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Abstract 
In preparation for the 2017 change to the North American Product Classification System 
(NAPCS), Economic Census staff was tasked with determining a single imputation 
method to treat missing product data collected from all trade areas. To objectively 
compare four proposed imputation methods, we conducted a simulation study to obtain 
two evaluation measures: imputation error, to measure the accuracy of the overall 
estimate, and the fraction of missing information (FMI), to measure the precision of the 
imputed estimate. For the “cook-off,” we generated complete pseudo populations by 
applying each imputation method to missing sample data, inducing product nonresponse 
in each population, and applying each imputation method to the missing data. 
Nonresponse was induced independently in each pseudo population, yielding 50 
replicates. Each imputation procedure was multiply-imputed within replicate. Imputation 
methods (“treatments”) are evaluated within trade area using the average imputation error 
and FMI.  This evaluation approach is generalizable to other programs with similar 
missing data problems. 
 
1. Introduction 

Choosing the best method to correct for nonresponse is not a simple task for any data 
collection activity, let alone the Economic Census, which is the U.S. Government's 
official five-year measure of American business and the economy. Prior to this 2014 
study, the strategy of correcting for nonresponse varied by subject matter area within the 
Economic Census.  This paper details the difficult process of making an objective 
recommendation of a single method for use in eight diverse trade areas of the Economic 
Census.  The evaluation focuses on the performance of four chosen imputation methods 
on product estimates in selected industries with common products under North American 
Product Classification System (NAPCS) at the national and industry level. 
 
One of the goals of the Economic Census Reengineering project is to fully implement the 
NAPCS in the 2017 Economic Census, a process which began in the 2002 Econ Census.  
Unlike previous census collections, product information obtained using NAPCS allows 
for cross-trade area tabulation of products.  The goal of this research is to recommend a 
single methodology for imputing missing product data collected using the NAPCS for the 
2017 Economic Census.  Research was conducted in two phases: (1) an exploratory data 
analysis phase to study data characteristics; and (2) a simulation study to assess statistical 
properties and performance of selected imputation methods. 
 
The Economic Census is processed in eight different trade areas:  Construction (CON), 
Finance, Insurance, and Real Estate (FIR), Manufacturing (MAN), Mining (MIN), 
Services Industries (SER), Retail Trade (RET), Wholesale Trade (WHO), and 
Transportation, Communication, and Utilities (UTL). Each trade area is composed of 
similar industries; and within each trade area a core set of data items is collected from 
each establishment called general statistics items.  In addition, the Economic Census 
collects information on the revenue obtained from product sales. Prior to the 2017 

                                                           
1 Disclaimer: This report is released to inform interested parties of research and to encourage 
discussion.  The views expressed are those of the authors and not necessarily those of the U.S. 
Census Bureau. 
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Economic Census, a list of products specific to each industry was provided directly on 
the industry questionnaire.  Beginning with the 2017 Economic Census, data collection 
will be electronic, and the respondents will have greater flexibility in reporting products. 
Moreover, NAPCS allows the collection of the same product in different industries.The 
methods of treating missing product data in the 2012 Economic Census (and prior 
censuses) varied greatly by trade area. 
 
2.  Product Data Collection 

The Economic Census attempts to collect a total value for sales, shipments, receipts, or 
revenue from all sampled establishments. Product data (labeled as “Details of sales, 
shipments, receipts, or revenue”) are collected towards the end of the questionnaire. The 
types of products that an establishment is expected to produce or to sell are strongly 
related to the primary industry in which the establishment operates.  As mentioned in the 
introduction, the sum of the product values reported should add to the value of total 
receipts provided.  In-house, each of the individual collected products on the form are 
referred to as “product lines”, hereafter referred to as “products”.  The products are 
expected to sum up to the total receipts value. 

This research used selected 2012 Economic Census product data from seven trade areas:  
FIR, MAN, MIN, SER, RET, WHO, UTL and selected 2007 Economic Census product 
data in the construction (CON) trade, since 2012 CON data was still in processing. All 
data have undergone post-collection editing and imputation (Plain Vanilla (PV) and 
specialty edits. See Sigman and Wagner (1997) and Wagner (2000)). 
 
In all trade areas except CON, classification experts selected ten to thirty industries per 
trade area with common products under NAPCS.  These industries were included in the 
phases of exploratory data analyses and response propensity analyses.  We selected five 
industries per trade in the final simulation evaluation phase as described in Section 3.  
Unfortunately, there is no direct translation of Kind-of-Business (KOB) and Type of 
Construction (TOC) to NAPCS construction products, so the CON analyses present a 
“worst case” scenario at best and are included only for completeness. 
 

