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Abstract
Hot deck imputation is popular for handling item nonresponse in survey sampling. In hot deck

imputation, imputed values are taken from the respondents in the same imputation cell, where im-
putation cells are used to approximate the imputation model. We extend the fractional hot deck
imputation of Kim and Fuller (2004) to the case where the imputation cells are not defined in ad-
vance. The proposed method of fractional hot deck imputation is performed in two steps and has
a structure similar to that of two-phase systematic sampling. The proposed hot deck imputation
method is applicable to multivariate missing data. A replication method is used for variance estima-
tion. Results from two simulation studies are presented.

Key Words: Cell mean model, Item nonresponse, EM algorithm, Multivariate missing, Replication
variance estimation.

1. Introduction

Nonresponse is frequently encountered in survey sampling. Unit nonresponse and item
nonresponse are two major types of nonresponse (Kalton and Kasprzyk,1986). While
weighting adjustment is commonly used to compensate for unit nonresponse, imputation is
preferred to handle item nonresponse. Haziza (2009) provides a comprehensive overview
of imputation methods.

In hot deck imputation, the imputed values are real observations taken from the re-
spondents in the same sample. Hot deck imputation is popular because it does not create
artificial values and does not rely on strong model assumptions. In hot deck imputation, cre-
ating imputation cells to achieve homogeneity within imputation cells is critical. In Brick
and Kalton (1996), all auxiliary variables are treated as categorical and imputation cells
are formed as a combination of those categorized auxiliary variables. A nearest-neighbor
imputation approach that uses a metric distance of auxiliary variables to find the set of
donors has been used by Cotton (1991), Rancourt, Särndal and Lee (1994), and Chen and
Shao (2000). Haziza and Beaumont (2007) used the score estimated by the regression of
response on the auxiliary variables to create imputation cells. Rubin and Schenker (1986)
proposed approximate Bayesian bootstrap (ABB) imputation as a hot deck approach to
multiple imputation.

Variance estimation after hot deck imputation is a challenging problem because it is
well known that naive approach of treating imputed values as if observed underestimates
the true variance. Rubin (1987) proposed multiple imputation as a general tool for inference
with imputed data. In multiple imputation,M(> 1), imputed estimates are created for each
missing item and then the imputation values are used for variance estimation.

Fractional imputation proposed by Kalton and Kish (1984), and investigated by Kim
and Fuller (2004), is a way of achieving efficient hot deck imputation. As in multiple im-
putation, M imputed values are generated for each missing value, but a single data set is
created after fractional imputation. Fractional weights are assigned to the imputed values
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and replication methods are used for variance estimation. Kim and Fuller (2004) and Fuller
and Kim (2005) describe some properties of fractional hot deck imputation and discuss
variance estimation. Imputation cells are pre-determined and the determination of imputa-
tion cells is not discussed in the fractional hot deck imputation of Kim and Fuller (2004).

In this paper, we extend fractional hot deck imputation in two ways. First, instead of
assuming the imputation cells to be given, we allow multiple cells for each missing item.
The multiple cells can be understood to be a nonparametric approximation of the true model
by a finite mixture model. The implementation of fractional hot deck imputation under
the finite mixture model is made through a two-phase systematic sampling mechanism.
Second, the proposed method is applied to multivariate missing data with arbitrary missing
patterns.

In Section 2, the basic setup is introduced. The proposed two-phase fractional imputa-
tion and variance estimator are discussed for the univariate case in Section 3. In Section 4,
the proposed method is extended to the case of multivariate missing data. Results from two
limited simulation studies are presented in Section 5, with concluding remarks in Section
6.

2. Basic setup: univariate missing case

Suppose that we have a finite population of size N , indexed by U = {1, 2, · · · , N}, and let
A be the index set for the units in the sample selected by a probability sampling mechanism.
Let A be partitioned into G groups based on the auxiliary information x, where x takes
values on {1, · · · , G}. Thus, we can write A = A1 ∪ · · · ∪AG. In addition to x, we collect
y and z where y is the study variable and z is another categorical variable that takes values
on {1, · · · , H}. The cross classification of x and z forms imputation cells and we assume
that

yi | (xi = g, zi = h) ∼ ii(µgh, σ2gh), i ∈ U, (1)

for some µgh and σ2gh > 0, where ∼ ii denotes independently and identically distributed.
Here, xi is always observed but (yi, zi) is subject to missingness. Define δi = 1 if (yi, zi)
is observed and δi = 0 otherwise. From unit responses, A can be re-partitioned into AR =
{j ∈ A; δj = 1}, AM = {j ∈ A; δj = 0} with A = AM ∪ AR. Also, Ag can be sub-
partitioned into ARg = {j ∈ Ag; δj = 1} and AMg = {j ∈ Ag; δj = 0}. Let nRg and
nMg be respectively the size of ARg and AMg.

