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Abstract  
Two-phase sampling is a long-standing sampling method. It identifies subpopulations of 
interest in the first phase of a survey, from which a random subsample is selected in the 
second phase for further data collection, using the new information to further stratify or to 
narrow the survey population to a particular subgroup. It is also used to randomly 
subsample survey nonrespondents for more intensive follow-up. In this context, the phase-
one nonrespondents are considered a subpopulation that is identified after data collection 
efforts have been completed with the initial mode and protocol. The more intensive phase-
two data collection protocol is generally more expensive to implement than the first and is 
expected to have a greater success rate. However, budgetary constraints generally limit 
how many nonrespondents data collectors can attempt to contact using this more expensive 
protocol. Hansen et al.’s (1953) work provides optimal values for the fraction of phase-one 
nonrespondents to be subsampled for phase two (1/k) and for the initial sample size (M) in 
a two-phase sample with a subsample of proportion 1/k. However, these calculations 
assume that phase-two methods result in 100 percent response, which is not often the case 
in real-world scenarios. In this paper, I derive new optimal values for M and k under the 
more realistic scenario in which not all phase-two attempts result in a response. 
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1. Introduction 

Two-phase sampling is an efficient and cost-effective method to increase survey response 
rates. In this method, initial survey nonrespondents are randomly subsampled for more 
intensive follow-up in a second phase of data collection that uses a different and generally 
more expensive protocol.  

Consider two interviewer-administered data collection protocols: (1) a telephone interview 
and (2) an in-person interview. A telephone interview is less expensive per completed 
interview than an in-person interview, but the latter is generally more effective at gaining 
respondents’ cooperation and obtaining completed interviews.1 In this scenario, in-person 
interviewing might not be an option for all sample members, given cost constraints. In a 
two-phase sample design, interviewers would attempt to contact all sample members 
initially using the phase-one protocol (telephone interviewing). After a fixed and well-
defined level of effort adhering to the initial data collection protocol, researchers would 
determine who responded and who did not, then randomly subsample phase-one 
nonrespondents and attempt to complete the survey in person for this subsample only 
(phase two). At this point, all efforts to contact any phase-one nonrespondents not 

                                                           
1 Other examples might include a web survey in phase one and telephone survey in phase two, or a 
lower incentive amount in phase one and higher amount in phase two. 
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subsampled for phase two would cease. This method is clearly less expensive than 
attempting to contact all phase-one nonrespondents using in-person interviewing.  

Two-phase sampling is not to be confused with two-stage sampling, the latter referring to 
a clustered or nested sample design. However, two-phase sampling can be used in 
conjunction with various simple and complex sampling methods. For illustrative purposes, 
this paper will use a simple random sample to demonstrate the methodology. 

2. Background 

Two-phase sampling (also known as double sampling) is a concept with a long history. 
Neyman (1938) described it as a way to sample a specific subpopulation or stratify on a 
certain characteristic when the variables that define the desired subpopulation or strata are 
not available on the initial sample frame. In this scenario, researchers collect data from a 
sample survey to obtain the information needed for a more targeted sample design in phase 
two. The new information helps researchers refine the sample—either to narrow the 
population to a particular subgroup or to stratify and perhaps oversample certain subgroups. 
Data collectors then attempt to interview a random subsample of this targeted population. 

In 1946, Hansen and Hurwitz adapted Neyman’s methodology to address the problem of 
survey nonresponse. But instead of using phase one to obtain characteristics not available 
on the initial sample frame, they proposed using phase-one data collection to identify which 
sample members do not respond to this kind of survey using the phase-one protocol, 
essentially considering response as an intrinsic characteristic of the sample member. Then, 
in phase two, researchers select a subsample of these phase-one nonrespondents and 
attempt to contact them using a different protocol, a more expensive method with an 
expected higher success rate overall and, in particular, which converts phase-one 
nonrespondents to respondents. 

3. Response Rates 

As mentioned previously, the main goal of two-phase sampling for nonresponse is to 
increase the response rate in a cost-effective manner. For simplicity, I use a simple sample 
design (single stage, no stratification) in which we know all sample members are eligible. 
In this situation, the response rate is calculated to be 

𝑅𝑅 =
𝑅

𝑀
 

where M = R + N is the total sample size, R is the number of respondents, and N is the 
number of nonrespondents. 

