due to nonresponse.  By contrast, the Chang-Kott 
proposal of the last section has the form:  
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1

2 ( ) 1 '( )T T T T T T
k k j j j j j j j j j

j S j S

d d R



 

 
     
  

 
 z z x g z z x g z x .                   (10) 

That is to say, Bz in equation (8) is replaced by the awkward weighted regression in the full sample of          
(Rk /dk)[k'/(k 1)] xk  onto zk using the dk

2(k 1) as weights.  When the response model is logistic          
k'/(k 1) = 1, which is a bit less awkward but still not as likely to limit the size of the errors in tC  due to 
nonresponse as Bz in .T T

k kz z zz b z B b  
  
The use of equation (8) relies on the subsequent adjustment from calibration weighting to remove the 
potential bias from ( )y kz  as a predictor of yk.  A simpler variant that does not require iteration or even rely 
on finding a Q.  Instead, it defines calibration weighting as satisfying equation (8) and lets 
  
                0 ,T T T

k kz z A                                                    (11) 
 
where A0

T = (S Rjzjzj
T)-1S Rjzjxj

T.  This is a variant of the component-reduction technique used in Andridge 
and Little (2011), which treated not-at-random unit nonresponse from a purely prediction-model point of 
view. Andridge and Little allowed uncertainty as to whether unit response was a function of yk, ( )y kz , or 
some affine combination of the two.  In our notation, their  xk = (1, yk)T at one extreme.  
   
Whether A in k z Azk

T equals  Bz
T as in equation (9) or A0, it is not hard to show that dual variables in xk 

will also be in .kz   It is the shadow variables zk that get reduced to the shadow variables in ,kz  although 
the latter can be linear combination of shadow and dual variables from zk so long as no shadow variable is 
exactly equal to a linear combination of other components of .kz  Each model-only component of xk has a 
corresponding shadow variable in kz . 
 

4. A Simulation Experiment  

 
We conducted a simulation experiment using mostly public-use files (PUFs) from the National Survey on 
Drug Use and Health (NSDUH; http://www.icpsr.umich.edu/icpsrweb/ ICPSR/ series/64), an annual 
national survey that collect data on substance use, mental health, and other health outcomes among 
members of the noninstitutionalized U.S. civilian population aged 12 or older.  Using 2006-2010 data from 
those PUFs we restricted our attention to children 12-17 who sought counselling for mental-health 
problems.  Our goal was to estimate for such children both the average number of visits to a specialty mental 
health facility, denoted SMHVST, and the prevalence for not making any visits, which we created and 
denoted NONE.  We used the actual data in the PUFs, removing records with the missing values for 
SMHVST and reweighting the remainder to compensate.  This gave us a complete data set of 2,454 records 
that looked very much like real data.  (The original PUFs contained no other missing variables of interest 
to us.) 
 
Unfortunately, after doing the computations, we learned that a variable used in reweighting the data was 
not on the public use files.  As a result, we will need to recalculate our empirical finding using a revised 
reweighting scheme and cannot present them here.   
 
In  the PUFs, SMHVST has six numerical categories, but we treated it as continuous, reassigning category 
6, no visits, to SMHVST = 0 and leaving the rest of the ordered categories as they were (categories 3, 4, 
and 5 had 3 to 6 visits, 4 had 7 visits, and 25 or more visits, respectively).  We set NONE = 1 when    
SMHVST = 0 (originally 6) with NONE = 0 otherwise.    
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For our calibration variables, we used the binary variables MALE, WHITE (non-Hispanic Caucasian), and 
YOUNG (12 or 13 years old), and the categorical variable YOTMTHLP, how much did counseling help, 
which ranged from 0, not at all, to 5, extremely.  We treated YOTMHLP as continuous.  
 
We compared five methods of creating calibration weighting to account for the nonresponse.  The first 
treated the calibration variables and unity as if they were also the (response) model variables:  xk = zk =       
(1 MALE WHITE YOUNG YOTMTHLP)T. The second through fifth methods treated SMHVST and 1 as 
the model variables, xk = (1  SMHVST)T, and the same calibration-variable vector as method 1,  but used 
different techniques to reduce the dimension of the latter, that is, create kz .   
 