We assume that the response mechanism is missing at random (MAR) in the sense that
δ is conditionally independent of (y, z) given x. That is,

f(y, z | x, δ) = f(y, z | x). (2)

The MAR condition (2) implies that model (1) also holds for the responding units. That is,

yi | (xi = g, zi = h, δi = 1) ∼ ii(µgh, σ2gh). (3)

We now consider a hot deck imputation estimator of YN =
∑N

i=1 yi under nonresponse.
By the condition (2),

f(y | x, δ = 1) =
H∑

h=1

P (z = h | x, δ = 1)f(y | x, z = h, δ = 1). (4)

Expression (4) takes the form of a finite mixture model. Let πh|g = P (z = h | x = g, δ =
1) be the conditional probability of z = h given x = g. The vector (x, z) defines the
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imputation cell for hot deck imputation. Note that, from (4),

E(yi | xi = g, δi = 1) =
H∑

h=1

πh|gE(yi | xi = g, zi = h, δi = 1).

Thus, if πh|g is known, we use all respondents in the cell to estimate E(yi | xi = g, zi = h)
to get

ŶFEFI =

G∑
g=1

∑
i∈Ag

wi

{
δiyi + (1− δi)

H∑
h=1

πh|gµ̂gh

}
, (5)

where

µ̂gh =

∑
j∈Awjδjajghyj∑
j∈Awjδjajgh

,

with ajgh = 1 if xj = g and zj = h, and ajgh = 0 otherwise. The estimator of (5) uses all
observed values as donors in the imputation cell and is called the fully efficient fractional
efficient (FEFI) estimator (Kim and Fuller, 2004).

3. Fractional hot deck imputation: univariate missing case

We now propose a new fractional hot deck imputation (FHDI) procedure that does not
require imputation cell information be given in advance. Given the finite mixture model in
(4), the imputed values are taken from the imputation cells with propbability proportional to
the conditional cell probabilities, πh|g. In practice, the cell probabilities πh|g are unknown
and need to be estimated.

The proposed fractional hot deck imputation is similar in spirit to two-phase sampling
for stratification (Rao, 1973; Kim, Navarro, and Fuller, 2006). In phase one, the cells
are determined and the cell probabilities πh|g are estimated. In phase two, M donors are
selected in each imputation cell.

The πh|g are estimated so that
∑H

h=1 π̂h|g = 1 for each group g. Using the definition
πh|g = Pr(zi = h | xi = g, δi = 1), an estimator of πh|g is

π̂h|g =

∑
j∈Awjδjajgh∑
j∈Awjδjajg

, (6)

where ajg =
∑H

h=1 ajgh. Thus, the FEFI estimator of (5) can be rewritten as

ŶFEFI =

G∑
g=1

∑
i∈Ag

wi

{
δiyi + (1− δi)

H∑
h=1

π̂h|gµ̂gh

}
,

=
G∑

g=1

∑
i∈Ag

wi

δiyi + (1− δi)
∑
j∈A

w∗ij,FEFIyj

 , (7)

where w∗ij,FEFI =
∑H

h=1 π̂h|g{wjδjajgh/
∑

l∈A δlwlalgh} is the fractional weights of the
j-th donor for the i-th recipient.
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Given M imputed values selected for each recipient, the two-phase fractional imputa-
tion (FI) estimator of YN is defined as

ŶFI =

G∑
g=1

∑
i∈Ag

wi

{
δiyi + (1− δi)

H∑
h=1

π̂h|gȳ
∗
i

}

=

G∑
g=1

∑
i∈Ag

wi

δiyi + (1− δi)
M∑
j=1

w∗ijy
∗(j)
i

 , (8)

where y∗(j)i is the j-th imputed value of yi, ȳ∗i = M−1
∑M

j=1 y
∗(j)
i is a mean of imputed

values, and w∗ij are the fractional weights for the FI estimator.
Note that the FI estimator can be also expressed in terms of the FEFI estimator,

ŶFI = ŶFEFI + (ŶFI − ŶFEFI)

= ŶFEFI +
G∑

g=1

∑
i∈AMg

wi(ȳ
∗
i − µ̂g), (9)

where µ̂g =
∑

j∈ARg
wjyj/

∑
j∈ARg

wj . While the fully efficient fractional imputation

estimator ŶFEFI has no variance due to the selection of donors, the fractional estimator
ŶFI has additional variance due to the donor selection procedure. Theorem 1 presents
some asymptotic properties of the FI estimator.

Theorem 1 Let the fractional hot deck imputation estimator ŶFI in (8) be constructed
using the two-phase systematic pps sampling.