If we implement a two-phase design in which the subscript 1 represents the results after 
phase one, then the phase-one response rate is 

𝑅𝑅1 =
𝑅1

𝑀
 

where M = R1 + N1 is the total sample size, R1 is the number of phase-one respondents, 
and N1 is the number of phase-one nonrespondents. 

If we randomly subsample 1/k of the N1 phase-one nonrespondents for phase two, then the 
cumulative response rate through phase two is calculated to be either of the following two 
algebraically equivalent formulas: 
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𝑅𝑅 =
𝑅1 + (𝑘)𝑅2

𝑅1 + (𝑘)(𝑅2 + 𝑁2)
= 𝑅𝑅1 + (1 − 𝑅𝑅1)

𝑅2

𝑅2 + 𝑁2
 

where R2 is the number of respondents to phase two among the subsampled phase-one 
nonrespondents, N2 is the number of nonrespondents to phase two among the subsampled 
phase-one nonrespondents, and R2 + N2 = (1/k)(N1). 

The subsampling weight is represented by k, the inverse of the subsampling fraction. It 
indicates the number of phase-one nonrespondents in the sample that each subsampled case 
represents. In two-phase sampling, the subsampling weight k must be used to make 
estimates or calculate response rates to properly account for the entire sample. 

4. Example 

To demonstrate the procedure, I introduce a simple example that I will use throughout the 
paper. In this example, the initial sample is M = 2,000, and R1 = 500 respond to phase 
one—a telephone interview with 12 attempts made over four weeks. The phase one 
response rate is as follows: 

𝑅𝑅1 =
500

500 + 1500
= .25 

Next, suppose we randomly subsample one-third of the N1 phase-one nonrespondents. If 
1/k = .33, then we subsample 500 of the 1,500 phase-one nonrespondents for phase two (in 
this example, in-person visits). If 250 of these 500 are converted to respondents in phase 
two and 250 are persistent nonrespondents, the phase-two response rate is 50 percent, and 
the cumulative response rate is as follows: 

𝑅𝑅 =
500 + (3)250

500 + (3)(250 + 250)
= .25 + (1 − .25)

250

250 + 250
= .625 

This is quite an increase in the response rate. Had we stopped data collection after phase 
one, the response rate would have been only 25 percent. By progressing to phase two, the 
response rate jumped to 62.5 percent. As I will demonstrate later in this paper, this jump in 
response rate would be the same regardless of the proportion subsampled for phase two. It 
is important to note that the 1,000 phase-one nonrespondents who were not subsampled are 
no longer included in subsequent calculations, as they are now represented by those who 
were subsampled when properly weighted by k. 

5. Cost 

It can be expensive to obtain this increase in response rate in the phase-two data collection, 
but costs can be substantially reduced by subsampling phase-one nonrespondents for phase 
two, rather than sending all phase-one nonrespondents to phase two. Suppose C1 is the cost 
per completed interview using the phase-one protocol, and C2 is the cost per completed 
interview using the phase-two protocol, with C2 greater than C1. (To keep things simple, 
we assume here that C1 does not vary for one-phase and two-phase designs.) Continuing 
with the example—and assuming the same two response rates for phases one and two—
suppose C1 = $100 and C2 = $500. Table 1 shows the response rate and the cost for three 
designs: (1) a phase-one-only design, (2) a two-phase design in which all phase-one 
nonrespondents go to phase two, and (3) a two-phase design in which a subsample of one-
third of nonrespondents go to phase two. 
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Table 1: Comparison of Cost and Response Rate Across Three Designs 

Design M R1 R2 N RR 
Cost (in 

thousands) 
Phase one only 
 2,000 500 0 500 .250 $50 

Phase one + all nonrespondents 
go to phase two 2,000 500 750 1,250 .625 $425 

Phase one + one-third of 
nonrespondents go to phase two 2,000 500 250 750 .625 $175 

 

This table shows that both two-phase designs have the same response rate of 62.5 percent, 
but subsampling in phase two reduces the cost by $250,000. This third design is more costly 
than the phase-one-only design, but results in a higher number of completed interviews and 
much higher response rate. 

