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Abstract 
Statistical learning is both a theory and a group of algorithms for machine learning. These 
algorithms detect and learn patterns in data that, in turn, can be used to predict outcomes. 
These methods have become very popular in recent years and have been successfully 
applied in many fields. One criticism is that these methods are mainly used as black 
boxes without a good understating of how they work. Clark (2013) developed a novel 
approach to optimal sample allocation in stratified design based on a statistical learning 
approach (SL). However, the SL sample allocation is not without problems when 
compared to simpler allocations. In this paper we expand the research on the SL approach 
and re-evaluate its performance. We describe the mechanism behind the SL sample 
allocation for situations not previously considered. 
 
Key Words: Optimal Sample allocation, statistical learning, Neyman allocation, 

imperfect design data 
 
 

1. Statistical Learning Methods 
 
Clark (2013) presents a novel approach to sample allocation based on a statistical 
learning (SL) approach that combines two sets of design data that are used as a check on 
each other. The approach is very interesting and shows an innovative application of 
statistical approaches based on training and validation sets. The article is an example of 
how methods developed in other fields can be extended to survey sampling methodology. 
In particular, the article provides an alternative solution to the problem of sample 
allocation in cases when the variances are estimated. 
 
SL, also known as machine learning, refers to a framework that encompasses a large set 
of tools and algorithms used for understanding data (James, Witten, Hastie, & Tibshirani, 
2013). The origins of these tools are many, and they include statistics, functional 
analysis, computer science, and artificial intelligence among others. SL theory has led to 
successful applications and is popular for dealing with Big Data. Despite of their success, 
the SL methods are not without criticism. Because of their complexity, the algorithms, 
which are readily available software packages, are seen as black boxes. In other words, 
there is not a clear understanding of the conditions where these algorithms work or the 
theory behind these methods. In some occasions, the resulting models can be 
incomprehensible without providing any insights into the data.  
 
Despite of the popularity of the SL methods, their application in survey methodology has 
been limited. One example is Buskirk & Kolenikov (2015) who used a nonparametric 
machine learning technique known as random forests to model nonresponse, nonresponse 
weighting adjustment factors, and stratification. One reason of the limited application of 
the SL approach in survey methodology is the underlying iid assumption. These methods 
require the data to be independently and identically distributed, which is not the case of 
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survey data from complex designs. To overcome this limitation, different ad hoc 
modifications are implemented in order to reflect the sample design or the analysis may 
assume a simple random sample (i.e., equal weights). However, the SL methods with any 
of these modifications have not been fully evaluated using data from complex designs. It 
is expected that theoretical and mathematical developments and the advancement of 
specialized software in the near future to produce survey data versions of these methods. 
 
 

2. Statistical Learning Sample Allocation 
 
The sample allocation based on SL ideas proposed by Clark (2013) is applicable to one 
specific situation, that is, the optimal allocation of a sample for a new implementation of 
a survey with the following conditions: 
 

A The sample is optimally allocated to achieve the smallest variance of 3̂Y , the 

estimate of the total 
1

N
ii

Y y
=

= ∑  at time t = 3. In other words, there is only one 
variable of interest. Other variables may benefit of the allocation as long as they 
are highly correlated with the variable iy . 

B The population can be stratified at two levels. In the first level, the population is 
stratified into groups g, g = 1,…, G. In the second level, these groups or main 
strata are further stratified into substrata within group. These substrata within 
group are denoted by h, h = 1,…, H. It is assumed that the substrata naturally 
form into groups. Examples of these groups and substrata are census regions and 
states within region. For simplicity of notation, we assume the same number of 
substrata h within a group g. 

C The same survey has been previously implemented in two occasions or periods 
denoted as t = 1 and t = 2, although the previous implementations are not 
necessarily used with the same stratification and sample allocation. As an 
example, the survey was conducted in the two previous years. 

D The subpopulations that correspond to stratification by groups and substrata 
described in B are identifiable in the samples from two previous periods so 
estimates of population variances for groups, substrata, and total population 
variance can be computed. These estimates of the different population variances 
for both periods t = 1 and 2 are needed for the algorithm. 

E The strata population sizes ghN  are known for all substrata and groups in period 
t = 3. 

F The total sample size n  in period t = 3 is fixed, and there are no restrictions in 
the size that can be allocated in stratum in period t = 3. 