3. Imputation Methods 

Three types of imputation method were considered for this project:  ratio (expansion) 
imputation, hot deck imputation (random and nearest neighbor), and sequential regression 
multivariate imputation (SRMI). See Garcia, Morris, and Diamond (2015) for a 
discussion of the EXP imputation and SRMI implementations, see Tolliver and Bechtel 
(2015) for a discussion of HDN and HDR implementations. 

4. Evaluation Statistics 

For each product within an imputation cell and trade area population, each imputation 
method was evaluated using two statistics: imputation error and the fraction of missing 
information (FMI). For each imputation method, we obtain these summary measures by 
product and within imputation cell. 
 
Since the Economic Census produces product tabulations and does not release 
corresponding micro-data, the evaluation criteria have been calculated at an industry 
tabulation level. An imputation method that produces realistic micro-data is not required 
(although desirable), whereas estimate accuracy is necessary. Thus comparisons between 
establishment-level imputed product values (within replicate and implicate) to their 
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corresponding population values to measure error as done in Charlton (2004) will not be 
performed. 
 
4.1. Imputation Error 

We define the imputation error (IE) of product p in imputation cell i obtained using 
imputation method m in replicate r in a given trade area population as 𝐼𝐸𝑟

𝑖𝑝𝑚
=

(𝑌̅𝑟
𝑖𝑝𝑚

− 𝑌𝑖𝑝), where Yip is the trade area population total of product p in imputation cell 
i. 
 
The absolute imputation error (AIE) measures the magnitude of the imputation error 
(ignoring direction) and is computed as 𝐴𝐼𝐸𝑟

𝑖𝑝𝑚 =  |𝐼𝐸𝑟
𝑖𝑝𝑚

|. 
 
4.2. The Fraction of Missing Information 

To avoid the possibility that the imputation methods would tie with respect to IE, a 
second evaluation criteria, the fraction of missing information (FMI), was also 
evaluated. FMI is a measure of “the level of uncertainty about the values one would 
impute for current nonrespondents” (Wagner, 2010). The FMI for product p in imputation 
cell i from replicate r obtained with imputation method m on v implicates (i.e. each final 
imputed data set will be constructed by averaging across v multiple imputed data sets)  is 
given by 

𝐹𝑀𝐼
𝑌̅𝑟

𝑖𝑝𝑚 = (1 +
1

𝑣
)

𝐵𝑟
𝑖𝑝𝑚

𝑇𝑟
𝑖𝑝𝑚

 

where 𝐵𝑟
𝑖𝑝𝑚 and 𝑇𝑟

𝑖𝑝𝑚 are the multiple-imputation between and total variances defined in 
Section 5 using v = 100 implicates in our applications. If the imputation method tends to 
yield consistent distributions, then the between-implicate component will be very small, 
and the FMI will be close to zero. If the imputation method performs inconsistently, then 
the FMI value will approach one. 
 
Since the FMI is a random variable with a measurable variance. Wagner (2010) and 
Harel (2007) note that a large number of implicates are required to estimate the FMI with 
reasonable precision; Wagner (2010) uses 100 implicates, and Harel (2007) recommends 
using between 50 – 200 implicates, depending on the level of precision desired and the 
“true” (but unknown) value of the FMI. Harel (2003) provides an approximate expression 
for the variance of the FMI, which we use in Section 6: 

𝑉̂ (𝐹𝑀𝐼
𝑌̅𝑟

𝑖𝑝𝑚 
 
) ≈

𝐹𝑀𝐼
𝑌̅𝑟

𝑖𝑝𝑚 
 
(1 − 𝐹𝑀𝐼

𝑌̅𝑟
𝑖𝑝𝑚 

 
)

√𝑉
2

. 

 
5. Simulation Study Procedure 

After implementing the four different imputation methods and testing each on Economic 
Census data, we now employ a data-driven procedure, which produces the necessary 
results to objectively compare each imputation method to all of the others. This 
comparison procedure, known in-house as the “cook-off”, is summarized as follows: 
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1. Impute to create complete pseudo populations 
2. Randomly induce nonresponse using a pre-specified propensity model 
3. Impute missing values using specified model(s) 
4. Compare the resultant fully imputed dataset(s) on predetermined (statistical) 

criteria (evaluation is covered in Section 6) 
 
Figure 1 depicts steps 1-3 of our simulation procedure. We independently repeat the 
process 50 times to create 50 replicates.  Nordholt (1998) reports invariant results using a 
similar procedure with 50 replicates.  Within replicate, we applied each imputation 
method to the missing data to obtain complete datasets, using multiple imputation to 
obtain the statistics needed for evaluation (v = 100 implicates per replicate). 
 