6. Sample Size and Precision 

There is also a price to pay to conduct phase-two subsampling, in terms of precision. As 
the previous example demonstrates, the total completed sample size is substantially lower 
than it would be had all phase-one nonrespondents moved to phase two (750 versus 1,250). 
In addition to the smaller sample size, there is a weighting design effect because each 
respondent to the phase-two data collection has a weight that is k times that of a phase-one 
respondent. This variability in the weights adversely impacts the precision of estimates. As 
I will discuss later in the paper, increasing the response rate is an attempt to reduce 
nonresponse bias in our estimates. But in doing so, we increase the variance and thus 
encounter the bias-variance trade-off that statisticians often face.  

A design effect is a measure of the impact of a complex sample design on the variance of 
estimates. Complexities can include unequal weighting (due to unequal sampling 
probabilities or weighting adjustments), clustering, and stratification. Unequal weighting 
and clustering tend to increase the variance of estimates relative to a simple random sample. 
A design effect is the ratio of the true variance (properly accounting for design 
complexities) to the variance one would obtain for a simple random sample of the same 
nominal sample size. A design effect of 1.5 indicates that a design increased the variance 
of an estimate by 50 percent and effectively reduced the sample size by one-third.  

Because the subsampling weight of k is applied to some sample members (those who were 
phase-one nonrespondents but then responded in phase two) and not others (phase-one 
respondents), weighting disparities are introduced, which in turn introduce a design effect 
(or an additional design effect if the original design was already complex). I will introduce 
specific calculations later in the paper, but in Table 2 I add a column showing the effective 
sample size in each of the three designs, where the effective sample size is the nominal 
sample size divided by the newly introduced design effect. The first two designs have a 
design effect of 1, as no subsampling occurred for phase two. 
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Table 2: Comparison of Precision Across Three Designs 

Design M N 
Effective 

sample 

size 

RR 
Cost (in 

thousands) 

Cost per 
effective 
sample 

unit 

Relative 
precisionb 

(percent) 

Phase one only 
 2,000 500 500 .250 $50 $100 --- 

Phase one + all 
nonrespondents 
go to phase two 

2,000 1,250 1,250 .625 $425 $340 36.8 

Phase one + 
one-third of 
nonrespondents 
go to phase two 

2,000 750 568a .625 $175 $308 6.2 

 

a Design effect = 1.32. 
b Relative precision is defined here as the reduction in the size of a 95 percent confidence interval 
(half width) for a proportional outcome of 0.5, relative to that of the phase-one only design. 
 

The third design (subsampling for phase two) has an effective sample size less than half 
that of the second design. Combining the impacts of the various designs on cost and 
effective sample size, the cost per effective sample unit is slightly lower for the one-third 
subsample in phase two, relative to that of the design in which all nonrespondents go to 
phase two ($308 versus $340). In terms of precision, the subsample design does not 
improve precision very much over the phase-one-only design, with the latter having a 95 
percent confidence interval (around a proportion of 0.5) of plus or minus .044, and the 
former having an interval of plus or minus .041, due to the slightly larger effective sample 
size. 

7. Moving Parts 

Thus, there are three moving parts to compare: (1) response rate, (2) cost, and (3) sample 
size and precision. To discuss these moving parts, I return to the concept of response rates. 
Historically, response rates were used as a barometer for the risk of nonresponse bias. The 
higher the response rate, the lower the risk for nonresponse bias. But in recent years, this 
assumption has received more thought. Although nonresponse bias rarely can be measured 
directly, in theory, one can represent nonresponse bias by 

Bias = (�̅�𝑟 − �̅�𝑛𝑟) ∙
𝑛𝑟

𝑛
 

The first term represents the difference in the mean value of outcome y between the 
respondents and the nonrespondents, and the second term represents the nonresponse rate 
(one minus the response rate). As the nonresponse rate approaches zero (as the response 
rate approaches one), the bias approaches zero. However, as the difference in the outcome 
between respondents and nonrespondents approaches zero, the bias also approaches zero, 
regardless of the nonresponse rate. If the propensity to respond is unrelated to key 
outcomes, then a low response rate is less problematic in terms of the risk for nonresponse 
bias. But many data collection clients (such as government agencies and foundations) and 
professional journals consider the response rate an important measure of the quality of 
survey estimates. That is the underlying premise when using two-phase sampling to 
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increase the response rate as cost-effectively as possible. In fact, increasing the response 
rate this way, through random subsampling, is more likely to reduce nonresponse bias than 
by struggling to get responses from the next easiest cases among the entire sample. 