G The costs of sampling the units are the same for all strata. 
H The correlations of the population variances by substratum within groups across 

periods can be nonzero (i.e., there are changes in variance within stratum across 
periods). 

I Finite population factors can be ignored. 
 
Some of these conditions are very restrictive and limit the application of the type of 
allocation in most surveys.  
 
The challenge in this problem is finding the best way to combine the information from 
the two previous periods optimally to allocate the sample in period t = 3. In practice, the 
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population variances for the formulas for optimal allocation are not available so they 
need to be estimated from the data. These estimates are substituted or “plugged” into the 
optimal allocation formulas (i.e., plug-in allocation). However, sometimes these estimates 
are not precise, and the achieved allocation can be less efficient than proportional 
allocation. 
 
There are different ways to approach this problem; however, Clark (2013) observed that 
the data from the two previous implementations lend themselves naturally to be used as 
“training” and “validation” data sets under the SL paradigm. Under the SL approach, the 
sample can be allocated as follows: 
 
Let t̂V , t̂gV , and t̂ghV  be the estimates of the population variance, group variance, and 
substratum variance respectively for periods 1 and 2 (i.e., t = 1 or t = 2). The sample size 
at period 3 under the SL allocation is the vector ( ),3 3,1 3,,...,

t GH
SL NGn n= ∈n �  with values 

of the stratum sample sizes ( ),1 ,1,1 ,1,,...,
t

SL SL SL NGn n=n such that 
 

( )
,1

,3 ,2
ˆmin

GH
SL

SL SLV
∈

=
n

n
�

; 

subject to ,1,1 1

G H
SL ghg h

n n
= =

=∑ ∑ , 

where ( )
2

,2 2 2
1 1 ,1

ˆ ˆ ˆ
G H

gh
SL gh

g h SL gh

N
V Y V

n= =

= ∑∑ is the estimate of the variance of the estimate of total 

of 2Y , 2̂Y , at period 2 computed using the stratum samples sizes ,1SLn . The components 

of ,1SLn  are computed as ,1, 1 1 21 1 31 1
ˆ ˆ ˆ

SL gh gh gh gn kN V V Vλ λ λ= + +  subject to 3

1
1ii

λ
=

=∑ , and 
k  is the constant of proportionality defined as 

( )3 1 1 21 1 31 11 1
ˆ ˆ ˆG H

gh gh gg h
k n N V V Vλ λ λ

= =
= + +∑ ∑  where ghN  is the population size in 

stratum gh. 
 
A more intuitive way to describe the SL sample allocation follows. First, we propose 
values of ( )1 2 3, ,λ λ λ=λ such that 3

1
1ii

λ
=

=∑  and use these values to compute the sample 

size ,1SLn  using the estimates of population variance from period t = 11. Then, using these 

values of ,1SLn , we estimate of the variance of the estimate of the total, ,2ŜLV , using the 
estimates of stratum variances in period t = 2. We repeat the same computations for 
different values of λ . The sample sizes for SL allocation ,3SLn  for period t = 3 

correspond to the values of ,1SLn  that minimize the value of ,2ŜLV among all possible 
values of λ . Mathematically, this is a constrained nonlinear optimization problem where 
an objective function is minimized subject to multiple constraints. Because of the 
nonlinear nature of the objective function, the sample sizes under the SL sample 
allocation are solved numerically. Clark (2013) provided a R package called 
Robustallocation that calculates the sample sizes under the SL allocation.  
 

                                                 
1 Note that these sample sizes are not those used in t = 1 or 2. 
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One of the core expressions in the algorithm is the formula for the sample sizes ,1SLn . The 

expression of the components of ,1SLn  can be rewritten as * *
,1, 1 1

ˆˆ
SL gh gh gh gh ghn N V N S∝ =  

where *
1

ˆ
ghV  is the weighted average of the estimate of population variance at the 

substratum gh ( )1̂ghV , at the group level g ( )1̂gV  or for the complete population ( )1̂V . If 

these were not estimates, then for ( )1,0,0=λ , we have the expression for Neyman 
allocation (i.e., the theoretical lowest variance for the estimate of population total Y) 
(Cochran, 1977). Similarly, for ( )0,0,1=λ the expression is the same as for proportional 
allocation. Finally, for ( )0,1,0=λ , the sample is allocated so the variance of the total is 
between the variance from Neyman allocation and the variance from proportional 
allocation ( )1 1 1i.e., gh gV V V≤ ≤ . The rationale behind the inclusion of the estimates of 

population variances 1̂gV  and 1̂V , which both cause departures from the Neyman 

allocation, is that the estimate 1̂ghV  may not be as precise as 1̂gV  or 1̂V  and putting more 
weight on these estimates of group variance or population variances will produce 
estimates of totals at least as efficient as proportionally allocating the sample.  
 