(A1) A sequence of probability samples is drawn from a sequence of finite populations
(Fuller, 2009) and Ŷn =

∑
i∈Awiyi is design-unbiased for YN , where wi is the

inverse of the selection probability.

(A2) The cell mean model (1) and the MAR condition (2) hold for the sequence of popu-
lations and samples.

(A3) Let Ug, g = 1, . . . , G, be subsets of the finite population with size of Ng, where Ng

is fixed, and (
N̂g −Ng, N̂Rg −NRg, ŶRg − YRg

)
= Op(n

−1/2N),

where (N̂g, N̂Rg, ŶRg) =
∑

i∈Ag
wi(1, δi, δiyi) and (Ng, NRg, YRg) =

∑
i∈Ug

(1, δi, δiyi).

(A5) The cell mean estimator, µ̂g, satisfies µ̂g − µg = Op(n
−1/2), where µ̂g = YRg/NRg

and µg =
∑H

h=1 πh|gµgh.

Then,
ŶFI = ỸFI + op(n

−1/2N), (10)

and
E(ỸFI − YN ) = 0, (11)

where

ỸFI = ỸFEFI +
G∑

g=1

∑
i∈AMg

wi(ȳ
∗
i − µ̂g),
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and

ỸFEFI =
G∑

g=1

∑
i∈Ag

wi{µg +R−1g δi(yi − µg)},

with Rg = NRg/Ng. Also, we have

V (ỸFI) = V
(
ỸFEFI

)
+ E


G∑

g=1

∑
i∈AMg

w2
i V (ȳ∗i − µ̂g | Ag)

 , (12)

and

V
(
ỸFEFI

)
= V

 G∑
g=1

∑
i∈Ag

wiµg

+ E


G∑

g=1

R−2g

∑
i∈Ag

w2
i δi(yi − µg)2

 . (13)

See Appendix A for the proof. �

By equation (12), the variance of ŶFI is the variance of ŶFEFI plus the variance of the
mean of sample donors as an estimator of the cell mean.

Our strategy is to obtain an approximation of FEFI using systematic PPS sampling.
Note that, for recipient i ∈ AMg, we have nRg FEFI donors with the fractional weights
w∗ij,FEFI . Thus, M imputed values for yi can be systematically selected from the donors
in ARg with probability proportional to w∗ij,FEFI . The detailed procedure is given in Ap-
pendix A. The efficiency of the procedures will depend on the efficiency of the sampling
scheme used to select donors.

We propose to estimate the variance by a variance estimator that approximate the vari-
ance estimator for the FEFI estimator. Recall that the donors are ordered on the y-variable.
A method to construct jackknife replicates is:

(V1) Delete unit k. If k ∈ AM , then the w∗ij are not changed for i ∈ AMg.

(V2) For i ∈ AMg, k ∈ ARg, and r the closest integer to k, then the w∗ij for replicate k
are,

w
∗(k)
ij =


w∗ij − w∗ij,FEFI if j = r

w∗ij + (w∗rj,FEFI)
w∗ij,FEFI∑
j 6=s w

∗
ij,FEFI

if j 6= r

w∗ij otherwise.

For each k ∈ ARg, we identify the nearest FI donor to the deleted element among
{1, · · · ,M}. For example, if the FEFI donor set has 20 donors {1, 2, · · · , 20} or-
dered on [j] and we have FI with M = 5 donors, {2, 7, 12, 18, 20}, then the nearest
FI donor for k = 3 is r = 2.

Once w∗(k)ij are obtained for each k = 1, . . . , n, then a jackknife variance estimator is

V̂ (ŶFI) =

n∑
k=1

ck(Ŷ
(k)
FI − ŶFI)2, (14)

where

Ŷ
(k)
FI =

G∑
g=1

∑
i∈Ag

w
(k)
i

δiyi + (1− δi)
M∑
j=1

w
∗(k)
ij y

∗(j)
i

 .

Note that the variance estimator (14) is biased because the changes in the fractional
weights for the deleted unit are only partially reflected by deleting the closest unit. As
demonstrated in the simulation study in Section 5, the relative bias in variance estimator
decrease as imputation size M increases.
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4. Extension to Multivariate missing data

We now extend the proposed method in Section 3 to multivariate missing case, y =
(y1, · · · , yp). For simplicity in description, we present the proposed method for two vari-
ables. For each item, assume that we have discretized values of yp, denoted by zp, that can
be predetermined or approximated using sample quantiles. Assume that z1 takes values of
{1, . . . , Q} and z2 takes values of {1, . . . , S}. Let δpi be the response indicator function
for ypi. If ypi is missing, then zpi is also missing.