The precision of estimates (standard errors and confidence intervals) and, related to this, 
the power to detect differences, are affected by the total number of responses and the design 
effect; that is, the effective sample size. One can increase the effective sample size by 
increasing the nominal sample size or decreasing the design effect or both. The choice of 
the subsampling fraction has an impact on both of these, as well as on the cost.  

When comparing the two-phase subsampling approach to a design with only one phase of 
data collection, each with the same initial sample size, the two-phase subsampling 
approach yields more completed interviews and at a higher response rate, but also at a 
higher cost. For the same initial sample size, the effective sample size could be larger or 
smaller than the phase-one sample size, depending on the subsampling fraction and the 
response rates in each of the two phases.  

When comparing the two-phase subsampling approach to a design in which all phase-one 
nonrespondents go to phase two, the subsampling approach yields fewer completed 
interviews and has an even smaller effective sample size, but has a lower cost and yields 
the same response rate. This is true regardless of the subsampling fraction and the response 
rates in each of the two phases. To achieve the same effective sample size but still with a 
lower cost, one can increase the initial sample size for two-phase subsampling. Similarly, 
one can increase the initial sample size for two-phase subsampling to increase the effective 
sample size at the same cost as the design in which all phase one nonrespondents go to 
phase two. 

8. Subsampling Fraction 

As I have shown, after fixing the two protocols for phases one and two, along with their 
expected response rates, the overall response rate is fixed for a two-phase design, regardless 
of the subsampling fraction. However, if we fix cost, the effective sample size will vary 
depending on the subsampling fraction and the initial sample size. Similarly, if we fix the 
effective sample size, the cost will vary depending on the subsampling fraction and the 
initial sample size. 

According to Hansen et al. (1953), the optimal value for k (where 1/k is the subsampling 
fraction for phase two) is 

𝑘 = √
𝐶2𝑅𝑅1

𝐶0 + 𝐶1𝑅𝑅1
 

where C0 is the cost per attempt in phase one, C1 is the cost per complete in phase one, and 
C2 is the cost per complete in phase two. 

Optimal here means that this value of k is best if one fixes cost and maximizes the effective 
sample size, or if one fixes the effective sample size and minimizes cost. If C0 = 0, or if C0 
is included in C1, then k simplifies to 

𝑘 = √
𝐶2

𝐶1
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9. Deriving Existing Formulas Assuming Full Response in Phase Two 

According to Hansen et al. (1953), the assumption is that all those subsampled for phase 
two will result in completes. Although perhaps that was a fair assumption in 1953, it is no 
longer reasonable to assume 100 percent response among subsampled phase-one 
nonrespondents when attempting to contact using the phase-two protocol. In this paper, I 
expand on the original formulas to accommodate nonresponse in phase two. To do so, I 
first replicate their formulas for cost, initial sample size, number of completes, design 
effects, and the optimal value of k, making their assumption of complete response in phase 
two. 

If the initial sample size is M and we subsample 1/k for phase two, the number of completes 
(N) in a two-phase design with full participation in phase two is: 

𝑁 = 𝑅1 + 𝑅2 = 𝑀(𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘) 

and the associated cost is: 

𝑐𝑜𝑠𝑡 = 𝑀(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1)/𝑘) 

The design effect due to unequal weighting (deff) is: 

𝑑𝑒𝑓𝑓 =
𝑁 ∑ 𝑊𝑇2

(∑ 𝑊𝑇)2
=

𝑀(𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘)(𝑀 ∙ 𝑅𝑅1 ∙ 12 + 𝑀 ∙ (1 − 𝑅𝑅1)/𝑘 ∙ 𝑘2)

(𝑀 ∙ 𝑅𝑅1 ∙ 1 + 𝑀 ∙ (1 − 𝑅𝑅1)/𝑘 ∙ 𝑘)2
 

 

=
(𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘)(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘)

(𝑅𝑅1 + (1 − 𝑅𝑅1))2

= (𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘)(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘) 

The effective sample size (effn), which is the nominal sample size divided by the design 
effect, is: 

𝑒𝑓𝑓𝑛 =
𝑀(𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘)

(𝑅𝑅1 + (1 − 𝑅𝑅1)/𝑘)(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘)
=

𝑀

(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘)
 

 