 

3. Evaluation of the Statistical Learning Sample Allocation 
 
As in most SL applications, the SL sample allocation follows a hands-off approach. The 
practitioner provides the estimates of the population stratum variances and group 
indicators from the two previous periods, and the desired total sample and the algorithm 
automatically determine the optimal sample for t = 3. To evaluate the properties of the SL 
allocation, Clark (2013) compared estimates of variance obtained from the SL allocation 
and other competing allocations through a simulation study. Based on the simulations, he 
concluded that the SL sample allocation is superior to other allocations, it can handle 
allocations based on estimates of population variances computed with very small sample 
sizes, and it can reflect the correlation of the variances across periods. In this section, we 
examine these claims focusing on both the evaluation and the competing allocations 
compared to the SL allocation. We also extend the study to include other competing 
allocations and expand the simulations to include larger sample sizes. 
 
3.1 Competing Sample Allocations 
Clark (2013) showed that the SL allocation produced estimates of totals with lower 
variance (i.e., more efficient) than those from two competing allocations, both based on 
data from one period. It is not clear why the SL sample allocation that combines data 
from two periods was compared to allocations that only use one period. Since the SL 
allocation ingeniously combines the information from two periods using more complex 
operations, it would be expected to be more efficient than allocations that use only half of 
the available data. In this re-evaluation, we compare the SL allocation to other allocations 
that use all available data. The simplest candidates are those allocations based on plain 
averages of variances from the two periods. These allocations are referred to as “naive” 
because the sample allocation is not the result of an optimization or any other complex 
algorithm when combing the data from the two available periods. 
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A case can be made for the evaluation of naive allocations. First, combining data from 
multiple periods is what survey practitioners usually do in practice; in particular, when 
the data are limited (i.e., two data points are better than one). Second, the naive 
allocations are easily computed and do not require specialized software, complex 
mathematical operations, searches, or any optimization as the SL allocation.  
 
A second research question is to determine if the optimization in the SL allocation 
produces estimates that are as efficient as those estimates from a Neyman allocation 
based on the variances in period 3 (i.e., lowest variance achievable in period 3). 
Clark (2013) uses the variance from proportional allocation as a benchmark so the 
proximity of the variance of estimates based on both SL allocation and competing 
allocations to the theoretical minimum variance could not be evaluated. 
 
As part of the re-evaluation, we extended the simulation in Clark (2013) to include three 
additional allocations listed in Table 1. The first three allocations in the table were 
evaluated in the original article. The last three allocations, H12, G12, and H12G12 are 
proposed in this study. These allocation use simple average of estimated variances from 
both periods as described in the table. The justification for allocation H12G12 is based on 
the idea that the instability in the estimates of variances can be reduced by averaging 
them at all available levels (this is the “throw in everything but the kitchen sink” 
allocation2).  
 

Table 1: Sample allocations 
 

Allocation Description 
SL Supervised learning using estimated variances in periods 1 and 2 
H2 Neyman plug-in with estimated stratum variances computed using period 2 
G2 Neyman plug-in with estimated group variances computed using period 2 
H12 Neyman plug-in with the average of estimated stratum variances in periods 1 and 2 
G12 Neyman plug-in with the average of estimated group variances in periods 1 and 2 
H12G12 Neyman plug-in with the average of estimated stratum variances and estimated 

group stratum variances in periods 1 and 2 
 
3.2 Simulated Populations 
In this study, the same artificial populations found in Clark (2013) were simulated as part 
of the evaluation of the new allocations. These populations or data files are the Business 
population, Farm population, and the New Zealand Pacific population (Table 3 in Clark, 
2013, and Tables A1 and A2 in the online Appendix). Additional details of the simulation 
are described in the Clark (2013). Here we expand the description of the artificial 
populations highlighting both the population characteristics and simulation parameters 
that explain the results observed in the simulations.  
 