Note that z = (z1, z2) can be viewed as (x, z) of univariate missing case, but z1 and
z2 are now both subject missingness. That is, A cannot be partitioned into subgroups
based on z1 or z2. However, we can decompose A such that A = AR ∪ AM , where
AR = {j ∈ A; δj = 1} and AM = {j ∈ A; δj = 0} with δj =

∏p
l=1 δlj . A proposed

strategy is that missing items for a unit in AM are imputed using values of a donor in AR.
For example, if y1i and y2i are both missing, then imputed values of y∗(j)1i and y∗(j)2i should
be selected from the same donor j. Thus, AR is assumed to be non-empty.

Let (yi,obs,yi,mis) be respectively the observation parts and the missing parts of yi.
Similarly, we have (zi,obs, zi,mis) for z. There are four patterns of δi as (δ1i = 1, δ2i =
1), (δ1i = 1, δ2i = 0), (δ1i = 0, δ2i = 1), and (δ1i = 0, δ2i = 0). Thus, we have
(yi,obs,yi,mis) = (y2i, y1i =?) and (zi,obs, zi,mis) = (z2i, z1i =?) for (δ1i = 0, δ2i = 1)
pattern, where ? denotes missing value. Similarly, we can identify y = (yi,obs,yi,mis) and
z = (zi,obs, zi,mis) for other patterns.

We assume that the cell mean model (3) holds for cells determined by z,

ypi | (z1 = q, z2 = s) ∼ ii(µpqs, σ2pqs). (15)

Once zi,mis are imputed, then the conditional distribution of f(yi,mis | yi,obs) can be
approximated by

f(yi,mis | yi,obs) ∼=
∑
z∗i,mis

p(z∗i,mis | zi,obs)f(y∗i,mis | zi,obs, z∗i,mis), (16)

where p(z∗i,mis | zi,obs) is the conditional cell probability of z∗i,mis given zi,obs.
The selection of donors is similar to the univariate missing case in the sense that the ap-

proximation (16) has the same mixture model structure of (4) under the MAR assumption.
The multivariate version of two-phase systematic pps sampling is as follows:

[Phase 1]: Estimation of cell probabilities

First step for the multivariate hot deck imputation is to estimate the joint cell proba-
bilities p(z), where p(z) is a cell probability for a particular value of z. Since we have
missing items on zi,mis, we cannot directly estimate cell probabilities as in the univariate
missing case. We use a modified EM algorithm. The procedure avoids producing positive
probabilities for structural zeros. See Appendix C for a description of the modified EM
algorithm.

To estimate the conditional cell probabilities, we consider a subdivision of AM based
on observed vectors of z. From the observed z of recipients, AM can be sub-partitioned
into G = Q + S + 1 groups, denoted by z1, . . . , zG, corresponding {(1, . . . , Q), ?)},
{?, (1, . . . , S)}, and (?, ?). Thus, any nonresponding unit i ∈ AM belongs to one sub-
group, AMg = {j ∈ AM ; zj,obs = zg,obs}, g = 1, . . . , G. We also define ARg = {j ∈
AR; zj,obs = zg,obs}, g = 1, . . . , G. A responding unit i ∈ AR can belong to multiple
subgroups. For example, zi = (1, 1) can be an element of subgroups for both zg = (1, ?)
and zg = (?, 1).
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Now, let Hg be the size of all possible vectors for zg,mis. For i ∈ AMg, if z∗g,mis are
imputed for zg,mis, then an estimated conditional cell probability p̂(z∗g,mis | zg,obs) is

π̂h|g = p̂(z∗(h)g )/

Hg∑
h=1

p̂(z∗(h)g ), (17)

where z
∗(h)
g = (zg,obs, z

∗(h)
g,mis). Then, the FEFI estimator of Yp =

∑N
i=1 ypi is

Ŷp,FEFI =
∑
i∈A

wi

δpiypi +

G∑
g=1

(1− δpi)aig
Hg∑
h=1

π̂h|gµ̂gh


=

∑
i∈A

wi

δpiypi + (1− δpi)
∑
j∈A

w∗ij,FEFIypj


where ajgh = 1 if (zj,obs, zj,mis) = (zg,obs, z

∗(h)
g,mis) and 0 otherwise, ajg =

∑Hg
h=1 ajgh,

w∗ij,FEFI =
∑G

g=1 aig
∑H

h=1 π̂h|g{wjδjajgh/
∑

l∈Awlδlalgh}, and

µ̂pgh =

∑
j∈Awjδjajghypj∑
j∈Awjδjajgh

.