9.1 Matching Effective Sample Size and Minimizing Cost 

When all phase-one nonrespondents go to phase two (and all respond), the effective sample 
size is equal to the nominal sample size selected. Suppose the initial sample size (and the 
number of respondents) for such a design is M0. If we want to match the effective sample 
size for phase two subsampling to the effective sample size for the two-phase design with 
no subsampling, then we would have to inflate M0 by a certain factor. To derive that factor, 
set the two effective sample sizes equal to each other: 

𝑀0 =
𝑀

(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘)
 

then 𝑀 = 𝑀0(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘) = 𝑀0(1 + (1 − 𝑅𝑅1)(𝑘 − 1)) 

The last term above is what Hansen et al. indicate, but I will use the preceding term for the 
calculations that follow. The inflation factor is then (𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘). To find the 
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optimal value of k, we minimize the cost for this fixed effective sample size when 
subsampling for phase two: 

𝑐𝑜𝑠𝑡 = 𝑀(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1)/𝑘)= 𝑀0(𝑅𝑅1 + (1 − 𝑅𝑅1) ∙ 𝑘)(𝐶0 + 𝐶1𝑅𝑅1 +
𝐶2(1 − 𝑅𝑅1)/𝑘) 

To minimize the cost function, we factor out constant M0, take the derivative of this 
equation with respect to k,2 set equal to zero, and solve for k: 

𝑘 = √
𝐶2𝑅𝑅1

𝐶0 + 𝐶1𝑅𝑅1
 

9.2 Matching Cost and Maximizing Effective Sample Size 

Similarly, if we set the cost for the two-phase design with subsampling to that of the two-
phase design with no subsampling, then 

 𝑀0(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1)) = 𝑀 (𝐶0 + 𝐶1𝑅𝑅1 +
𝐶2(1−𝑅𝑅1)

𝑘
) 

and then  𝑀 = 𝑀0
(𝐶0+𝐶1𝑅𝑅1+𝐶2(1−𝑅𝑅1))

(𝐶0+𝐶1𝑅𝑅1+
𝐶2(1−𝑅𝑅1)

𝑘
)

 

Next, we try to maximize the effective sample size for this value of M, which is the same 
as minimizing the inverse of the effective sample size:  

𝑀0

𝑒𝑓𝑓𝑛
=

(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1)/𝑘)(𝑅𝑅1 + (1 − 𝑅𝑅1)𝑘)

(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1))
 

If we again factor out constant M0, take the derivative with respect to k,3 set to zero, and 
solve for k, we once again find that the optimal value of k is  

𝑘 = √
𝐶2𝑅𝑅1

𝐶0 + 𝐶1𝑅𝑅1
 

 

10. Deriving New Formulas Allowing for Nonresponse in Phase Two 

I now introduce a new term, P2, which is equal to (1-RR1)(RR2), where RR2 is the response 
rate in phase two. Using this, we can derive new formulas allowing for less than full 
response in phase two. If we again assume the initial sample size is M and we subsample 
1/k for phase two, the number of completes in a two-phase design with some nonresponse 
in phase two is 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑠 = 𝑁 = 𝑀(𝑅𝑅1 + (1 − 𝑅𝑅1)𝑅𝑅2/𝑘)=𝑀(𝑅𝑅1 + 𝑃2/𝑘) 

                                                           
2 

𝑑(𝑐𝑜𝑠𝑡)

𝑑𝑘
= ((1 − 𝑅𝑅1) ∙ (𝐶0 + 𝐶1𝑅𝑅1)) − (𝐶2 ∙ 𝑅𝑅1 ∙ (1 − 𝑅𝑅1))𝑘−2 

 

3 
𝑑(

𝑀0
𝑒𝑓𝑓𝑛

)

𝑑𝑘
= (

(𝐶0+𝐶1𝑅𝑅1)(1−𝑅𝑅1)

(𝐶0+𝐶1𝑅𝑅1+𝐶2(1−𝑅𝑅1))
) − (

𝐶2𝑅𝑅1(1−𝑅𝑅1)

(𝐶0+𝐶1𝑅𝑅1+𝐶2(1−𝑅𝑅1))
) 𝑘−2 
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and the associated cost is 

𝑐𝑜𝑠𝑡 = 𝑀(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2(1 − 𝑅𝑅1)𝑅𝑅2/𝑘)= 𝑀(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2/𝑘) 