The population variances are generated using a log linear model with parameters for 
group and stratum effects. These parameters affect the correlation of group variances 
( )groupr and stratum variances ( )stratumr  across periods. The correlation of group 
variances was set to 1 for the Farm and Business population and 0.98 for the New 
Zealand Pacific population. In the Business population, the stratum correlation of the 

                                                 
2 In a way, the SL allocation throws in everything too because it uses the plug-in Neyman stratum, 
group, and proportional allocations. 
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variances between periods is so high ( )0.99stratumr = that the variance structure and 
values are essentially the same in the three periods. Since there are almost no changes in 
stratum variances and group variances from one period to another, the allocation from 
either period should converge to the population Neyman allocation in period 3 as the 
sample size increases. In the second population, Farms, the correlation of the stratum 
variances from period to period is high ( )0.89stratumr = , but the variance structure is not 
exactly the same in the following period despite the modest change. In this case, unless 
the allocation recognizes these small changes, we know that estimates based on the 
allocation will not achieve the variance achieved by the Neyman allocation computed 
using the population in period 3. In the last population, the New Zealand Pacific 
population, the variance correlation between periods is low ( )0.44stratumr = .3 That is, the 
variance structure in the last period is very different from the previous two. In this case, 
unless this change is recognized, any allocation will be far from the theoretical lower 
bound or Neyman variance allocation in period 3. Clark (2013) reported that the SL 
allocation is able to recognize the variances correlations across periods; that is, the 
efficiency of this allocation is not only better than the efficiency of the naive allocations 
but also closer to the Neyman allocation in period t = 3. With the results from the 
additional allocations and expanded samples sizes we revisit these observations in 
Section 3.  
 
In this paper, we examine the efficiency of allocations under a wider ranges of sample 
sizes that include larger values than the seven sample sizes studied in Clark (2013) shown 
in Table 2. In this re-evaluation, 40 simulated effective sample size values between 1 and 
100 were used in the Business and Farm populations. For the New Zealand population, 
the 20 sample sizes between 1 and 100,000 were evaluated. The goal of extending the 
sample sizes in the simulations is the creation of a plot with curves that describe how the 
allocations behave as the sample size increases. As the sample size increases, the 
estimates of variance are more precise and there is no need of the SL allocation. The 
simulation study was implemented in R version 3.0.0 (R Development Core Team, 2013), 
using a modification of the code available in the supplemental materials of Clark (2013).  
 

                                                 
3 There is a discrepancy with what is stated in Clark (2013) and what is coded in the simulation 
program available in the supplemental material. The simulation program uses 0.28stratumr =  and 
the results match those in Table 3 in the article despite that Table 1 shows the value 

0.44stratumr = . In this study, we assume that 0.28stratumr =  is the correct correlation. However, 
independently of the value stratumr  that was actually used, the point is that the stratification is very 
different from period to period for this population. 
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Table 2: Populations, sample sizes, and design effects analysed in Clark 
 

Artificial 
Population/data 

Nominal 
Sample Size hn  

Effective Sample Size eff
hn

(Estimated d.f./parameter d̂ ) 

Design effect 
(Deff) 

Business 6 1.7 3.5 
 10 2.9 3.4 
 20 6.0 3.3 
Farms 6 3.2 1.9 
 10 5.6 1.8 
 20 7.9 2.5 
New Zealand ∞ N/A N/A 

 
Source: Clark, R. G. (2013). Sample design using imperfect design data. Journal of 
Survey Statistics and Methodology, 1(1), 6-23. 
 
3.3 Results of the Simulation 
The results of the expanded simulation study are shown in the plots in Figures 1, 2, and 3. 
The plots show lines for the ratios of expected achieved variances of estimates of totals 
from the different allocations to the same variance achieved using proportional allocation 
in period 3 with different effective sample sizes (logarithmic scale). These are the same 
ratios computed by Clark (2013) and mathematically correspond to the estimate of 

( ),3 ,3
ˆ /allocation proportionalE V V  where this expected value is computed using simulation. The 

ratio for SL allocation corresponds to the black line in the plots. We are interested in the 
ratios for the naive allocations H12 (orange line) and H12G12 (purple line) that compute 
the estimated stratum variances as the average of the estimated stratum variances in 
periods 1 and 2. All other allocations are included for reference. Better allocations 
correspond to lines with lower ratios in the plots (i.e., estimates of totals with smaller 
variances compared to estimates of totals based on proportional allocation).  
 