 
Figure 1:  Simulation Cook-Off Procedure 
 
This procedure permits the robustness of the imputation method to be evaluated over 
repeated samples and under alternative response mechanisms (for two excellent large-
scale applications, see Northolt (1998) and Charlton (2004)). Frequently, similar 
evaluations obtain the population data by simulating realistic complete population data, 
restricting the study data to unit respondent data, or “imputing” missing values with 
historic data from the same units. Similar data simulation approaches were infeasible for 
our data sets. Each industry collects different products – with little overlap in products.  It 
is difficult to develop reasonable multivariate models to generate simulated data, since 
many products are reported by only a few establishments. The available data are 
insufficient for developing parametric models or for resampling methods for the rarely 
reported products. Moreover, the low item response rates and the possibility that the 
response mechanism could be non-ignorable (related to the products collected) make it 
unwise to treat the product respondent data as a good representation of the available 
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universe. Finally, there was consensus from the subject matter experts that any matched 
historical data would likely be to be unrealistic. 
 
Rather than attempt to develop a single “realistic” population for each trade area, we 
selected five industries, each with at least two well-represented products.  Then we 
generated four complete “populations” by applying each candidate imputation method to 
replace the missing data as suggested by Dr. Trivellore Raghunathan (University of 
Michigan), which is the “Impute (one time procedure)” in Figure 1 above.  This was done 
to mitigate any possible interaction between the imputation method used to produce the 
“population” and the imputation method being tested. 
 
After developing four complete “populations” in each trade area, we randomly induced 
unit nonresponse in each population using fitted unit level response propensity 
probabilities.  We fit logistic regression models to find covariates that significantly 
contribute to the probability that a unit respondent will provide usable product data. 
 
The conditional probability that an establishment reports usable product data is estimated 
by the logistic function of a linear combination of the explanatory covariates: 
 

Pr(𝑌𝑘𝑗 = 1|𝑿𝑘𝑗
𝑤 ) = 𝜋(𝑿𝒌𝒋

𝒘 ) =
exp(𝛽𝑤𝑿𝑘𝑗

𝑤 )

1+exp(𝛽𝑤𝑿𝑘𝑗
𝑤 )

=
exp(𝛽0+𝛽1𝑥𝑘𝑗1+⋯+𝛽𝑤𝑥𝑘𝑗𝑤)

1+exp(𝛽0+𝛽1𝑥𝑘𝑗1+⋯+𝛽𝑤𝑥𝑘𝑗𝑤)
, 

where 
𝑌𝑘𝑗 = {

 1  if the establishment j in industry k provided any usable product line data
0  otherwise                                                                                                                       

 
and 
𝑿𝑘𝑗

𝑤 = ( xkj1, xkj2, … , xkjw) denotes the vector of w potential explanatory covariates of unit 
response from establishment j in industry k. 
 
We performed response propensity modeling by trade area using a forward selection 
procedure derived by Wang and Shin (2011).  Each additional covariate must be 
statistically significant given those already in the model in the forward selection.  We use 
the likelihood-ratio test to measure overall goodness-of-fit for each candidate model, 
whose test statistic is 
 

𝐷 = −2 ln [
likelihood of the fitted model

likelihood of the saturated model
]. 

 
Under the null hypothesis 𝑿 = 0, and D has an approximate chi-squared distribution.  
Each variable in the forward selected model must be statistically significant using the 
Wald statistic. 
 
Ideally, we want to minimize the number of covariates. Furthermore, any categorical 
variable must have a sufficient number of respondents per imputation cell, if we are to 
consider it as a possible covariate.  In addition to considering the goodness-of-fit test 
results described above, we examined the Rescaled R2 from Tjur (2009). We calculated 
the mean predicted probability of an event for each of the two categories of the dependent 
variable and calculated the difference between those two means.  Like the “traditional” 
R2 used in linear regression, the upper bound is 1.0 and the interpretation is analogous. 
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As discussed in the Section 4, one of our evaluation criteria is the FMI. The FMI is a ratio 
of two variance estimates (between and total) that are usually obtained using multiple 
imputation. The Sequential Regression Multivariate Imputation (SRMI) applications 
easily adapt to multiple imputation, as advertised.  However, the hot deck and expansion 
methods require multiple imputation analogues. 
 
Furthermore, these multiple imputation analogues for hot deck and expansion must 
“incorporate appropriate variability among the repetitions of the model” (Rubin 1988); 
this is an imputation property referred to as “proper” (as defined in Rubin 1987).  A 
proper multiple imputation method will ensure that the resulting fully imputed datasets 
represent the sampling uncertainty in the imputed values as well as estimation uncertainty 
associated with the underlying model parameters. Without both types of variability, the 
imputation procedure is not proper in that it will underestimate the overall variability of 
the imputation procedure. Rubin (1987) explicitly addresses the underestimation of 
variability in a simple multiple imputation hot deck: one that simply repeats random 
draws from respondents. As an example of a proper multiple imputation procedure, 
consider a standard linear regression model. We would want to (1) draw the parameters 
of the model from their associated posterior distribution and (2) draw missing values 
from their posterior distribution conditional on the parameters drawn in step (1). Such a 
two-stage strategy for multiply imputing datasets with the appropriate amount of 
variability is not straightforward for all methods. 
 