[Phase 2]: Systematic PPS sampling for missing ymis

The fractional hot deck imputation for multivariate case can be implemented in a man-
ner similar to the univariate case. The (S1) procedure in Appendix A needs to be replaced
with the following (M1):

(M1) Let nRg be the number of FEFI donors in ARg. Then, nRg FEFI donors are ordered
with y values by the half-ascending and half-descending order as in the univariate
case. The sorting method depends on the number of missing items in zg,mis,

(a) Single missing item: the FEFI donors are sorted based on yp values corre-
sponding to the missing item.

(b) Multiple missing items: the FEFI donors are first sorted by values of z that has
the highest response rate among missing items. After then, the FEFI donors
are sequentially sorted by values of z in order of item response rates. Note
that, if we use y instead of z in sorting of the FEFI donors, the final order only
depends on the missing item that has the lowest response rate.

Once M donors are selected from the FEFI donors with probability proportional to
w∗ij,FEFI for each recipient, the FI estimator of Yp is

Ŷp,FI =
∑
i∈A

wi

δpiypi +
G∑

g=1

(1− δpi)aig
Hg∑
h=1

π̂h|gȳ
∗
pi


=

∑
i∈A

wi

δpiypi + (1− δpi)
M∑
j=1

w∗ijy
∗(j)
pi


where y∗(j)pi is the ypj of j-th donor for ypi, ȳ∗pi = M−1

∑M
j=1 y

∗(j)
pi is a mean of imputed

values, and w∗ij = M−1.

For variance estimation, we first calculate w∗(k)ij based on (V 1) and (V 2) in Section 3
and then compute the jackknife variance estimate from the formula in (14).
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5. Simulation Study

5.1 Univariate missing case

To check the performance of the proposed method in the univariate case, Yi = (Y1i, Y2i),
i = 1, · · · , n are randomly generated from

Y1 ∼ U(0, 2),

Y2 = 1 + Y1 + e2,

where e2 is independent of Y1 and is generated from a standard normal distribution. Here,
Y1 is fully observed observed but Y2 is subject missingness with δ ∼ Bernoulli(0.7).
Thus, Y1 plays the role of x in Section 3. In the simulation, B=5,000 Monte Carlo samples
are generated with size of n = 300.

To implement the fractional hot deck imputation, Y1 and Y2 are categorized into Ỹ1
and Ỹ2 that respectively play roles of x and z of Section 2. The auxiliary variable ,Y1, is
categorized into five groups and the study variable, Y2, is partitioned into two groups based
on the sample quantiles of the respondents. For example, observations with y2 values less
than the median belong to group 1 (i.e. ỹ2 = 1).

For each recipient, M = 10 and M = 20 donors are respectively selected using the
systematic sampling with probability proportional to the fractional weights of the FEFI
donors. If M is no greater than nRg, then we select all FEFI donors and use FEFI donors’
fractional weights as the fractional weights for the FI estimator.

We consider five parameters: θ1 = E(Y2), θ2 = P (Y2 < 2), θ3 = E(Y2 | D = 1) with
D ∼ Bernoulli(0.3), θ4 is the slope of regression of Y2 on Y1 and θ5 is the correlation
between Y1 and Y2. The five parameters are estimated using the FEFI estimator and the FI
estimator. For θ4 and θ5, the FEFI or the FI estimator is

θ̂4 =

∑
i∈A{δi(y1i − ȳ1)(y2i − ȳ∗2I) + (1− δi)

∑
j∈A δjw

∗
ij(y1i − ȳ1)(y2j − ȳ∗2I)}∑

i∈A(y1i − ȳ1)2
,

and

θ̂5 =

∑
i∈A{δi(y1i − ȳ1)(y2i − ȳ∗2I) + (1− δi)

∑
j∈A δjw

∗
ij(y1i − ȳ1)(y2j − ȳ∗2I)}

{
∑

i∈A(y1i − ȳ1)2}1/2[
∑

i∈A{δi(y2i − ȳ∗2I)2 + (1− δi)
∑

j∈A δjw
∗
ij(y2j − ȳ∗2I)2}]1/2

,

where ȳ∗2I is a mean of imputed samples in y2. In addition to point estimators, we also
computed variance estimators using the replication method in Section 3. The jackknife
variance estimator in (14) is used to compute variance estimates of the FI estimator.

Table 1 presents the Monte Carlo means, standardized variances of the point estimators
and relative bias of variance estimates. All point estimators are nearly unbiased. Slight bi-
ases in estimation of regression slope and correlation are due to the discrete approximation.
The variances are reported with respect to variances of the FEFI estimators. The FI esi-
mators are as efficient as the FEFI estimators. For larger imputation size, we have smaller
relative bias in variance estimates.