The design effect due to unequal weighting is 

𝑑𝑒𝑓𝑓 =
𝑁 ∑ 𝑊𝑇2

(∑ 𝑊𝑇)2
=

𝑀(𝑅𝑅1 + 𝑃2/𝑘)(𝑀 ∙ 𝑅𝑅1 ∙ 12 + 𝑀 ∙ 𝑃2/𝑘 ∙ 𝑘2)

(𝑀 ∙ 𝑅𝑅1 ∙ 1 + 𝑀 ∙ 𝑃2/𝑘 ∙ 𝑘)2
 

 

=
(𝑅𝑅1 + 𝑃2/𝑘)(𝑅𝑅1 + 𝑃2 ∙ 𝑘)

(𝑅𝑅1 + 𝑃2)2
 

The effective sample size, which is the nominal sample size divided by the design effect, 
is 

𝑒𝑓𝑓𝑛 =
𝑀(𝑅𝑅1 + 𝑃2/𝑘)(𝑅𝑅1 + 𝑃2)2

(𝑅𝑅1 + 𝑃2/𝑘)(𝑅𝑅1 + 𝑃2 ∙ 𝑘)
=

𝑀(𝑅𝑅1 + 𝑃2)2

(𝑅𝑅1 + 𝑃2 ∙ 𝑘)
 

When all phase-one nonrespondents go to phase two, the effective sample size is equal to 
the nominal sample size times the cumulative response rate; that is, there is no subsampling 
design effect.  

10.1 Matching Effective Sample Size and Minimizing Cost  

If we want to match the effective sample size for phase-two subsampling to the effective 
sample size for the two-phase design with no subsampling, then we have to inflate initial 
sample size M0 by a certain factor. To derive that factor, 

set:  𝑀0(𝑅𝑅1 + 𝑃2) =
𝑀(𝑅𝑅1+𝑃2)2

(𝑅𝑅1+𝑃2∙𝑘)
 

then 𝑀 = 𝑀0
(𝑅𝑅1+𝑃2∙𝑘)

(𝑅𝑅1+𝑃2)
 

The inflation factor is then (𝑅𝑅1 + 𝑃2 ∙ 𝑘)/(𝑅𝑅1 + 𝑃2). To find the optimal value of k, we 
minimize the cost for a fixed effective sample size: 

𝑐𝑜𝑠𝑡 = 𝑀(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2/𝑘)= 𝑀0
(𝑅𝑅1+𝑃2∙𝑘)

(𝑅𝑅1+𝑃2)
(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2/𝑘) 

If we factor out constant M0, take the derivative of this equation with respect to k,4 set to 
zero, and solve for k, we again get the same formula:  

𝑘 = √
𝐶2𝑅𝑅1

𝐶0 + 𝐶1𝑅𝑅1
 

 

 

                                                           
4 

𝑑(𝑐𝑜𝑠𝑡)

𝑑𝑘
= (

𝐶0𝑃2+𝐶1𝑃2𝑅𝑅1

𝑅𝑅1+𝑃2
) − (

𝐶2𝑃2𝑅𝑅1

𝑅𝑅1+𝑃2
) 𝑘−2 
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10.2 Matching Cost and Maximizing Effective Sample Size  

Similarly, if we set the cost for the two-phase design with subsampling to that for the two-
phase design with no subsampling, then maximize the effective sample size, then: 

 𝑀0(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2) = 𝑀 (𝐶0 + 𝐶1𝑅𝑅1 +
𝐶2𝑃2

𝑘
) 

and then  𝑀 = 𝑀0
(𝐶0+𝐶1𝑅𝑅1+𝐶2𝑃2)

(𝐶0+𝐶1𝑅𝑅1+
𝐶2𝑃2

𝑘
)
 

Next, we try to maximize the effective sample size for this value of M, which is the same 
as minimizing the inverse of the effective sample size (once again, factoring out constant 
M0): 

𝑀0

𝑒𝑓𝑓𝑛
=

(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2/𝑘)(𝑅𝑅1 + 𝑃2𝑘)

(𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2)(𝑅𝑅1 + 𝑃2)2
 

If we take the derivative of this formula with respect to k,5 set to zero, and again solve for 
k, the optimal value for k is the same: 