Within each replicate (out of total R replicates), we obtain multiply-imputed estimates of 
total and variances for the ten selected products in each trade area. The multiply-imputed 
estimated total for product p in imputation cell i from replicate r obtained with 
imputation method m is: 

𝑌̅𝑟
𝑖𝑝𝑚

=
1

100
∑ 𝑌̂𝑟𝑣

𝑖𝑝𝑚

100

𝑣=1

, 

where 𝑌̂𝑟𝑣
𝑖𝑝𝑚

= ∑ 𝑤𝑗𝑗∈𝑖 𝑦̈𝑟𝑣𝑗
𝑖𝑝𝑚and 𝑦̈𝑟𝑣𝑗

𝑖𝑝𝑚 is the jth establishment’s value of the product 
(reported or imputed) in the implicate. 
 
For each replicate we find the corresponding multiple imputation variance. The within 
imputation variance is the average of the v =100 complete data variances: 

U̅𝑟
𝑖𝑝𝑚

=
1

100
∑ 𝑉̂

100

𝑣=1

(𝑌̂𝑟𝑣
𝑖𝑝𝑚

). 

The between imputation variance is the variance between the v=100 complete data 
estimates: 

𝐵𝑟
𝑖𝑝𝑚

=
1

99
∑ (𝑌̂𝑟𝑣

𝑖𝑝𝑚
− 𝑌 ̅𝑟

𝑖𝑝𝑚
)2

100

𝑣=1
. 

Finally, the total variance is a weighted sum of the two aforementioned variances: 

𝑇𝑟
𝑖𝑝𝑚

= 𝑈̅𝑟
𝑖𝑝𝑚

+ (1 +
1

100
) 𝐵𝑟

𝑖𝑝𝑚
, 

for more details, see Rubin (1987) and Zhang (2003). 
 
Next, we describe how the replicate estimates statistics are used to obtain the evaluation 
statistics. Rubin and Schenker (1986) and Rubin (1987) propose the Approximate 
Bayesian Bootstrap (ABB) as a tool for introducing appropriate variability into a multiple 
imputation procedure. ABB is a non-Bayesian method that approximates a Bayesian 
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procedure and adjusts for the uncertainty in the distribution parameters resulting in a 
proper imputation procedure. ABB involves: 
 

1. Drawing a random sample of respondents with replacement, and 
2. Imputing values for missing data using the sample of respondents drawn in the 

first step as the imputation base. 
 
Each round of the ABB procedure results in one complete dataset. This procedure is then 
repeated 100 times to obtain multiple imputed datasets. 
 
ABB is a natural and straightforward way to implement multiple imputation for the hot 
deck methodology. Typically, for the expansion method, variability is introduced via 
draws from the distribution of the parameters.  However, we decided that using a two-
stage model that involves drawing from the error distribution of the model for the 
expansion method would inherently change the methodology.  Thus, we chose to use 
ABB for expansion to keep the methodology and model intact while incorporating the 
additional variability by altering the sample for analysis. 
 
Because of the skewed population data, we implemented a slight modification of ABB 
for both the hot deck and expansion methods. In the first step of the ABB procedure – 
randomly sampling respondents with replacement – we used probability proportion to 
size (PPS) sampling with replacement in order to take into account sampling 
probabilities.  This is a simpler case of the adaptation of ABB for complex survey design 
presented in Dong et. al. (2014). 
 
Ultimately, we repeat each imputation method 5,000 times per population for the 
expansion (EXP), hot deck nearest neighbor (HDN), and hot deck random (HRD), and 
50,000 times per population for sequential regression multiple imputation (SRMI). This 
design is a complete block design applied to each population where each product is a 
block2 and each imputation method is a treatment, with repeated measures on each of the 
50 sets of nonrespondent establishments (one set per replicate). 
 