5.2 Multivariate case

Now we extend the proposed method to a multivariate missing case. We generated Yi =
(Y1i, Y2i), i = 1, · · · , n, from

Y1 ∼ Gamma(1, 1),

Y2 = 1 + 0.5Y1 + e2,

Y3 = 2 + 0.5Y1 + 0.5Y2 + e3
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Table 1: Monte Carlo results of mean, standardized variance and relative bias of variance
estimators for the univariate missing case

Parameter Estimator Bias of θ̂ Std. Var. of θ̂ Rel.Bias (%) of V̂ {θ̂}
θ1 FEFI -0.00019 100.0

E(Y2) FI(M=10) -0.00016 100.0 -8.0
FI(M=20) -0.00019 100.0 -6.1

θ2 FEFI -0.00009 100.0
P (Y2 < 2) FI(M=10) -0.00008 100.0 -2.7

FI(M=20) -0.00009 100.0 -0.8
θ3 FEFI 0.00125 100.0

E(Y2 | D = 1) FI(M=10) 0.00113 100.0 -2.7
FI(M=20) 0.00124 100.0 -1.5

θ4 FEFI -0.01201 100.0
Slope FI(M=10) -0.01202 100.0 -6.5

FI(M=20) -0.01198 100.0 -3.1
θ5 FEFI -0.00599 100.0

Corr(Y1, Y2) FI(M=10) -0.00599 100.0 -7.9
FI(M=20) -0.00598 100.0 -3.9

where e2 and e3 are independently generated from a standard distribution. We generated
δli ∼ Bernoulli(pl) independently for each Yl, l = 1, 2, 3, with p1 = 0.5, p2 = 0.7 and
p3 = 0.9 so that all variables are subject to missingness.

Each variable is firstly categorized into three groups and then collapsed so thatARg has
at least two elements. We select M = 10 and M = 20 donors for each recipient using
systematic sampling with probability proportional to the fractional weights of the FEFI
donors. If M ≥ nRg, then we select all possible donors and assign the fractional weights
of the FEFI estimator as the fractional weights of the FI estimator. We generateB = 5, 000
Monte Carlo samples with size of n = 500.

We computed estimators of θ1 = E(Y1), θ2 = E(Y2), θ3 = E(Y3), θ4 = P (Y1 <
1, Y2 < 2) and θ5 = E(Y2 | D = 1) with D ∼ Bernoulli(0.3). For variance estimation
of the FI estimator, we used the jackknife estimator with formula (14).

Table 2 presents the Monte Carlo means, standardized variances of the point estimators
and relative bias of variance estimates. All estimators are nearly unbiased and the proposed
FEFI and FI estimator perform well in this simulation. The variances are reported based on
the FEFI estimates. As univariate missing case, the FI estimators are also as efficient as the
FEFI estimators. The relative biases of variance estimators are smaller with M = 20 than
the biases with M = 10.

6. Concluding remarks

A fractional hot deck imputation in this paper mimics two-phase systematic sampling in the
sense that imputation cells are created and missing items are imputed using the cells. The
variance estimator has a potential for bias because the component due to donor selection is
ignored.

For multivariate imputation, joint cell probabilities are used to define conditional cell
probabilities. The joint distribution of the study vector is approximated by a discrete ap-
proximation. The choice for the optimal level of discrete approximation can be viewed
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Table 2: Monte Carlo results of mean, standardized variance and relative bias of variance
estimators for the multivariate missing case

Parameter Estimator Bias of θ̂ Std. Var. of θ̂ Rel.Bias (%) of V̂ {θ̂}
θ1 FEFI -0.00053 100.0

E(Y1) FI(M=10) -0.00052 100.0 -6.4
FI(M=20) -0.00054 100.0 -3.5

θ2 FEFI -0.00017 100.0
E(Y2) FI(M=10) -0.00015 100.0 -10.2

FI(M=20) -0.00016 100.0 -5.7
θ3 FEFI -0.00156 100.0

E(Y3) FI(M=10) -0.00156 100.0 -8.2
FI(M=20) -0.00156 100.0 -6.9

θ4 FEFI -0.00375 100.0
E(Y1 < 1, Y2 < 2) FI(M=10) -0.00376 100.0 -5.3

FI(M=20) -0.00375 100.0 0.3
θ5 FEFI 0.00071 100.0

E(Y2 | D = 1) FI(M=10) 0.00065 100.0 -3.6
FI(M=20) 0.00077 100.0 -2.0

as bandwidth selection for a nonparametric procedure. A modified EM algorithm is intro-
duced for computation of joint cell probabilities.

One desirable feature of the proposed method is that the covariance structure of multi-
variate variables is retained after imputation because imputed values are jointly generated
and are selected to mimic distribution of variables as closely possible. An efficient sampling
algorithm such as systematic PPS sampling is required. While the proposed FI estimator is
nearly as efficient as the FEFI estimator, the size of the finally imputed data set will be rel-
atively small compared to the use of FEFI. An R software package of the proposed method
is under development.