𝑘 = √
𝐶2𝑅𝑅1

𝐶0 + 𝐶1𝑅𝑅1
 

 

10.3 Matching Other Designs 

I went through similar steps, finding the optimal value of k, matching the initial sample 
size for the two-phase subsample design to either the effective sample size or the cost for 
a phase-one only design. Again, although the initial sample size inflation factors changed, 
the optimal value of k remained the same. This led me to try to find a generalized formula 
to prove that this value of k is always optimal. To do this, we have to assume that the initial 
sample size for the two-phase subsample design is a function of k or 1/k. Otherwise, with 
no other constraints, the optimal value of 1/k to minimize cost is 0. However, if the initial 
sample size can be written in the following format 

𝑀 = 𝑀0 ∙ 𝐹 ∙ (𝑅𝑅1 + 𝑃2𝑘) 

where F is any factor unrelated to k, then the derivative of the associated cost function 
would be 

𝑑(𝑐𝑜𝑠𝑡)

𝑑𝑘
= 𝑃2𝐹(𝐶0 + 𝐶1𝑅𝑅1) − 𝑃2𝐹𝐶2𝑅𝑅1𝑘−2 

If we set this equal to zero and solve for k, the optimal value of k is the same. Doing the 
same exercise but trying to maximize the effective sample size proves even less 
generalizable. To solve the formula, we would have to use the following equation format 
for the initial sample size: 

                                                           

5 
𝑑(

𝑀0
𝑒𝑓𝑓𝑛

)

𝑑𝑘
= (

(𝐶0+𝐶1𝑅𝑅1)𝑃2

(𝐶0+𝐶1𝑅𝑅1+𝐶2𝑃2)(𝑅𝑅1+𝑃2)2) − (
𝐶2𝑅𝑅1𝑃2

(𝐶0+𝐶1𝑅𝑅1+𝐶2𝑃2)(𝑅𝑅1+𝑃2)2) 𝑘−2 
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𝑀 = 𝑀0 (
𝐶0 + 𝐶1𝑅𝑅1 + 𝐺

𝐶0 + 𝐶1𝑅𝑅1 + 𝐶2𝑃2/𝑘
) 

where G is any factor unrelated to k. 

 

11. Example (Continued) 

Returning to the example, assuming that C0 = 0, the optimal value of k would be 
√𝐶2 𝐶1⁄ =√500 100⁄ =2.236, which points to an optimal sampling fraction of .4472. If we 
apply the sample size inflation factor for minimizing cost relative to the two-phase design 
without subsampling with an initial sample size of 2,000, the initial sample size is 3,483 
for the two-phase subsampling design. If we apply the sample size inflation factor for 
maximizing the effective sample size, keeping the cost constant, the initial sample size is 
3,904 (Table 3). 

Table 3: Comparison of Precision When Using Optimal k 

Design M N 

Effective 
sample 

size 
RR 

Cost (in 
thousands) 

Cost per 
effective 
sample 

unit 

Relative 
precisiona 

(percent) 

Phase one only 
 2,000 500 500 .250 $50 $100 --- 

Phase one + all 
nonrespondents 
go to phase two 

2,000 1,250 1,250 .625 $425 $340 36.8 

Phase one + 
.4472 of 
nonrespondents 
go to phase two 
(design effect 
of 1.164) 

 
2,000 

 
835 718 .625 $218 $303 16.6 

 
3,483 

 
1455 1,250 .625 $379 $303 36.8 

 
3,904 

 
1631 1,401 .625 $425 $303 40.3 

a Relative precision is defined here as the reduction in the size of a 95 percent confidence interval 
(half width) for a proportional outcome of 0.5, relative to that of the phase-one-only design. 
 

If we initially sample 3,483 and subsample .4472 of phase-one nonrespondents, the 
response rate (.625) and effective sample size (1,250) are the same as when all phase-one 
nonrespondents (among an initial sample size of 2,000) go to phase two, but for a lower 
cost: $379,000 compared to $425,000. Similarly, if we initially sample 3,904 and 
subsample .4472 of phase-one nonrespondents, the response rate (.625) and cost 
($425,000) are the same as those in the comparison design, but with a higher effective 
sample size: 1,401 compared to 1,250. For all designs with the optimal subsampling 
fraction, the cost per effective sample unit is $303, which is lower than the $340 per unit 
for the design in which all phase-one nonrespondents go to phase two. 
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12. Discussion 