6. The Evaluation Procedure (using Manufacturing trade area as example) 

Given the evaluation statistics described in Section 4, we define the most accurate 
imputation method within a trade area as having 
 

• The lowest IE (closest to zero) for the majority of products (“unbiased”) 
• The lowest FMI (closest to zero) for the majority of products (“precise”) 

 
The evaluation statistics described in this section are rank-based, and the statistical tests 
are nonparametric. Using rank-based procedures will allow use to choose a “best” 
imputation method without assuming that the data have any particular distribution. That 
said, performance information is lost, especially when all imputation methods perform 
equally well or badly for one evaluation measure but display great disparities in 
performance between the four methods for the other evaluation measure. These 
procedures were independently applied to the simulation study results in each trade area. 
                                                           
2
 Our evaluation is restricted to ten products per industry. However, the imputation procedures that 

we apply to the replicates with missing data consider all potential products (not just the top ten), 
with the exceptions for the SRMI implementation. 
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After completing the trade area analyses, the final recommendation was developed 
jointly. 
 
6.1. Product Level Analysis (within trade area population) 

The first step of the analysis is to evaluate the imputation methods’ relative performances 
for each product within industry. This was done separately by trade area population (i.e., 
[TRADE]-EXP population, [TRADE]-HDN population, [TRADE]-HDR population, 
[TRADE]-SRMI population, where [TRADE] is one of the eight Econ Census trade 
areas). Recall that for our study, the trade area populations cover five selected industries 
within from that trade area. Our analyses used their “top ten” products, defined as the 
most frequently reported products (by number of establishments) in the selected 
industries. Unfortunately, our analysis was limited to this subset of products, because for 
iterative analyses the models do not converge with the less-reported products.  Each of 
these products have been reported by establishments within one or more of the selected 
industries. Analysis of IE and FMI are conducted separately by product. 
 
Within a trade area population, we obtain a single score (rank) that describes the IE 
performance of each imputation method for product p in industry k using this procedure: 
 
1. Obtain the median absolute imputation error (RANK_AIE) of product p in the 

imputation cell over the fifty replicates. Rank the four values (one per imputation 
method) by ascending value, using the mean rank for tied ranks (e.g. for a two way 
tie for rank “2”, assign each the rank (2+3)/2 = 2.5, and the remaining methods are 
assigned ranks 1 and 4). 

2. Obtain the range of the imputation error (RANK_RANGE) of product p in the 
imputation cell over the R replicates. Note that we use the actual range of the IE 
(largest – smallest) for this criterion, not the absolute IE.  Rank the four values of the 
range of IE by ascending value, using the mean rank for tied ranks. 

3. Obtain the weighted average over the two ranked values for each treatment:                                
COMBINED_RANK=0.70*RANK_AIE + 0.30*RANK_RANGE. These weights 
were developed heuristically, so that the magnitude of the IE has more influence on 
the rank than the range of the magnitudes (over replicates), and yet the method that 
yields large outliers is still penalized. 

4. Aggregate COMBINED_RANK by product within trade area population and divide 
by number of imputation cells containing product to obtain an averaged 
COMBINED_RANK  (the product may be reported in more than one imputation cell 
within industry or may be reported in more than one industry). 

5. Rank to obtain FINAL_RANK, using the mean rank for tied ranks. 

Table 1 provides an example of this ranking procedure performed on a single product 
(PRODUCT1) in the MFG imputation cell 3273200 from the SRMI trade area 
population. If PRODUCT1 had been reported in more than one imputation cell – in this 
case it was reported by only one of the selected industries – another four rows per 
reporting imputation cell would be added to the following table, and final rank would be 
an average of ranks across multiple industries. 
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Table 1: Illustration of Ranking Procedure for Imputation Error for a PRODUCT1 

METHOD MEDIAN 
(AIE) 

IE 
RANK 

RANGE 
(IE) 

RANGE-
RANK 

COMBINED 
RANK 

FINAL 
RANK 

EXP 31401 1 64653 1 1 1 
HDN 33426 2 75078 4 2.6 2 
HDR 33566 3 66815 2 2.7 3 
SRMI 83990 4 73602 3 3.7 4 
 
FMI, in contrast to the IE measures, has a variance that is maximized when the FMI = 
0.50 and is minimized when the FMI equals zero or 1. In other words, for a given number 
of implicates, the variance of the FMI is minimized when either the imputation method is 
performing extremely well or extremely poorly. Although it is important to incorporate 
the FMI’s variance into the analysis, it would be unwise to use the corresponding 
variance as a comparative method in this case. 
 
Thus, to incorporate the variance of the FMI into our comparison, we test a general linear 
hypothesis on the minimum and maximum of the average value of the FMI. The general 
linear hypothesis is performed for each product p over the R replicates at  = 0.10.  In a 
given trade area population and imputation cell, let 
 = R  1 vector of FMI values for product p and imputation method m 
 = R  R matrix of FMI variances for the product and imputation method with off-
diagonal values 
(covariance between replicates) = 0 
K = 1  R vector of known constants. Since we are testing the average FMI, K =(1/R 1/R 
…. 1/R) 
K0 = a value in [0,1], representing a hypothetical FMI value. 
Note: the matrix product K = the average FMI for product p and imputation method m 
over R replicates. 
 