Appendix

A. Systematic PPS sampling procedure

(S1) Sort nRg FEFI donors in terms of y values by the half-ascending and half-descending
order. For example, {1, 2, . . . , 10, 11} is sorted as follows: 1, 3, 5, 7, 9, 11, 10, 8, 6, 4, 2.
Let [j],j = 1, . . . , nRg, be the j-th sorted unit in ARg.

(S2) Construct the interval of (L[j], U[j]) for the systematic pps sampling.

(a) Set j = 1 and L[1] = 0.

(b) For current j, U[j] = L[j] +M × w∗ij,FEFI

(c) Set j = j + 1 and L[j] = U[j−1] and go to step (b) until j = nRg.

(S3) Let (RN)g be a random number generated from U(0, 1). For each i ∈ AMg, we
select M donors as follows: For l = 1, . . . ,M , if

L[j] ≤
(RN)g + (i− 1)

nMg
+ (l − 1) ≤ U[j]
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for some j, then y[j] be the l-th imputed value for unit i.

B. Proof of Theorem 1

Before we prove Theorem 1, assume that δi (i = 1, . . . , N) is extended to the entire popu-
lation and assumed to be independent random variable. This extension has been discussed
by Fay (1991) and used by Rao and Shao (1992).

First, we rewrite the FEFI estimator in (7),

ŶFEFI =

G∑
g=1

∑
i∈Ag

wiδiyi +

G∑
g=1

∑
i∈Ag

wi(1− δi)
H∑

h=1

π̂h|gµ̂gh

=
G∑

g=1

∑
i∈Ag

wiδi

H∑
h=1

π̂h|gµ̂gh +
G∑

g=1

∑
i∈Ag

wi(1− δi)
H∑

h=1

π̂h|gµ̂gh

=

G∑
g=1

∑
i∈Ag

wi

H∑
h=1

π̂h|gµ̂gh

=
G∑

g=1

N̂g(ŶRg/N̂Rg) (B.1)

Now, applying Taylor expansion on the ŶFEFI defined in (B.1), we have

ŶFEFI =
G∑

g=1

Ng

NRg
YRg +

G∑
g=1

Ng

NRg
(ŶRg − YRg)

+
G∑

g=1

YRg

NRg
(N̂g −Ng)−

G∑
g=1

YRgNg

N2
Rg

(N̂Rg −NRg) + Sn +Gn, (B.2)

where

Sn =
1

NRg
(ŶRg − YRg)(N̂g −Ng)− Ng

N2
Rg

(ŶRg − YRg)(N̂Rg −NRg)

−
YRg

N2
Rg

(N̂Rg −NRg)(N̂g −Ng) +
YRgNg

N3
Rg

(N̂Rg −NRg)2,

and Gn is a remainder term.
From the assumption (A4), Sn has the order of Op(n

−1N). Thus, by the assumption
(A4) and (A5), (B.2) can be expressed with

ŶFEFI =
G∑

g=1

∑
i∈Ag

wi{yi + (R−1g δi − 1)(yi − µg)}+ op(n
−1/2N), (B.3)

where, Rg = NRg/Ng and µg =
∑H

h=1 πh|gµgh for i ∈ Ug. Henceforth, we define
ỸFEFI =

∑G
g=1

∑
i∈Ag

wiγig with γig = yi + (R−1g δi − 1)(yi − µg).
Thus, from (9) and ỸFEFI , we have the result (10),

ŶFI = ỸFI + op(n
−1/2N), (B.4)

where ỸFI = ỸFEFI +
∑G

g=1

∑
i∈AMg

wi(ȳ
∗
i − µ̂g).

JSM2015 - Survey Research Methods Section

1040



Let EI(·) be an expectation on imputation mechanism, we have

EI(ỸFI) = ỸFEFI . (B.5)

Thus, to prove (11), it suffices to show that E(ỸFEFI − YN ) = 0.
Taking expectation on ỸFEFI , we have

E(ỸFEFI) = E
{
E(ȲFEFI | FN )

}
= E

 G∑
g=1

∑
i∈Ug

yi

+ E

 G∑
g=1

∑
i∈Ug

(R−1g δi − 1)(yi − µg)


= E(YN ) + E

 G∑
g=1

∑
i∈Ug

(R−1g δi − 1)(yi − µg)

 , (B.6)

where FN is a set of finite population.
On the other hand,

E

 G∑
g=1

∑
i∈Ug

(R−1g δi − 1)(yi − µg)

 = 0. (B.7)

From (B.5), (B.6) and (B.7), we have E(ỸFI − YN ) = 0, that is, (11) is established.
We now consider variance of the FI estimator. From expression (B.3), we fist have