In addition to developing new formulas related to two-phase subsampling for nonresponse, 
this paper shows that the formula for the optimal subsampling fraction appears to be 
constant across various types of constraints. However, there are some key points to 
emphasize when using two-phase sampling for nonrespondents. To begin, this method is 
most useful when one of the key goals is to maximize the response rate while controlling 
costs. It might not be suitable for all data collections, depending on schedule and possible 
methods and modes. It is used for the American Community Survey (U.S. Census Bureau 
2014), where phase two involves in-person interviewing. The American Association for 
Public Opinion Research (2015) includes a section on how to calculate response rates for 
two-phase designs in its Standard Definitions document. When using this method, it is 
absolutely essential to incorporate the subsampling weight k in response rates, weights, and 
estimates.  

Subsampling rules and mechanisms should ideally be built into the sample design from the 
beginning but can also be implemented after data collection has started. Various 
mechanisms are available for the subsampling, the most obvious being the use of random 
numbers or a random selection of the original sample or of the phase-one nonrespondents. 
If the sample has been divided into random replicates for regulating sample releases over 
time, these random replicates can serve a second purpose, determining which phase-one 
nonrespondents go to phase two. 

After the fixed level of effort under the phase-one methodology, all efforts to contact the 
nonrespondents who were not subsampled for phase two must cease, and any completed 
interviews from them that might materialize later (mail-in surveys, web surveys, and 
incoming calls) cannot be used. The fixed level of effort under phase one should be selected 
carefully. Staying in phase one too long could waste money, but leaving phase one too 
early could unnecessarily reduce the effective sample size. The time dimension of the level 
of effort cutpoint can be relative to each case (on a rolling basis) rather than fixed to a 
specific calendar date, when the first attempt for all cases is not on the same date. 

Those who use the formulas in this paper must specify the cost per attempt (if applicable), 
the cost per complete using the phase-one method, and the cost per complete using the 
phase-two method. It is important to note that as C2 approaches C1, the optimal value of k 
decreases and the subsampling fraction increases. Similarly, as C2 increases relative to C1, 
the optimal subsampling fraction decreases. 

Further, users of these formulas must specify the phase-one response rate and the phase-
two response rate. The overall response rate for a two-phase sample will be the same with 
any subsampling fraction. Technically, the phase-two response rate is a conversion 
response rate; that is, among those who data collectors attempted to contact in phase one 
but who did not respond, what is the response rate using the phase-two methodology? For 
the two-phase methodology to successfully increase the overall response rate, the phase-
two response rate can be lower than the phase-one response rate, as long as it is greater 
than zero. The response rate formulas in this paper do not fully account for issues of 
eligibility (including undetermined eligibility status) or harsh refusals or for other sample 
members whom data collectors might not attempt to contact in phase two. Although the 
reported response rates should incorporate all of these intricacies, the main purpose of 
calculating the response rates here are to have “apples-to-apples” comparisons between 
different designs, in which case such factors are probably not important to incorporate and 
doing so would substantially increase their complexity. 
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13. Next Steps 

As mentioned earlier in this paper, phase-two subsampling for nonresponse can be used 
alongside more complex sample designs, such as stratification (with or without 
oversampling), probability proportional to size sampling, geographic or other clustering, 
and other designs. Design effects due to unequal weighting in the original sample design 
would need to be incorporated into the formulas for effective sample sizes. These same 
complex design techniques can be used when subsampling for phase two, including using 
response propensity scores or R-indicators (“representativeness” indicators) (Schouten et 
al. 2012) to better target the nonrespondents for phase-two subsampling. The formulas in 
this paper can be tailored to individual design complexities.  

Other enhancements to the formulas can include allowing C1 to be different for phase-one-
only designs (where cases might be worked longer and more intensively); adding fixed 
costs (such as additional statistical labor for sampling and weighting); factoring in 
additional sample for two-stage clustered designs and the impact on the design effect due 
to clustering; and incorporating additional design effects due to weighting, with 
nonresponse weighting adjustments possibly varying more when response rates are lower. 
Study designers can include all of these as optional enhancements to the formulas presented 
in this paper—in addition to using formulas for confidence intervals and minimum 
detectable differences—to see the impact of various two-phase designs on precision in 
practical terms. 
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