The plots include three horizontal dotted lines, the first line (red) at 1 is the reference line 
(i.e., it corresponds to the ratio of variance of proportional allocation to proportional 
allocation).4 The second horizontal dotted line (green) corresponds to the ratio of the 
variance achieved using the group allocation to the variance achieved using proportional 
allocation. The last horizontal dotted line (black) is the ratio of the variance of theoretical 
Neyman at period 3. This is the lower bound and no allocation can achieve this value 
unless they match exactly the value of the population variances at period 3 in each 
stratum. The line for the ratio of the variances for the group allocation is always between 
the proportional allocation line and Neyman allocation line. 
 
To verify that the results from the article are reproduced in this re-evaluation, the plots 
include vertical lines for the sample sizes in Table 3 in the article (i.e., the value of the 
ratio of variances achieved by the proposed allocation to proportional allocation for 
nominal sample sizes nh = 6, 10 and 20 for the Farm and Business data). Although 
Table 3 in Clark (2013) shows entries for these nominal sample sizes, the simulation 
program in the supplemental materials does not use these nominal sample sizes directly. 
Instead, the program uses the effective sample size. Clark (2013) refers to the effective 
sample size as parameter d̂  or estimated d.f. (degrees of freedom) and their values are 

                                                 
4 The horizontal red dotted line at 1 is not shown in Figure 1 because it outside the vertical axis 

range. 
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shown in Table 2 in the article. In other words, Clark (2013) reflects losses in precision of 
the estimates of the stratum variances by using the smaller effective sample size instead 
of the nominal sample size in the simulation and in the results in Table 3 in the article. 
Since the plots show the effective sample sizes, we need to convert the nominal sample 
size to the equivalent effective size in order to identify the table entries in the plots. The 
last column in table 3 shows the correspondence between the nominal sample sizes and 
effective sample for the Business and Farm data.  
 
For example, the table entry for the nominal sample size nh = 6 for Business, corresponds 
to vertical line with an effective sample size eff

hn = 1.7 in the plot in Figure 1 (dotted red 
line). Using this table, we can identify corresponding effective sample sizes for nominal 
sample sizes nh = 6, 10, and 20 indicated by the red, blue, and green vertical dotted lines 
respectively in Figures 1 and 2. Notice that effective sample size (or estimated d.f. as it is 
called in Clark) for nh = 20 for the Farm data has a value of 7.9. This value is hard-coded 
in the simulation, and the computed ratio of variances using this value matched the 
results in Table 3 in the article. However, Table 2 in the article shows a value of 11.7 for 
the same sample size nh = 20 for Farms. This is likely to be an error in the simulation 
because the design effect (Deff) for nh = 20 (i.e., 2.5) is very different from the design 
effect for nh = 6 and 10 for Farms (Deff = 1.8 and 1.9 respectively, see table above). This 
difference stands out when we compare the differences among design effects in Business 
(i.e., Deff = 3.5, 3.4. and 3.3). Despite these inconsistencies, we assume that this is a typo 
in Table 2 in the article and the value used in the simulation is correct. 
 

 
Figure 1: Variance ratios for Business population 
 
As shown in Figure 1, the H12G12 allocation (purple line) does better than the SL 
allocation (black line) for all table entries for Business data. The figure also shows that 
combining periods 1 and 2 in H12 allocation (orange line) has a large impact on the ratio 
of variance of the allocation. Ignoring one period greatly favors those allocations that use 
both periods. The H12 allocation achieves almost the same variance reduction as the SL 
allocation except for nh = 6 or eff

hn = 1.7 (vertical red dotted line). The plot also shows that 
those allocations based on groups will never achieve the lowest variance as the sample 
size increases (blue and green lines). An interesting observation is that the plot shows that 
very modest sample sizes can achieve variances close to the optimal allocation in the 
situations similar to Business data (when the variances do not change from period to 
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period). This is not what is generally shown in the literature as reported in Clark (2013) 
and it may a consequence of the artificial populations. 
 