V

 G∑
g=1

∑
i∈Ag

wiγig

 = V

 G∑
g=1

∑
i∈Ag

wiµg

+ V


G∑

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)


+ Cov


G∑

g=1

∑
i∈Ag

wiµg,
G∑

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)

 . (B.8)

For the second term of (B.8), we have

V


G∑

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)

 = E


G∑

g=1

∑
i∈Ag

w2
iR
−2
g δi(yi − µg)2

 , (B.9)

where the equality comes from E
{∑G

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)

}
= 0. For the third

term of (B.8), we also have

Cov


G∑

g=1

∑
i∈Ag

wiµg,
G∑

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)


= E


G∑

g=1

∑
i∈Ug

wiµgR
−1
g δi(yi − µg)

 = 0 (B.10)

where the equality comes from E
{∑G

g=1

∑
i∈Ag

wiR
−1
g δi(yi − µg)

}
= 0 and the cell

mean model in (1).
From (B.8)-(B.10), we write

V (ỸFEFI) = V

 G∑
g=1

∑
i∈Ag

wiµg

+ E


G∑

g=1

∑
i∈Ag

w2
iR
−2
g δi(yi − µg)2

 (B.11)
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Note that the variance of N−2ỸFEFI converges to the variance of N−2ŶFEFI as n
goes to infinity such that

V

 G∑
g=1

∑
i∈Ag

wiγig

 = E




G∑
g=1

R̂−1g

∑
i∈Ag

wiδi(yi − µg)


2
+ (Cross product term)

+E




G∑
g=1

(R−1g − R̂−1g )
∑
i∈Ag

wiδi(yi − µg)


2
 (B.12)

= V

 G∑
g=1

R̂−1g

∑
i∈Ag

wiδiyi

+O(n−3/2N2)

= V
(
ŶFEFI

)
+ o(n−1N2), (B.13)

where the second term of (B.12) converges to 0 with order of O(n−2N2) and the cross
product term converges to 0 with order of O(n−3/2N2) by the condition (A4) and the
Schwarz inequality. Thus, from (B.11) and (B.13), we show (13) such that

V (ŶFEFI) = V

 G∑
g=1

∑
i∈Ag

wiµg

+ E


G∑

g=1

∑
i∈Ag

w2
iR
−2
g δi(yi − µg)2

+ op(n
−1N2).

(B.14)

We now write,

V
(
ŶFI − ŶFEFI

)
= V

{
EI

(
ŶFI − ŶFEFI

)}
+ E

{
VI

(
ŶFI − ŶFEFI

)}
,

where ŶFI − ŶFEFI =
∑G

g=1

∑
i∈AMg

wi(ȳ
∗
i − µ̂gh) and VI(·) is a variance on imputation

mechanism. On the imputation mechanism,

VI(ŶFI − ŶFEFI) =

G∑
g=1

∑
i∈AMg

w2
i V (ȳ∗i − µ̂g | Ag). (B.15)

EI(ŶFI − ŶFEFI) = 0. (B.16)

Thus, by the result of (B.15) and (B.16),

V
(
ŶFI − ŶFEFI

)
= E


G∑

g=1

∑
i∈AMg

w2
i V (ȳ∗i − µ̂g | Ag)

 . (B.17)

Also, since EI(ŶFI) = ŶFEFI , we have

Cov(ŶFI − ŶFEFI , ŶFEFI) = 0 (B.18)

Therefore, by (B.17) and (B.18), (12) is established

C. Description of the EM algorithm

The EM algorithm is used here in a slightly modified way. For each unit i, the conditional probability
of zi,mis given zi,obs is computed using the current estimate of the joint probability p̂(z), where∑

z p̂ (z) = 1. This is the E-step of the EM algorithm. The initial conditional probabilities are

w
∗(h)
i =

p̂0(zi,obs, zi,mis = z
∗(h)
i,mis)∑Hi

h=1 p̂0(zi,obs, z
∗(h)
i,mis)

. (C.1)
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where p̂0(z) is the estimated joint probability computed from the full respondents and z
∗(h)
i,mis is the

h-th imputed vector for the missing missing items of unit i ∈ AM . Here, Hi denotes the number of
imputed vectors in z

∗(h)
i,mis.

The M-step computes the joint probability of particular combination of z∗ = (zobs, z
∗
mis),

p̂(z∗) = (
n∑

i=1

wi)
−1

n∑
i=1

Hi∑
h=1

wiw
∗(h)
i I(zi,obs = zobs, z

∗(h)
i,mis = z∗mis). (C.2)

Equations (C.1) and (C.2) form a set of iterative computations for the EM algorithm. In the
iteration, p̂0 is replaced by p̂ to compute w∗(h)i and update p̂(z∗) again until it converges.
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