The hypothesis test of interest is: 
H0:  K = K0 (Note that the product) 
HA:  K ≠ K0 
 
The test statistic is given by (K - K0)T (K   KT)-1(K - K0) ~ 2

1 under H0.  Iterating 
over values of K0 for each test provides a range of values that satisfy the null hypothesis. 
Thus, the values of K0 immediately below and above these values provide lower and 
upper bounds (not a confidence interval) on the average FMI for each product within 
imputation cell and population over all replicates. 
 
Within a trade area population, we obtain a single score (rank) that examines the FMI 
performance of each imputation method on product p in industry k using the following 
procedure. 
 
1. Find MIN_K0 and MAX_K0, which are the minimum and maximum possible values 

of average FMI, according to the general linear hypothesis test. 
2. Summarize MIN_K0 and MAX_K0 by the single value: MIDPOINT_FMI = (MIN_K0 

+ MAX_K0)/2. 
3. Within imputation cell, rank the four values of MIDPOINT_FMI for product p to 

obtain RANK_MIDPOINT. 
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4. If the given product appears in multiple imputation cells within the trade area, 
aggregate RANK by product within trade area and divide by number of imputation 
cells containing product. 

5. Rank to obtain FINAL_RANK, using the mean rank for tied ranks. 
 
Table 2 provides an example of this ranking procedure performed on single product 
(PRODUCT1) in the same MFG imputation cell, 3273200, from the SRMI trade area 
population. 
 
Table 2: Illustration of Ranking Procedure for FMI for a Single PRODUCT1 

METHOD MIN_K0 MAX_K0 
MIDPOINT 
FMI 

MIDPOINT 
RANK 

FINAL 
RANK 

EXP 0.5216 0.6079 0.56475 4 4 
HDN 0.4797 0.5666 0.52315 2 2 
HDR 0.4961 0.5828 0.53945 3 3 
SRMI 0.3275 0.4100 0.36875 1 1 
 
6.2. Imputation Method Selection, Within MAN Trade Area Population 

As mentioned in Section 5, the simulation study conducts a complete block design 
experiment independently in each trade area population. In our design, the ten studied 
products within trade area represent the blocks, and the treatments are the imputation 
methods (repeated measures on each establishment). Each treatment is ranked within 
block (Section 6.1.), with ties represented by means and the lowest rank representing the 
method with the best performance. Typically, a complete block repeated measures design 
is analyzed using a two-way analysis of variance (ANOVA). At a minimum, ANOVA 
assumes that that the residuals have the same variances (homoscedasticity), but 
inferences that use the F-test require that that variances are i.i.d. normal. 
 
The Friedman Test (Friedman, 1940) is a two-way analysis of variance that uses rank as 
the measure of interest (i.e. is the nonparametric analog to the two-way ANOVA). There 
are two assumptions for this test: (1) the results between block are approximately 
independent (i.e. the results for one product do not influence the results for the other 
products), and (2) within block, the observations can be ranked in order of interest. 
Technically, we may not have complete independence among products collected within 
the same industry. However, we believe that the number of products is large enough 
within industry to offset the dependence. Demsar (2006) recommends a minimum of five 
treatments to attain comparable power to the ANOVA test; Conover  (1999, Chapter 5.8) 
does not provide a similar limit on number of treatments or number of blocks, but does 
note that the power of the tests is directly affected by both. 
 
 
The omnibus test determines whether all four treatments exhibit the same performance. 
H0: All treatments have equal average rank (R1 = R2 = R3 = R4) 
HA: At least one treatment has a different performance from the others 
 
Let  𝐴 = ∑ ∑ (𝑅𝑝𝑚)2

𝑚𝑝 , the sum of the squares of the (average) ranks 

𝐶 =
𝑃𝑀(𝑀+1)2

4
=

10 ×4(4+1)2

4
, the “correction factor” for ties in rank 

JSM2015 - Survey Research Methods Section

1665



 

𝑇1 = (𝑀 − 1) ∑ (𝑅𝑚 −
𝑃(𝑀 + 1)2

2
)

2

𝑚

(𝐴 − 𝐶)⁄ = 3 ∑ (𝑅𝑚 −
10(4)2

2
)

2

𝑚

(𝐴 − 𝐶)⁄  

𝑇2 =
(𝑃 − 1)𝑇1

𝑃(𝑀 − 1) − 𝑇1
=

9𝑇1

10 × 3 − 𝑇1
 

 
Friedman (1940) proposed the T1 measure; the T2 is the two-way analysis of variance 
statistics on ranks recommended by Iman and Davenport (1980). 
 