Figure 2 shows the same ratios for the allocations in Table 1 for the Farm data where 
there are modest changes in the stratum variance from period to period 
(i.e., 0.89stratumr = ). The ratio of the H12 allocation ratio (orange line) is lower than the 
SL allocation (black line) for all table entries (vertical dotted lines). In the Farm data, 
despite the modest changes in the stratum variance, none of the allocations achieves the 
Neyman variance for period 3 even with very large effective sample sizes. However, the 
H12 allocation that ignores the group population achieves the lowest variance for the 
larger effective sample sizes shown in the plot. This shows that small changes in the 
variances throughout the periods have a large impact on the maximum reduction that can 
be achieved. None of the allocations recognized the correlation of variances across years. 
Still these reductions are large compared to proportional allocation. 
 

 
Figure 2: Variance ratios for Farm population 
 
Figure 3 shows the variance ratios for the New Zealand Pacific population and unlike the 
Farm and Business data, it assumed very large samples sizes per stratum (the simulation 
program of the article uses a value of Infinity for estimated d.f.). This is the reason why 
there is only one entry in Table 3 in Clark (2013) without different values of nh. 
However, for the re-evaluation, we created a plot using large sample sizes that match the 
entries of Table 3. The New Zealand data has the largest changes in stratum variance 
from period to period. Since none of the allocations uses the correlation from period to 
period, none will achieve the minimum possible variance (horizontal line at 0.6). 
However, any allocation that takes advantage of the stable correlation for groups will 
benefit from it (population group variance indicated by horizontal green line at 0.83). The 
plot in Figure 3 shows that the allocation H12G12 (purple line) does better than the SL 
allocation (black line). This plot also shows the poor performance of the 1-period 
Neyman plug-in allocation H2 (red line), which is never competitive. On the other hand, 
the version that uses the 2 periods (H12, orange line) is a better option. 
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Figure 3: Variance ratios for New Zealand Pacific population 
 
 

4. Discussion 
 
There are two factors that help the naive allocations achieve similar reductions in the 
ratios of variances as those observed in the SL allocation in the simulations. First, when 
the allocations use two periods, the estimates of variance are more precise because the 
larger sample used in the estimation. Since the simulation on the original article for 
Business and Farms are based on very small samples, combining two periods makes a big 
difference. These gains are not observed in larger sample sizes. The second factor, which 
also helps the SL allocation, is that large reductions in variance were achieved with 
modest sample sizes in these artificial populations. In other words, the range of sample 
sizes where these ratios of the allocations are different is not wide. The remaining 
reductions in variance can be explained by the way the different allocation pays attention 
to the parameter that remains constant across periods, in this case, the group variances. 
 
Examining all scenarios, there is in most cases a naive allocation based on 2 periods that 
does better than the SL allocation (i.e., the SL allocation is not consistently better across 
all scenarios as reported in Clark, 2013). However, in general, the further reductions 
achieved by the allocations are marginal. The main point of this discussion is that more 
naive allocations with the same sources of information can be as efficient (or more) as the 
SL sample allocation. Since the naive allocations are easier to compute without any 
mathematical complexities and specialized software, they may be a better alternative than 
the SL allocation for many applications. Furthermore, previous claims such as gains 
being greatest when the autocorrelations of the true strata variances are weak or the 
stratum degrees of freedom are small are not inherent to the SL allocation because the 
same gains are achieved and sometimes surpassed by naive allocations that use all 
available information.  
 
There are other aspects of the evaluation not discussed in the Clark (2013) where other 
allocations have advantages over the SL allocation. First, we note that the sample sizes 

,1,SL ghn  in ,3SLn  are random variables (i.e., ,3ˆ SLn ) and have an associated variability or 
variance that should be taken into account in the evaluation. This variance of the sample 
sizes depends on the estimates of population variances for group and substrata from the 
previous periods. However, rather than computing the variance for each component of 
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,3ˆ SLn , we could estimate the variance of the ratio of the reduction of variances achieved in 

the allocations (i.e., ( )( ) ( ),3 ,3
ˆ ˆ ˆ/allocation proportionalV V Y V Y ). This variance summarizes the 

effect of the variability in estimating the components of ,3ˆ SLn . Since this variability 
changes as the sample size increases and it is not symmetric, we instead plot the 
percentile bands (shaded areas) created using the 2.5th and 97.5th percentiles of the 
distribution of the ratio of achieved reduction of variances for the different allocations 
under repeated sampling. The percentile bands for the Business, Farm, and New Zealand 
populations are shown in Figures 4, 5, and 6. More precise allocations under repeated 
sampling have narrower percentile bands (i.e., smaller ( )( ),3 3