Method 2 used the default in SUDAAN’s WTADJX (ADJUST = NONRESPONSE; BESTIM = 
REDUCED).  Method 3 used the Chang-Kott method expressed in equation (10).  Method 4 was our first 
proposed method (equation (9)).  It required iteration.  Method 5 was our second proposed method (equation 
(11)), which did not. 
 
Finally, Method 6 added the three binary variables from vector of calibration variables to vector of model 
variables: xk = (1 MALE WHITE YOUNG SMHVST)T.   As a result, the dimensions of the model and 
calibration vectors were the same and reduction of the size of the calibration vector became unnecessary.  
We investigated this method because it is relatively simple to implement with available software.  It has 
SMHVST as a model variable while employing all the calibration variables. The extra model variables 
(MALE, WHITE, and YOUNG) should have coefficients  asymptotically equal to zero.  If the efficiency 
loss from using it was not too great, this method would be very appealing in practice.        
 
We created and simulated probabilities of response with these three logistic models: 
Model 1:  1/[1 + exp( 2 + .3 SMHVST)]  
Model 2: 1/[1 + exp( 2 + .75 SMHVST)] 
Model 3: 1/[1 + exp( 5  .3 SMHVST)]. 
Response decreased with SMHVST in the first two models, but decreased with SMHVST in the third.  The 
nonresponse rate, which varied across simulations, under the first and third models was roughly 25%.  It 
was roughly 50% under the second model.   
    

5.  Some Concluding Remarks 

 
We have seen that if one knows what survey variables cause units to respond or fail to respond, then a 
prudent strategy would be to choose shadow variables that can predict them within the respondent sample 
using linear regression, which, if our modest simulations are any indication, may not need to be weighted. 
Weighting for both the sampling (through the dk) and the response mechanism (through the (.)) can 
perhaps wait until after the shadow variables have been selected (say with equation (11))  and occur in the 
calibration-weighting process itself (equation (8)).  In addition, there appears to be no need to chose a Q 
matrix as claimed in Chang and Kott (2008) for calibration-weighting to have desirable properties.   
 
To be honest, this result surprised us.  We had hoped by using real data not generated by a prediction model 
in our simulations while simulating nonresponse with an exact response model our first proposal based on 
a chosen Q would produce clearly smaller mean squared errors. It did, but not in all cases.  This finding 
may be analogous to the b in the general regression estimator for U yk in the absence of unit nonresponse, 
tGREG = S dkyk + [U xk  S dkxk)]Tb, not itself having to be a weighted estimator for tGREG to be both 
unbiased under the linear prediction model and consistent under probability sampling theory.     
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The calibration-weighting approach using equation (11) differs from the pure prediction-modeling 
approach to unit response in Andridge and Little (2011) in including a calibration-weighting step.  A pure 
prediction-modeling approach when combined with a non-ignorable original sampling design might 
produce implicit weights like  

                            
1

1

1 (1 )   

                                                                                           (12) 

= if 

T T
k k j j j j j j j k

j S j S

T T
j j j j j j k k

j S j S

w d d R R d

d R d d



 



 

  
    
  

   

 
 
 
 

 

 

z x z x

z x z x contains 1 as a component (or the equivalent),kx

 
where the kz come from equation (11).   
 
The theory under which using the weights in equation (12) result in nearly unbiased estimators only covers 
survey variables for which the two-equation model in (6) applies, unlike NONE in our simulations 
(although, to be fair, ideally each survey variable could be modeled separately using a plausible model for 
each).  Ironically, the response model corresponding to the weights in equation (12)  is E(Rk )= 1/(1 + xk

T) 
featured in the purely quasi-randomization approach of Särndal and Lundström (2005). 
 
In our framework, calibration variables as well as survey variables can be in the weight-adjustment function, 
which is ideally the inverse of the response model in equation (4).  The problem, which is still unresolved, 
is how best to determine what variables belong in the weight-adjustment function.  As our simulations 
suggests, there is a variance penalty from allowing survey variables to be in the weight-adjustment function.  
This suggests to us that weight adjustment made to remove potential biases due to nonresponse be separated 
from weighting adjustments to increase efficiency or control for coverage errors.  
 
Finally, although we used the SUDAAN routines WTADJUST (for Method 1) and WTADJX (for all other 
methods) in ours simulation, the R package “Sampling” (Tille and Matei 2013) and other routines in R can 
also be used after the vector of calibration variables is reduced to a vector with the same number of 
components as the model vector.  
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