Under H0, T2 ~ F(M -1,(P-1)(M-1)) =F(3,27).  Reject H0 if T2 > F(3,27,=0.10). 
 
If the omnibus test is rejected, then it is appropriate to perform pairwise comparisons of 
rank, adjusted for multiple comparisons. We use the method outlined in Conover (1999, 
Ch. 5.8), Note that several other options are provided in Demsar (2006). The 
recommended test is adjusted for ties (as in the omnibus test statistic). At  = 0.10, a pair 
of summary ranks(𝑅𝑝, 𝑅𝑝′) is significantly different when 

|𝑅𝑝 − 𝑅𝑝′| > 𝑡
1−

𝛼
2

√
2𝑃(𝐴 − 𝐶)

(𝑃 − 1)(𝑀 − 1)
[1 −

𝑇1

𝑃(𝑀 − 1)
] = 𝑡

1−
𝛼
2

√
20(𝐴 − 𝐶)

(9)(3)
[1 −

𝑇1

10(3)
] 

 
The examples below illustrate these procedures. Table 3 continues our earlier example, 
presenting the complete set of ranked IE results in MANSRMI trade area population for the 
ten products. 
 
Table 3: Ranked Imputation Error Results within Product for SRMI Population, 
Manufacturing Industry 

Blocks Treatment 
 EXP HDN HDR SRMI 
PRODUCT1 1 2 3 4 
PRODUCT2 3 1 4 2 
PRODUCT3 4 3 2 1 
PRODUCT4 1 1 3 4 
PRODUCT5 2 3 1 4 
PRODUCT6 3 4 2 1 
PRODUCT7 2 1 3 4 
PRODUCT8 2 4 1 3 
PRODUCT9 2 3 4 1 
PRODUCT10 2 3 4 1 
SUM 22 25 27 25 
 
The omnibus hypothesis tests whether at least one treatment has different results from the 
others using the sum of the ranks across the products within treatment (REXP = 22, RHDN = 
25, RHDR = 27, RSRMI = 25). Here, the test statistic (T2) = 0.2593. The critical value of this 
test is F(3,27,=0.10) = 2.2906. Since T2 < F(3,27,=0.10), we fail to reject the null 
hypothesis. There is not a significant difference between the performances of the 
different methods. No further testing is appropriate for IE (in this population and trade 
area) and all cell entries for this row (trade area population/statistic) are represented by 
(1+2+3+4)/4 = 2.5 (a four way tie) in the trade areas summary table. 
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Table 4 presents the complete set of FMI results in the MANSRMI trade area population 
for the ten products. 
 
Table 4:  Ranked FMI Results within Product for SRMI Population, Manufacturing 
Industry 

Blocks Treatment 
 EXP HDN HDR SRMI 
PRODUCT1 4 2 3 1 
PRODUCT2 3 2 4 1 
PRODUCT3 4 2 3 1 
PRODUCT4 3 2 4 1 
PRODUCT5 3 2 4 1 
PRODUCT6 3 4 2 1 
PRODUCT7 4 2 3 1 
PRODUCT8 4 2 3 1 
PRODUCT9 3 2 4 1 
PRODUCT10 4 2 3 1 
SUM 35 22 33 10 
 
The omnibus test statistic for this set of summed ranks is T2 = 35.1176, which is greater 
than F(3,27,=0.10) = 2.2906.  Since the null hypothesis is rejected with this set of 
summed ranks, we conclude that at least one of the treatments has a significantly 
different result than the others. 
 
In order to find the treatment(s) with the lowest rank, we must examine the pairwise 

comparisons. For these tests, 𝑡1−
𝛼

2
√

20(𝐴−𝐶)

(9)(3)
[1 −

𝑇1

10(3)
] = 4.6811, according to the 

pairwise test, described above.  Table 5 presents the pairwise comparison test results. 
 
Table 5: Pairwise Comparisons for FMI in SRMI Population, Manufacturing Industry 
Population Differences in Summed Ranks 

Difference |
EXP −
HDN

| |
EXP −
HDR

| |
EXP −
SRMI

| |
HDN −

HDR
| |

HDN −
SRMI

| |
HDR −
SRMI

| 

Value 13 2 25 11 12 23 
Significant Yes No Yes Yes Yes Yes 
 
These results demonstrate no statistical difference between the results for EXP and HDR. 
However, EXP and HDR have significantly worse results with respect to FMI than those 
obtained from HDN or SRMI. In our summary table for this trade area population, the 
method with the lowest rank sum, SRMI, is assigned rank 1, HDN is assigned rank 2, and 
the tied methods, EXP and HDR, are assigned the average of ranks 3 and 4, 3.5. 
 