ˆ ˆ
allocationV V Y ). For the 

Business populations where the correlation of variances across periods is almost one, the 
bands are very small because the variances do not change across periods and the estimate 
of the sample size is close to the expected value under repeated sampling. The behavior 
of these bands is very different for the Farm and New Zealand populations as shown 
Figures 5 and 6. For Farms in Figure 5, the SL allocation (black shaded area) is less 
precise (i.e., a wider percentile band) than the naive allocations H12 and H12G12 (orange 
a purple percentiles bands) for small effective sample sizes. The bands become smaller as 
the sample size increases. In these cases, it is preferable to use the more naive allocations 
for, nh = 6, 10, and 20, which correspond to vertical lines at eff

hn = 3.2, 5.6, and 7.9, 
respectively. The wider percentile bands can be explained by the fact that more 
parameters are estimated in the SL allocation. These parameters are ( )1 2 3

ˆ ˆ ˆ ˆ, ,λ λ λ=λ . In 

contrast, the naive allocations do not have this source of variability. For the New Zealand 
population in Figure 6, the bands are constant despite the large sample sizes, that is, the 
estimates of the sample size are not consistent. 

 

 
Figure 4: 2.5th and 97.5th percentile bands of achieved reduction of variance for different 
allocations in the Business population 
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Figure 5: 2.5th and 97.5th percentiles bands of achieved reduction of variance for 
different allocations in the Farm data 

 

 
Figure 6: 2.5th and 97.5th percentiles bands of achieved reduction of variance for 
different allocations in the New Zealand population 
 
Most of the simulation scenarios studied in Clark (2013) have very small samples for 
computing the stratum variances as indicated in Table 2. This can introduce a bias 
because the sample size is not a linear function of the estimated variances. As a result, 

( ) ( ) ( ) ( ),1, 1 1 21 1 31 1
ˆ ˆ ˆˆSL gh gh gh gE n kN E V E V E Vλ λ λ≠ + + , that is, ,1,ˆSL ghn is biased for small 

samples. The biases in the sample sizes cause losses in efficiency because they cause 
departures from the optimal allocation. This is observed in Figures 1 and 2 in the curved 
lines for the ratios of variance reduction for all allocations. As the sample size increases, 
the curves converge to the value of the theoretical ratios. The SL and naive allocations do 
not remove this bias. As observed in the plots for Farm and Business populations, the SL 
and all other allocations do not account for the bias in small samples. A possible 
improvement to the SL allocation that addresses the problem of the biased estimates of 
the population variances estimated with small samples is to compute the sample size as 
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( )* * * *
,1, 1 1 21 1 31 1

ˆ ˆ ˆˆSL gh gh gh gn k N S S Sλ λ λ′= + + , where *
1

ˆ
ghS , *

1
ˆ

gS , and *
1Ŝ  are the bias-corrected 

estimates of the population standard errors for the substratum, group, and total 
respectively and k ′  is the constant of proportionality. The bias-corrected population 
standard deviation is computed as ( )*

4
ˆ ˆ /S S c m=  where ( )4c m is the bias correction 

factor defined as ( ) ( ) ( ) ( )( )4 2 / 1 / 2 / 1 / 2c m m m m= − Γ Γ −  where m is the sample size 

used to estimate Ŝ . Under normality, the estimate of the population, group, or stratum 
standard error is unbiased and the bias of *

,1,ˆSL ghn  should be smaller than the bias of 

,1,ˆSL ghn . This change to the SL allocation will be evaluated in a further study. Since it 
addresses the bias for small samples directly, it expected to perform better than the 
allocations studied in this paper.  
 
The SL approach produces an allocation but do not necessarily provide insight about how 
the sample is allocated because of the “black box” methodology. As mentioned before, 
the components of λ  in the expression of the SL allocation are weighting factors (i.e., 
composite factors) that combine the population group variance, stratum variance, and 
proportional allocation variance. However, the mechanism that assigns the values to these 
factors is not easily observed (see the ternary composition plots in Figure 2 in 
Clark, 2013). For example, it is not clear under which conditions one variance receives a 
larger factor than another. To better understand how the SL allocation works and explore 
these conditions, we examined the expected values of λ ’s for the same range of effective 
sample sizes in the expanded simulations. That is, similar to the sample sizes, we 
recognize that the composite factors are also random variables, and their expected value 

( )ˆE λ  for different sample sizes can be observed using the same simulations. The results 

of this analysis for the Business, Farm, and New Zealand populations are shown in the 
plots in Figures 7, 8, and 9. 
 
The plots show that in expectation, the role of the variance from proportional allocation 
(blue line) in the equation of the SL allocation is null in these artificial populations. The 
main action is the averaging of the variance of the allocation between the substratum 
allocation ( ( )1̂E λ , or red line) and the group allocation ( ( )2

ˆE λ , or the black line). In 

these cases, the SL allocation may perform better if variance of the proportional 
allocation is removed from the formula in the SL allocation. The plots show that the SL 
allocation in expectation is averaging the stratum and group variances in a similar way as 
the naive allocation H12G12 does. One possible advantage of the SL estimator may be 
that it averages the variances “dynamically,” moving the weight from the group variance 
to the stratum variance as the sample size increases. However, it does not change fast 
enough because at larger sample sizes, the variances of the more naive allocations are 
closer to the variance of the Neyman allocation in the Business and Farm populations. In 
the case of the New Zealand population, the SL allocation essentially averages both 
variances with factors 0.5 for group variances and 0.4 for stratum variances. The H12G12 
uses equal factors that seem to be marginally better. In this case, the SL allocation does 
not yield a minimum variance and is slightly more inefficient than the H12G12 
allocation.  
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Figure 5: Expected values of the composite factors ( )1 2 3

ˆ ˆ ˆ ˆ, ,λ λ λ=λ for the Business data by 
different sample sizes 

 
Figure 6: Expected values of the composite factors ( )1 2 3

ˆ ˆ ˆ ˆ, ,λ λ λ=λ for the Farm data by 
different sample sizes 

 
Figure 7: Expected values of the composite factors ( )1 2 3

ˆ ˆ ˆ ˆ, ,λ λ λ=λ for the New Zealand 
population data by different sample sizes 
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5. Final Comments 

 
The re-evaluation of the SL allocation brings to light several issues in the way new ideas 
are studied. If the research is based on simulations, special care is needed to determine 
how it is evaluated, what populations are simulated, and what alternatives are compared. 
Even if these issues are solved, in rare occasions generalizations based on simulations can 
be made. We still need to have a good understanding of the theory. This understanding is 
also needed to confirm our expectations from the simulations and provide ways to 
improve the research ideas.  
 
We also seem to be drawn to complicated or fancier methods while ignoring simpler 
approaches. That is precisely the allure of statistical learning. Although they are complex, 
there are relatively easier to program without the need to have a basic understanding on 
how and why they work. We are not the first to express these concerns about the 
statistical and machine learning approaches (Breiman, 2001). 
 

Acknowledgements 
 
I would like to thank Dr. Roger Tourangeau for his comments on this work and 
Dr. J. Michael Brick for his support. 
 

References 
 
Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a 

rejoinder by the author). Statistical Science, 16(3), 199--231 
doi:10.1214/ss/1009213726. 

Buskirk, T. D., & Kolenikov, S. (2015). Finding respondents in the forest: a comparison 
of logistic regression and random forest models for response propensity 
weighting and stratification. Insights: Methods from the Field, Weighting: 
Practical Issues and ‘How to’ Approach. doi:10.13094/SMIF-2015-00003. 

Clark, R. G. (2013). Sample design using imperfect design data. Journal of Survey 
Statistics and Methodology, 1(1), 6-23. 

Cochran, W. G. (1977). Sampling techniques. ( 3rd ed.). New York: John Wiley & Sons. 
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical 

learning with applications in R. Retrieved June 2, 2015, from http://www-
bcf.usc.edu/~gareth/ISL/ISLR%20Fourth%20Printing.pdf. 

R Development Core Team. (2013). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing. Vienna, Austria. 
doi:http://www.R-project.org. 

 

JSM2015 - Survey Research Methods Section

992