6.3. Trade Area Recommendations 

The Friedman testing and treatment scoring procedures described in Section 6.2. are 
performed independently in each trade area population. After the simulation study is 
completed in all four populations of a given trade area, we created a summary table, like 
the example depicted in Table 6, to examine the relative performance of the imputation 
methods on both statistics within trade area in the studied industries and products. 
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The H0 P-value column presents the results of the omnibus test for differences by 
treatment within trade area population for the studied statistic (IE or FMI). The other 
columns present the imputation method’s score within trade area population for the 
studied statistic. Table 6 presents the trade area recommendation process, using 
Manufacturing trade area scores. The last row of Table 6, SRMI Population, are the ranks 
that were found in 7.2, the other ranks in the table are found in a similar fashion. 
 
In our recommendation, in addition to performance, it was necessary that we consider the 
challenges of implementing each imputation method. In the following tables, it is shown 
that SRMI is frequently the best performer with respect to FMI. Despite this, we were 
hesitant to recommend SRMI because of the large implementation challenges associated 
with imputing the many seldom-reported products. 
 
Table 6:  Summary scores for Manufacturing Industries 

Population Imputation Error FMI 
 EXP HDN HDR SRMI EXP HDN HDR SRMI 
EXP Population 2 2 2 4 3.5 1.5 3.5 1.5 
HDN Population 2.5 2.5 2.5 2.5 3.5 2 3.5 1 
HDR Population 2.5 2.5 2.5 2.5 3.5 2 3.5 1 
SRMI Population 2.5 2.5 2.5 2.5 3.5 2 3.5 1 
 
In MAN, the EXP, HDN, and HDR methods have no statistical difference in performance 
with respect to IE, with SRMI performing worse than the others in one population. The 
SRMI method has the lowest FMI rank in three of the four populations, tying with HDN 
in the other.  HDN performs better than both EXP and HDR with respect to FMI. Since 
HDN avoids the aforementioned difficulties of extending SRMI to all products in the 
trade area, we recommend HDN as the best compromise, since we are trying to 
simultaneously balance the objectives of low IE and low FMI.  

6.4. Summary and Discussion 

Similarly, this simulation study was performed for the other seven trade areas. In all of 
the studied industries, a form of hot deck was chosen as the best compromise of the 
considered methods. However, the recommended hot deck variation was split between 
trade areas. HDN was recommended for MAN, MIN, SER, and CON, and HDR was 
recommended for RET, WHS, FIR and UTL.  However, the studied industries were not a 
probability sample and may not be representative of the larger trade areas. 
 
7.  Conclusion 

When assigned the difficult task of recommending a single “best” imputation method to 
correct for nonresponse in all trade areas of the Economic Census, Census staff devised 
an imputation “cook-off” process to aid in making an objective recommendation. It was 
necessary for us to base this recommendation on statistical criteria. 
 
Three separate missing data treatments (ratio (expansion) imputation, hot deck 
imputation (random and nearest neighbor), and sequential regression multivariate 
imputation) were chosen as possible candidates to become the single method to be used 
across all Econ Census trade areas. We developed statistical criteria for evaluation that 
balanced total IE (i.e., accurate tabulations) and nonresponse bias correction. To remain 
impartial, we developed an evaluation procedure that objectively considered both factors’ 
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importance, but perhaps downplayed major advantages within a measure (for example, 
one method might have a much lower IE than another). 
 
According to this evaluation, hot deck imputation appears to be the best compromise of 
the methods considered. We found that different variations of hot deck performed better 
in different situations. For example, an imputation cell that contains a large number of 
products and a fairly homogeneous population in terms of total receipts would probably 
have better results with nearest neighbor imputation, whereas an imputation cell with 
very few donor records would be better off using random hot deck.  Keeping in mind that 
we examined a limited number of products in a limited number of industries, we strongly 
recommend retaining this flexibility of hot deck choice in production. 
 
In 2017, the Economic Census will be using all-electronic data collection and will be 
collecting and publishing products under NAPCS. Our research uses historical data, and 
although we tried to mitigate the effects of NAPCS changes on the studied products by 
our industry selection, we cannot fully predict the extent of the differences on the new 
collected data, especially in situations where products can be reported in multiple 
industries. More importantly, it is impossible to predict what effects the electronic data 
collection will have. By implementing hot deck imputation, we hope to be able to quickly 
resolve production problems related to these changes, perhaps by revising matching 
criteria or using coarser imputation cells. Certainly, we can avoid relying on model 
assumptions that we cannot validate. 
 
This recommendation is only the first step. Implementation will require not only further 
development of SAS code, but cell collapsing criteria, distance functions, and a cold deck 
or an alternative back-up method for the rare case where no donor record exists.  In 
addition, research on producing establishment counts is needed, as is research on 
calibration of product data to industry total receipts. 
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